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Appendix 1 

Analyses were implemented in Matlab7.0 (The MathWorks, Inc.), SAS version 9.1, SAS macro 

language and SAS/IML (SAS Institute, Cary, NC.). 

A: Semi/non-parametric stochastic mixed model 

Relationships between lumbar spine and femoral neck BMD and their simultaneous 

changes over time in relation to final menstrual period (FMP) could not be appropriately 

modeled by using quadratic or cubic terms; therefore, a semi-parametric stochastic mixed 

modeling was used. In general, the semi-parametric stochastic mixed model can be formulated 

by: 
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where:  

 ijt  is the time variable (number of years prior or after FMP or FSH Stage) for subject i  at 

thj measurement; 

β is a 1p  vector of regression coefficients associated with covariates Xij 

 )(tf  is a twice-differentiable smooth function of time; 

 bi are independent 1q  vectors of random effects associated with covariates Zij; 

 )( iji tU  are independent random processes used to model serial correlation; 

 ij  are independent measurement errors. 

The fundamental assumptions for this model are: bi , )( iji tU , and ij are mutually independent. 

bi ~ normal (0, D(φ)), D is a positive definite matrix depending on a parameter vector φ; )( iji tU  

is a mean zero Gaussian process with covariance function or a non-homogeneous Ornstein-

Uhlenbeck (NOU) process, cov( )(tU i , )(sUi ) = γ(ζ, α; t, s) depending on a parameter vector ζ 
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and a scalar α,  which is used to characterize the variance and correlation of the process )(tU i ; 

ij ~ iid 2,0( N ). 

 To capture the characteristics of BMD mean and variance varying over time, the 

modeling of BMD values (or rate of change) was formulated as: 

ijijiijiiijij tUtbbtfy  )()( 10                                                                          (A.2) 

where )(tU i  is a non-homogeneous Ornstein-Uhlenbeck (NOU) process satisfying: 
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This assumed each woman's serial correlation was the same.  The smoothing function )(tf  

represents the mean profile of BMD (or rate of change) for the population of women over time.  

In this study, the potential covariates considered included body mass index (BMI), 

smoking behavior, hormones including FSH and the classifications of FSH into four stages and 

BMI into obese vs. non-obese. 

 

B: Subject-specific spline curves for longitudinal BMD data 

The subject-specific spline curves for the longitudinal BMD data were modeled as 

penalized splines with random effects within the mixed model framework.  This approach 

allowed for a trade-off between spline regression and smoothing splines by relaxing the 

importance of the number of position of the knots and reducing the computational burden by 

using low-rank smoothers for large data sets.1,2, 3  

Let ),,2,1( Kkk   be the set of distinct knots in the time ijt  range and 
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,
 be the truncation function. The general form of subject-specific 

curves can be modeled using the penalized method: 
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where: 
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reflecting overall BMD change over time;  
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differences to the overall trend.  A low-rank smoother with degree p  = 1 or 2 can be used for 

large data sets.  

ij ~ 2,0( N ) represents the measurement errors; ku ~ 2,0( uN  ); ikv ~ 2,0( vN  ); 

),(~),,,( 10 Σ0Nbbb T
p . 

Model (A.9) was implemented using mixed models and by treating p
kijt  )(  .and 

p
ijij tt ,,  in )( iji tf  as random effects. 

C: Change characteristics of BMD (or rate of change) trajectory 

BMD changes (losses) over time follow a non-linear pattern.  The instantaneous change 

of these trajectories (i.e., mean BMD profile) can be characterized by rate of change, 

acceleration / deceleration, and curvature.  These can be approximated by the first- and 

second-order derivatives of the mean curve, and the hinge/bend of the mean curve integrating 

the rate of change and acceleration, respectively. The cubic spline approach was used to 

estimate the rate of change as well as acceleration or deceleration.  

Assume the time t was equally spaced with step kk tth  1  ( 1,...,2,1  nk ), where n  

was the total number of distinguishable time points. Let )(tf be the BMD mean profile 

(trajectory) and )(3 tS be its cubic spline approximation .The rate of change can be 

approximated by solving " m " equations: 
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where km  is the cubic spline approximation to )( ktf   with errors )( 4hO , 1,...,3,2  nk . The 

1m  and nm  can be given or computed by suitable forward and backward finite difference 

formulas respectively, e.g., using first 5-points and last 5-points, 
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The acceleration / deceleration can be approximated by solving " M " equations: 
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where kM  is the second derivative approximations )( ktf   with )( 2hO  errors, 1,...,3,2  nk . 

The 1M  and nM  satisfied the boundary conditions 
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The population rate of BMD change and 95% CI over time around the FMP was obtained by 

using non-parametric stochastic mixed modeling, or bootstrapping 100 samples. 

The associations between rate of BMD change and BMI, FSH stages and/or hormones 

(including FSH, E2) were modeled using semi-parametric stochastic mixed models. 

 

D: Piecewise linear mixed model related time (ovarian aging and chronological aging) (4) 

The nodes (or turning points) of the population BMD profile were identified based on the 

changing characteristics obtained by the above processes and they were further used to 

segment the hormone trajectory into stages.  Then, piecewise linear mixed models were 
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developed to identify segment characteristics (i.e., rate of change for each segment). Statistical 

comparisons of these slopes from two consecutive intervals around a turning point were tested 

to ascertain if one slope was different than the adjacent slope. The piece wise linear mixed 

model was formulated as follows.  

Assume the independent time variable of interest 1RTt   (e.g., the time to FMPor 

time in FSH Stages). Let  *
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where K  is the total number of turning points used to split T  into )1( K  non-overlapped 

intervals.   The mean structure of piecewise linear mixed effect model was given by: 
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tt ; ),...,2,1( Llxijl  are the covariates of interest. If there 

are no other covariates (e.g., pure "time" effect is of interest) then )2(
l  and kl ,  can be dropped 

from the model. The random effects will be appropriately specified, e.g., random intercept and 

random slopes. The variance-covariance structure and model assumptions follow those of 

general linear mixed models.
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