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SUMMARY

The epidemiology and transmission dynamics of sheep scrapie is as yet poorly understood.

Here we present a theoretical analysis of the transmission dynamics within a sheep flock,

concentrating on how persistence properties depend on transmission scenario and flock size.

Patterns of disease persistence and extinction are studied analytically using branching-process

approximations and numerically using stochastic model simulations. For a given basic

reproduction number, disease extinction is most likely when late-stage infected animals are

responsible for most of the transmission. This effect can be understood in terms of aggregation

in the distribution of the number of secondary infections arising from a single primary

infection. The presence of an environmental reservoir reduces the probability of extinction.

INTRODUCTION

Scrapie is a transmissible spongiform encephalopathy

in sheep, endemic in many sheep producing countries.

The epidemiology of scrapie is as yet poorly under-

stood. Inconclusive evidence exists for the natural

occurrence of horizontal as well as vertical trans-

mission of scrapie [1–4]. Furthermore, evidence exists

that the agent is able to persist in the environment for

years [1, 5]. The susceptibility to scrapie is strongly

dependent on the breed and the genotype of the

animal [6, 7]. It is not known whether known

‘resistant ’ genotypes are truly resistant against in-

fection or in fact carriers of infection that do not

develop clinical signs in their lifetime.

Following the BSE epidemic in Great Britain, and

the occurrence of new-variant CJD in humans, the

control of scrapie has obtained a higher priority in
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view of both the possibility that scrapie can overcome

species barriers and the possibility that BSE has

established itself in the sheep population, with a

presentation similar to scrapie. The anticipated in-

crease in the amount and quality of epidemiological

data for scrapie is likely to facilitate analyses of the

transmission dynamics of the disease using math-

ematical models. Such analyses are vital for obtaining

the understanding needed for the design of successful

control strategies. For a recent comparison of trans-

mission model results with existing data on an

outbreak in Cheviot sheep see [8].

Given the very incomplete understanding of the

epidemiology of scrapie, and the possibility of

important differences in transmission dynamics

depending on breed, flock type or size, and scrapie

strain, there is a large diversity in the theoretical

scenarios that warrant consideration when modelling

scrapie transmission. It is therefore a useful starting

point to classify these various scenarios by charac-

terizing the epidemiological patterns they might
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generate. Such a characterization was started by

Woolhouse and coworkers [9, 10]. In recent work [11]

we focussed on the interplay between horizontal and

vertical transmission and on the characteristics of

endemic states.

In these previous studies the transmission dynamics

were described using deterministic models. Such

models are invalid when population numbers become

small enough for chance fluctuations to become

important. The present study is the first to model the

transmission dynamics of scrapie in an explicitly

stochastic manner, i.e. treating demographic processes

and disease transmission as random processes. The

purpose of this work is to understand the effects of

demographic stochasticity on the transmission dy-

namics of scrapie within a single flock. In particular,

we are interested in how the distributions of epidemic

size and duration depend on transmission scenario

and flock size. This will serve as a starting point for

the future study of scrapie persistence in a population

consisting of a large number of interacting flocks.

In host populations with renewal of susceptibles,

deterministic models generally predict that the in-

troduction of a disease will lead to the formation of an

ever-lasting endemic state when the basic reproduction

number R
!
" 1. In the corresponding stochastic model

the disease will always go extinct, although in many

cases the expected time to extinction will be much

larger than any time span of interest. Disease

extinction, when it tends to occur on epidemiologically

relevant time scales, is perhaps the most important

feature captured by stochastic models, but not by the

deterministic approximation.

For R
!
" 1, one may distinguish two types of

disease extinction: Early extinction, corresponding to

a ‘minor outbreak’, and extinction after a major

outbreak. The latter extinction may occur from a

quasi-stationary endemic equilibrium state (‘endemic

fadeout’ [12–14]), as well as from a non-equilibrium

state with a low number of susceptibles following a

large outbreak [15, 16]. The occurrence of an endemic

fade-out is promoted by small endemic numbers of

infected animals. Small numbers of infected animals

can result from a small flock size, low frequencies of

susceptible genotypes, or a basic reproduction number

close to 1. For later use in interpreting our results, it

is helpful to define a time T
s
, representing the typical

time scale separating ‘minor’ and ‘major’ outbreaks.

We think of major outbreaks as outbreaks that do not

go extinct before the reduction, through infection, in

the number of susceptible individuals starts to have a

noticeable dampening effect on the rise in disease

prevalence. The time scale T
s

can be expressed in

epidemiological characteristics using the following

heuristic argument based on deterministic con-

siderations. If we define T
!
as the time it takes for the

infection prevalence to increase exponentially from

1}N, corresponding to a single infection introduced

into the population, to some fixed prevalence i
!
, i.e.

i
!
¯ (1}N )exp(rT

!
), with r the initial exponential

epidemic growth rate, we find

T
!
¯

lnN

r


ln(i
!
)

r
E

lnN

r
. (1)

Using an approximation discussed in [11], we can

express the growth rate r in term of the basic

reproduction number R
!

(defined as the expected

number of secondary infections that arise due to the

introduction of a single primary infection in a naive

population) and the mean generation time T
g
between

infections (i.e. the expected time, in a naive popu-

lation, between the moment a primary infection is

acquired and the moment it generates a secondary

infection) : r¯ ln(R
!
)}T

g
. This leads us to the

definition

T
s
¯

T
g
lnN

ln(R
!
)
. (2)

The mean generation time is determined by the

incubation period distribution, the dependence of

infectiousness on the time since infection, and the

disease-free survival profile of the host population. (In

the Appendix we express T
g
in terms of the parameters

of the transmission model discussed Section 2.)

Below, we will use branching processes to describe

disease transmission in interpreting some of our

results. A branching process describes ‘parents be-

getting offspring’ : it is defined by specifying the

probabilities q
k
that a parent begets k offspring during

its reproductive lifetime (3
¢

k=!
q
k
¯ 1). In the context

of disease transmission, we consider the population of

infected individuals ; q
k

then represents that prob-

ability that a single primary infection generates k

secondary infections during its infectious lifetime.

When we describe disease transmission as a branching

process, we are assuming that the transmission process

is the same for each generation of infections, i.e. the

probabilities q
k

are fixed. This is a good approxi-

mation in the early phase of disease invasion, where

we can still neglect the reduction in the number of
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susceptible animals (and thus in the number of future

infections) by their conversion into infected animals.

The basic reproduction number R
!

is then given by

R
!
¯3

¢

i=!
kq

k
. This branching-process approximation

of the process of invasion of the host population by

the disease allows us to compute the probability of

the occurrence of an early extinction. As is explained

in [17], the probability of an early extinction occurring

is given by the smallest z (0% z% 1) that satisfies

the equation

z¯ g(z), (3)

where g(z), the generating function of the branching

process, is given by the infinite sum g(z)¯3
¢

k=!
q
k
zk.

For example, if the number of secondary infections

arising from a single primary case is Poisson distri-

buted with mean λ, the generating function takes the

form

g(z, λ)¯ exp[λ(z®1)]. (4)

METHODS

Below we present simulation results of an age-

structured susceptible-infected (SI) model ; Figure 1

provides a graphical representation of its structure.

We concentrate here on its main features and

assumptions; an appreciation of the full mathematical

details, given in the Appendix, should not be necessary

to understand this paper. Our model includes : direct

and indirect (via environment) horizontal trans-

mission, vertical transmission, genotypes that differ in

susceptibility to scrapie infection, age-dependent rates

of slaughter, dependence of horizontal and vertical

infectiousness on time since infection or time to onset,

and seasonality in lambing. We assume that an

environmental infectivity reservoir, if present, accumu-

lates and loses infectivity in such small units that its

infectivity level is a continuous quantity and gains and

losses of infectivity can be described by a deterministic

rate equation.

The deterministic analogue of our stochastic model

consists of a coupled set of partial-differential-

equations [11]. A similar deterministic model for

scrapie transmission has been explored recently by

Woolhouse and others [8–10, 18]. In the stochastic

framework employed here, all possible events except

changes in the infectivity level of the environmental

reservoir, are treated as random processes. We

simulate these random processes by drawing inter-

event times from the appropriate exponential distri-

butions [15]. The ages of all animals and the infectivity

level of the environmental reservoir are updated at

fixed time points with a separation of one week.

We assume that ewes mate randomly with rams

(external to the flock) that have constant genotype

frequencies equal to the initial genotype frequencies

within the flock, that are assumed to be in Hardy–

Weinberg equilibrium. We note that since the geno-

type frequencies of the rams are fixed in this ‘open-

flock’ setting, allele extinctions in the ewe population

as a result of genetic drift or selection for resistance to

scrapie cannot occur. Disease incubation is repre-

sented by a sequence of incubation stages in each of

which infected animals have an exponentially distri-

buted residence time, preceded by a minimum in-

cubation period of 1 year that is implemented

deterministically along with the ageing process

(resulting in 52 incubation stages in the first year of

incubation). For definiteness we consider suscep-

tibility to be determined by two possible alleles (one

associated with susceptibility and one with resistance)

at a single locus. We assume that susceptibility is

independent of age and that homozygous susceptible

animals and heretozygotes (when susceptible) have

the same incubation period distribution and de-

pendence of relative infectiousness on incubation

stage. The survival curve is taken to be of a Weibull

form as described in [9], with an average life

expectancy of 4 years (in absence of disease). Lambing

is modelled to occur between the 5th and the 25th

week of the year, with the majority of lambs being

born during April. In the numerical results presented

below the mean incubation time is 2±5 years and there

are three post-1-year incubation stages in each of

which animals have a mean residence time of 0±5 year.

The post-1-year incubation time t is then distributed

according to the gamma distribution

2l+"

l!
tl exp(®2t) (5)

with l¯ 2.

Each stochastic realization is started with the

introduction of a single infection in an animal of 2

years of age, irrespective of the flock size, and the

system is evolved for 30 years without further external

introduction of infection. For each realization we

record the total number of infections and the time to

extinction (if extinction occurs within 30 years).
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Fig. 1. Flow diagram of the model structure.

RESULTS

We are interested in patterns of disease persistence

displayed by the distribution of the time to disease

extinction and the distribution of the total epidemic

size. In particular we discuss below how persistence

patterns depend on the overall transmissibility of the

disease, the genotype frequencies and their suscepti-

bilities, the way infectiousness depends on time since

infection, and the degree to which transmission is

mediated by an environmental reservoir.

Disease transmissibility

When we increase the overall disease transmissibility

while keeping everything else fixed, the basic re-

production number R
!
is increased without changing

how the number of secondary infections arising from

a single primary infection is distributed around its

mean. It is well-known and perhaps intuitively

obvious that this results in a reduction of the

probability of early extinction. When the number of

secondary cases is Poisson distributed (λ¯R
!
), this

can be shown mathematically from Eq. (4) and Eq.

(3) :

¦
¦R

!

z¯
¦

¦R
!

g(z, R
!
)¯

¦
¦R

!

exp(R
!
(z®1))! 0. (6)

Furthermore, the expected time to endemic extinction

is enhanced, since the increase in R
!

will result in an

increased expected number of infected individuals in

the endemic state.

We illustrate the effect of R
!
on persistence in Fig.

2, in which we show the distributions of outbreak size

(Fig. 2a, 2d ) and of outbreak duration (Fig. 2b, 2e),

obtained from 1000 realizations, for two different

overall transmissibilities (corresponding to R
!
¯ 1±5

and R
!
¯ 5±0) and a flock size of 100 animals. For

each scenario we also show the time-evolution of the

number of infections for a small number of

realizations, and compare these with the time-

evolution of the deterministic model analogue (2c and

2 f ). The scenario considered in Fig. 2a–c will serve as

a reference and assumes direct horizontal transmission

only (i.e. zero maternal transmission and no en-

vironmental reservoir). It assumes R
!
¯ 1±5, the

susceptible allele frequency is 0±5, and heterozygotes

are half as susceptible as homozygous susceptibles.

The dependence of the relative infectiousness on

incubation stage is chosen to be the same for both

susceptible genotypes. It is equal to 1 in the stage just

before onset, and set to 0±01 earlier in incubation. The

scenario considered in Fig. 2d–f is identical except

that the overall horizontal transmissibility is such that

R
!
¯ 5±0.

Whereas for R
!
¯ 1±5 very few of the outbreaks

persist longer than 30 years, for R
!
¯ 5±0 this number

is considerably bigger. In sharp contrast to the R
!
¯

1±5 scenario, the R
!
¯ 5±0 scenario gives rise to a clear

and wide gap in the duration and final-size distri-

butions between ‘minor’ and ‘major’ outbreaks. For

the R
!
¯ 5±0 scenario the probability of endemic fade-

out on a relevant time scale is small. As illustrated in

Figs 2c and 2 f, for both scenarios the time-evolution

of major outbreaks can be much different from the

deterministic model solution. We illustrate the R
!

dependence of the persistence patterns further in Fig.

3a, where we compare six scenarios that differ in

overall transmissibility only. Here (and in Figs 3b and

4) we plot the fraction of outbreaks that go extinct

within 30 years conditional on having at least 10 cases

of infection against the fraction of realizations that

have at least 10 cases of infection. The patterns shown

in Figs 3 and 4 are insensitive to the choice of the

threshold value of 10 infections: for threshold values

of 5 and 20 the results differ quantitatively, but not

qualitatively. The larger R
!
, the smaller the probability

of extinction, so that Fig. 3a displays both an increase

in the fraction of realizations with at least 10 infections

and a decrease in the conditional probability of

extinction. We note that in Fig. 3a the probability of

extinction within 30 years (conditional on having at

least 10 cases of infection) for R
!
% 3 is finite but

essentially independent of flock size once the flock

exceeds 100 animals. This is because for those flock

sizes the T
s
for these transmission scenarios becomes

of the order of 30 years or larger once a size of the

order of 100 animals is exceeded. As a consequence,

for these population sized extinctions within 30 years

are ‘early extinctions’, i.e. they occur in the disease
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Fig. 2. Results for a flock size of 100 sheep under the reference scenario with R
!
¯ 1±5 as described in the text (a–c) and under

a scenario with larger overall horizontal transmission coefficient, such that R
!
¯ 5±0 (d–f ). Realizations are observed for 30

years. (a) and (d ) : Distribution of the size of outbreaks (total number of new infections occurring within the observation time

of 30 years). (b) and (e) : Distribution of the duration of outbreaks. Durations longer than 30 years are lumped together at

the end of the histogram. (c) and ( f ) : Infection prevalence versus time for a random selection of 10 and 6 realizations,

respectively. In (c) there are nine extinctions and one major outbreak that persists for 30 years. Inset in (c) : deterministic

model solution. Note that in the deterministic approximation the epidemic invasion takes about 90 years, which is much

slower than in typical stochastic realizations displaying major outbreaks (such as the one shown in the main figure). Yearly

prevalence peaks are due to birth seasonality. In ( f ) there are three early extinctions and three major outbreaks (thin lines).

The fat dashed line is the deterministic model solution.

invasion phase in which the total number of hosts is

much larger than the number of infected hosts, so that

the transmission process can be approximated by the

same branching process irrespective of the population

size.

Infectiousness as a function of time since infection

Another important factor in determining the per-

sistence patterns is how the relative infectiousness

changes with time since infection (or with incubation

stage). Given a fixed value of R
!
, persistence gets

poorer the more the infectiousness depends on the

incubation stage or on the time since infection. This is

due to the large turnover of animals under usual

farming practices, as embodied in the form assumed

for the survival curve in our model. Since many

infected animals have died or have been slaughtered

before they would have become highly infectious, a

large proportion of the infected animals generates
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Fig. 3. Fraction of realizations that display large outbreaks against the proportion of large outbreaks that go extinct within

30 years, based on 1000 realizations. Different symbols correspond to different scenarios, and the 6 different symbol sizes

correspond to flock sizes of 50 (smallest symbols), 100, 200, 400, 800, and 1600 (biggest symbols) animals. (a) Scenarios differ

only in overall horizontal transmission coefficient. The circles correspond to the reference scenario (R
!
¯ 1±5). (b) Scenarios

differ in the dependence of infectiousness on the time since infection. R
!
¯ 1±5. The chosen different dependencies of the

relative infectiousness on incubation stage are represented by corresponding symbols in (c) Circles : reference scenario, in

which the relative infectiousness equals 1 in the last stage before onset and 0±01 elsewhere. Squares : the base-line level of

relative infectiousness is again 0±01, but now it starts to increase exponentially after 5% of expected time from infection to

the last incubation stage has elapsed, reaching 1 again in the last stage before onset. Diamonds: relative infectiousness is 1

in the final incubation stage and 0±10 elsewhere. Triangles : relative infectiousness is equal to 1 everywhere (uniform

infectiousness throughout incubation). (c) Dependencies of relative infectiousness on incubation stage as chosen for the

scenarios considered in subfigure b. We represent the first year of incubation as a fat line, and the three last incubation stages,

which each have a mean duration of half a year, as open symbols. (d ) and (e) Size (d ) and duration (e) distributions for a

flock size of 100 sheep under the scenarios with uniform infectiousness (triangles in subfigure b).

a relatively low number of secondary infections and a

small proportion of infected animals that generates

a relatively high number of secondary infections: the

distribution of the number of secondary infections

arising from a primary infection is aggregated or

overdispersed. Our numerical results show that the

probability of early extinction increases with in-

creasing aggregation in the distribution of the number

of secondary infections. This effect can be understood

analytically from the following branching-process

argument. Assuming that the distribution of sec-

ondary infections has a negative binomial form with

mean R
!

and aggregation parameter k, the equation

for the probability of early extinction z reads:

z¯ g(z, k)¯
1

(1R
!

k
(1®z))k

. (7)

In the limit of kU¢ we regain the Poisson result Eqn

(4). It is straightforward to show that (¦}¦k)g(z, k)! 0

for 0! z! 1, so that the solution z to the above

equation increases monotonically with increasing

aggregation (decreasing k).
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Fig. 4. Fraction of realizations that display large outbreaks against the proportion of large outbreaks that go extinct within

30 years, based on 1000 realizations. Symbol sizes as in Figure 3. (a) Scenarios differ in the frequency of susceptible genotypes.

R
!
¯ 5±0. Triangles : susceptible allele frequency if 0±5, as in left-pointing triangles in (a). Circles : susceptible allele frequency

is 0±1. Diamonds: susceptible allele frequency is 0±5, heterozygotes are resistant. (b) Here we examine the effect of an

environmental reservoir. The main figure has the same axis scales as the adjacent subfigures, facilitating direct comparisons.

The inset shows the same results, but displayed using reduced axis scales for greater clarity. R
!
¯ 1±5. Circles : reference

scenario (no environmental reservoir). Squares : decay time of environmental infectivity is 50 weeks. 5}6th of transmission

via environment (χ¯ 0±1, η¯ 0±02 1}wk). Diamonds: decay time of environmental infectivity is 200 weeks. 20}21th of

transmission via environment (χ¯ 0±1, η¯ 0±005 1}wk). Triangles down: decay time of environmental infectivity is 500

weeks (χ¯ 0±002, η¯ 0±002 1}wk). 1}2 of transmission via environment. Triangles up: decay time of environmental

infectivity is 500 weeks. 50}51th of transmission via environment (χ¯ 0±1, η¯ 0±002 1}wk). (c) Here we examine the effect

of including maternal transmission. The results here are for resistant heterozygotes and for simplicity we assume the same

dependence of infectiousness on incubation stage for maternal as for horizontal transmission. Filled symbols : no maternal

transmission Open symbols : p
mat

¯ 0±8, where p
mat

is the maternal transmission probability in the last incubation stage before

onset. Circles : R
!
¯ 1±1, the dependence of infectiousness on incubation stage is the same as in the reference scenario

described above. Squares : R
!
¯ 1±1, infectiousness is uniform throughout incubation. Triangles : R

!
¯ 10±0, dependence of

infectiousness on incubation stage as in reference scenario. Diamonds: R
!
¯ 10±0, infectiousness is uniform throughout

incubation.

We note that the probability of endemic extinctions

also increases with increasing aggregation in the

distribution of the number of secondary infections, as

one can see by viewing the endemic infection process

as a branching process with reproduction number

equal to one. An intuitive explanation for this is that

fluctuations in the number of highly infectious

individuals translate into fluctuations in the number

of secondary infections generated per time unit that

are a factor N
big

larger, where N
big

is the number of

secondary infections generated by a highly infectious

primary infection, thus enhancing the probability that

fluctuations cause infection extinction. In Figure 3b

the effect of changing the distribution of number of

secondary infections caused by a single primary

infection through changing the dependence of

infectiousness on incubation stage is illustrated by

model simulation results. In Figure 3d and 3e we show

the full size and duration distributions of the scenario

with uniform infectiousness (triangles in Fig. 3b),

which has the least aggregation in the distribution of

the number of secondary infection resulting from a

single primary infection. The corresponding distri-

butions for the reference scenario, which amongst the

scenarios in Figure 3b has the most aggregation in the

distribution of the number of secondary infections,

were displayed in Figures 2a and 2b.

Genotype frequencies

Extinctions become more frequent when the fraction

of animals responsible for (most of) the transmission

goes down, since the relative size of chance fluctu-

ations increases for decreasing numbers of infected

animals. Figure 4a illustrates the effect of changing

the frequencies and the susceptibilities of the geno-

types with respect to the choices made in the reference

scenario above. Note that again we are comparing
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scenarios with equal R
!

here ; this calibration is

achieved by adjusting the overall transmission

coefficient.

Environmental reservoir

In the presence of an environmental infectivity

reservoir, reaching a state with zero infected animals

does not in general represent disease extinction, since

the infection may be reintroduced from the reservoir.

We therefore need to define what we mean by

extinction in this case. The convention that we adopt

here is to count as an extinction any period exceeding

5 years in which infection is not reintroduced from the

environment. The effects on persistence of an en-

vironmental reservoir are illustrated in Figure 4b. In

our model the environmental reservoir is characterized

by two parameters, the decay rate of infectivity η (the

inverse of the decay time), and the environmental

transmission coefficient χ. The contribution of trans-

mission via the reservoir, as measured by the fraction

of R
!
due to this route, is given by χ}(χη) in absence

of maternal transmission (see Hagenaars et al. [11],

section 3.1).

As seen from Figure 4b, the inclusion of an

environmental infectivity reservoir leads to a re-

duction in the probability of extinction within 30

years of outbreaks that have at least 10 cases of

infection. This enhancement of disease persistence

becomes stronger both with increasing life time of

reservoir infectivity and with increasing contribution

to R
!

of transmission via the environment. We note

that this enhancement of persistence is accompanied

by a reduction in the number of outbreaks that have

at least 10 infections. Examination of the full size

distributions reveals that most of this reduction is

accounted for by an increase in the number of

realizations in which no new infections are generated

within 30 years. Such an increase is expected when the

generation time between infections lengthens as a

result of an increase in the life time of environmental

infectivity and}or an increase in the fraction of R
!
due

to the environment.

Maternal transmission

We end this section by exploring the effects on

persistence patterns of including maternal trans-

mission. During disease invasion, the relative con-

tribution to transmission of the maternal route (for a

given maternal transmission probability) is highest for

low R
!
, where in endemicity it is highest for high R

!

[11, 19]. In Figure 4c we therefore show results for

both low and high basic reproduction number (R
!
¯

1±1 and R
!
¯ 10). We consider two extreme scenarios

for the dependence of infectiousness on incubation

stage. For high R
!
, as illustrated by the R

!
¯ 10±0

results in Figure 4c, no noticeable differences are

found between the duration and size distributions

with and without maternal transmission. However,

for low R
!
(i.e. not much bigger than unity), there are

situations where we do observe noticeable effects on

persistence properties of including maternal trans-

mission. Clearly, these should be seen best when the

maternal transmission probability at maximum ma-

ternal infectiousness is high, so that maternal trans-

mission is responsible for a sizable part of R
!
. If this

is the case, then the effect still depends on how

infectiousness changes with incubation stage for

horizontal transmission. The effect is most prominent

if the horizontal infectiousness is independent of

incubation stage (squares in Fig. 4c). In this case,

when comparing scenarios with equal overall R
!
, the

one with a sizable contribution from maternal

transmission shows more frequent extinctions. This is

because the distribution of the number of secondary

infections arising from maternally infected primary

infections takes a more aggregated form than that of

the number of secondary infections arising from

horizontally infected primary infections (as a direct

result of the aggregation in the number of offspring

per animal in the presence of a high turnover of

animals), analogously to the effect of changing the

dependence of infectiousness on incubation stage for

horizontal transmission only discussed above. When

the horizontal infectiousness is small just after

infection and increasing towards onset, the ‘

additional ’ effect of the aggregation present in the

distribution of maternally transmitted secondary

infections becomes less important (circles in Fig. 4c).

Conclusions

Understanding the key determinant of observed

persistence patterns of any disease is always more

complex than characterizing endemic behaviour, since

disease extinction is, by definition, a stochastic

process. Understanding persistence properties is,

however, critical to the evaluation of the potential

long-term effectiveness of control policy options. In

the case of scrapie, analysis of persistence behaviour is

made considerably more difficult by the lack of

epidemiological data, a long incubation period,
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multiple transmission routes and genetically variable

susceptibility to infection. This paper provides a

starting point in the theoretical study of scrapie

persistence, by examining the effects of various

epidemiological determinants on persistence patterns

in a single sheep flock.

Disease extinction is most likely when late-stage

infected animals are responsible for most of the

transmission, since this scenario produces the lowest

prevalence of infectious animals. Conversely, the

presence of a long-lived environmental infectivity

reservoir generally enhances persistence, since trans-

mission can cease through other transmission routes

only to be re-introduced at some later point via the

reservoir. Overall, the dependence of the relative

infectiousness on incubation stage (or time since

infection) represents the most critical determinant of

disease persistence, allowing there to be considerable

differences in the expected frequency of disease

extinction under different transmission scenarios even

if those scenarios do not differ in the magnitude of the

basic reproduction number. As a result, the effect of a

given control effort will not just depend on the

corresponding reduction in the value of the basic

reproduction number, but also on other characteristics

of the transmission scenario.

Understanding the global persistence properties of

a disease, such as the rate at which new flocks are

infected or clear the disease, of course requires

consideration of epidemiological coupling between

isolated populations, whether through movement,

occasional contact or genetic exchange – particularly

if disease extinction is predicted to be frequent for an

isolated small population. Work to model such

metapopulation dynamics is underway. This will also

allow a more realistic treatment of sheep population

genetics, since the current paper has focused on the

case of a genetically open flock (ie. the rams are

assumed to be external, with fixed genotype

frequencies). For a closed flock, an important

difference is that disease extinction can occur within

the deterministic model approximation when selection

for resistant genotypes reduces R
!

to below 1.

Furthermore, in a fully stochastic model we may see

extinction of susceptibility alleles as a result of genetic

drift, or as a result of the combined effect of genetic

drift and selection against susceptibility.

Building on the work presented here, a more

sophisticated modelling framework will allow ex-

ploration of both the local and global potential effects

of a wide range of control policies, such as selective

breeding or culling, quarantining, land set-aside or

decontamination schemes. Furthermore, in view of

the possibility that BSE has entered the UK sheep

flock, design and implementation of such control

programmes and greatly enhanced disease surveillance

clearly remain priorities.
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APPENDIX : DETAILED MODEL

DESCRIPTION

Our model of scrapie transmission is an age-structured

stochastic compartmental model. We distinguish

compartments of susceptible and of infective animals

(SI model) as well as a continuous variable describing

the environmental infectivity reservoir.

Random processes

The types of events occurring in the model are listed

in Table A.1. In this Table X
γ
(a) (Y

γ

k
(a)) denotes the

number of susceptible (infected) sheep of age a and

genotype γ (in incubation stage k). B
γ

X
(B

γ

Y
) denotes

the birth rate of susceptible (infected animals, δ
ij

denotes the Kronecker delta (δ
ij
¯ 1 if i¯ j and zero

otherwise). λγ(a) denotes the force of infection for the

horizontal transmission routes, and µ(a) the rate of

routine slaughter. Animals leaving the final incubation

stage k
f
reach onset of scrapie. �

γ

k
is the transition rate

from incubation stage k to k1 for genotype γ. We

choose these transition rates to be independent of

the stage k, obtaining a gamma distribution for the

incubation period, given by the probability density

function.

(�γ)kf

(k
f
®1)!

t(kf−") exp(®(�γ)t).

Force of infection

The force of infection for the horizontal transmission

routes is given by λγ(t, a)¯ g
γ

h
(χI(t)λ

dh
(t)). Here I is

a continuous variable that models the environmental

infectivity reservoir, χ the environmental transmission

coefficient, g
γ

h
is the genotype-dependent (but age-

independent) susceptibility, and λ
dh

(t) is the force of

infection due to direct horizontal transmission, given
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Table A.1. E�ents (random processes) occurring in our mathematical model of scrapie transmission and their

rates

Type of event Symbolic representation Rate

Birth of a susceptible animal

of genotype γ«
(Xγ(a), Y

γ

k
(a))U

(Xγ(a)δ
a!

δγγ«, Y
γ

k
(a))

B
γ«

X

Birth of an infected animal

of genotype γ«
(Xγ(a), Y

γ

k
(a))U

(Xγ(a), Y
γ

k
(a)δ

a!
δγγ«)

B
γ«

Y

Death of susceptible animal

of age a« and genotype γ«
(Xγ(a), Y

γ

k
(a))U

Xγ(a)®δ
aa«δγγ«, Y

γ

k
(a))

µ(a«)Xγ«(a«)
µ(a«)Xγ«(a«)

Death of an infected animal

of age a« and genotype γ«
in incubation stage k«

(Xγ(a), Y
γ

k
(a))U

(Xγ(a), Y
γ

k
(a)®δ

aa«δγγ«δkk«)

µ(a«)Y
γ

k«(a«)

Infection of an animal

of age a« and genotype γ«
(Xγ(a), Y

γ

k
(a))U

(Xγ(a)®δ
aa«δγγ«, Y

γ

k
(a)δ

aa«δγγ«δk!
)

λγ«(a«)Xγ«(a«)

Incubation move from stage k«
to k«1 of an animal

of age a« and genotype γ«

(Xγ(a), Y
γ

k
(a))U

(Xγ(a), Y
γ

k
(a)®δ

aa«δγγ«δkk«δ
aa«δγγ«δk(k«+")

)

νγ«Y
γ«

k«(a«)

Removal of an infected animal

of age a« and genotype γ«
due to clinical onset

(Xγ(a), Y
γ

k
(a))U

(Xγ(a), Y
γ

k
(a)®δ

aa«δγγ«δkf

)

νγ«Y
γ«

kf

(a«)

by λ
dh

(t)¯ "
N(t)

3γ«,k
β

γ«

k
!Y

γ«

k
(t,a«)da«. Here β

γ

k
denotes the

infectiousness of an animals in incubation stage k of

the genotype γ. The relative infectiousness β4
k

is

defined as β4
k
¯β

γ

k
}β

γ

kf

. In the single-locus, two-allele

situation considered in this paper, we assume that

βRS

k
¯βSS

k
, where RS and SS denote the heterozygote

and homozygote susceptible genotypes, respectively.

Then βRS

kf

¯βSS

kf

serves as an overall transmission

coefficient. The susceptibility is given by gRR

h
¯ 0,

gSS

h
¯ 1 and 0% gRS

h
% 1.

Environmental reservoir

The environmental infectivity reservoir I is governed

by the differential equation dI

dt
(t)¯λ

dh
(t)®ηI(t), where

η is the decay rate of environmental infectivity.

Demography and maternal transmission

The birth rates B
γ

X
(t)¯B

γ
(t)®B

γ

Y
(t) and B

γ

Y
(t) are

given by

Bγ(t)¯ s(t)B
!
bγ(t)}3

γ
bγ«(t),

where

bγ(t)¯3
γ
&a«

!

α(a«)G γγ«(Xγ(t, a«)

3
k

Y
γ

k
(t, a«)) da«

and

B
γ

Y

(t)¯ s(t)g
γ

V

B
!
}(3

γ
bγ§(t))

¬3
γ
3
k
&α(a«)Gγγ«ε

γ«

k
Y

γ«

k
(t,a«)da«.

Here B
!

is a constant overall birth rate, s(t) is a

normalized birth seasonality profile, α(a) is an age-

dependent lambing rate, Gγγ« is the proportion of

genotype γ lambs born to genotype γ« ewes, g
γ

V
the

relative susceptibility to maternally transmitted infec-

tion of genotype γ (here assumed to be equal to g
γ

V
),

and ε
γ

k
the vertical infectiousness of an animal of

genotype γ in incubation stage k. In this paper we

assume that ε
γ

k
¯ p

mat
β4

γ

k
, where p

mat
is the maternal

transmission probability from a maximally infectious

ewe to a maximally susceptible lamb.

For completeness we give the expressions for of the

basic reproduction number R
!

and of T
g
, the mean

generation time between infections, in terms of the

parameters of the model described above:
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R
!
¯

χη

η
3
γ
Bγ(0)g

γ

h
& & S(aτ)

N

¬3
k

β
γ

k

P
γ

k

(τ)dτda (8)

T
g
¯3

γ

Bγ(0)g
γ

h
& &

E

F

τ
χ

η(ηχ)

G

H

S(aτ)

N

¬3
k

β
γ

k

P
γ

k

(τ)dτda. (9)

Here P
γ

k
(τ) is the probability that an animal of

genotype γ is in the kth incubation stage a time τ after

being infected. These expressions hold in situations

without maternal transmission. For the derivation of

these expressions and their generalisations under

transmission scenarios with maternal transmission we

refer the reader to Ref. [11].
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