Enantioselective Synthesis of α-Methylene-βhydroxy Carboxylic Acid Derivatives via a Diastereoselective Aldol-β-Elimination Sequence: Application to the C(15)-C(21) Fragment of Tedanolide C

Roland Barth and William R. Roush*

Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458 roush@scripps.edu

Experimental Procedures and Tabulated Spectroscopic Data

1. General Procedures:

All reactions were performed in flame-dried glassware under a slightly positive pressure of argon. Air and moisture sensitive reagents and solutions were transferred with a syringe or cannula through rubber septa.

Thin layer chromatography (TLC) was performed on Kieselgel 60 F_{254} glass plates (obtained from Merck) with a 0.25 mm thickness. TLC plates were visualized with UV light and/or by staining with a solution of cerium molybdate [prepared from 20 g (NH₄)Mo₇O₂₄·7H₂O, 1 g Ce(SO₄)₂ and 400 mL 10% H₂SO₄]. Column Chromatography was performed on Kieselgel 60 (230-400 mesh). HPLC purifications were performed using an HPLC system composed of two pumps connected to a normal phase column, using either RI or UV detection.

Solvents and Reagents: Dichloromethane, tetrahydrofuran, toluene, and diethyl ether were purified by pressure filtration through activated alumina. Dimethylformamide, ethanol, *t*-butanol, dimethyl sulfoxide were purchased as grade solvents and used without any further purification. Triethylamine, pyridine, 2,6-lutidine, diisopropylethylamine were distilled under argon form calcium hydride. Powdered molecular sieves 3Å were flame-dried under vacuum and used immediately.

Instrumentation: ¹H and ¹³C NMR spectra were recorded on a commercial 400 MHz spectrometer. ¹H NMR chemical shifts (δ) are expressed in ppm downfield from tetramethylsilane (with the CHCl₃ peak at 7.26 ppm). Coupling constants are given in Hertz (Hz). ¹³C NMR chemical shifts (δ) are expressed in ppm downfield from tetramethylsilane (with the CHCl₃ peak at 77.0 ppm).

Infrared spectra (IR) were recorded on a commercially available FT-IR spectrometer by dropping a solution of the sample on a NaCl plate. Optical rotations were measured using a quartz cell with 0.5 mL capacity and a 10 cm path length. Melting points (m. p.) were measured with a capillary melting point apparatus and are uncorrected.

High resolution mass spectra (HRMS) were recorded using an Agilent 6210 TOF mass spectrometer at the University of Florida (Gainesville).

2. Synthesis of α-Methylene-β-hydroxy Carboxylic Acid Derivatives

β-(Phenylselenyl)propionyl imide 15:

Triethylamine (17.7 mL, 127.0 mmol) was added to a stirred solution of acrylic acid (4.7 mL, 68.5 mmol) in THF (250 mL) at -25 °C followed by the slow addition of acryloyl chloride (5.2 mL, 64.0 mmol). The reaction mixture was stirred for 40 min at -20 °C. LiCl (2.82 g, 66.5 mmol) was added in one portion followed by the addition of (*S*)-4-benzyl oxazolidinone (8.5 g, 48.2 mmol). The slightly yellow cloudy reaction mixture was allowed to warm to room temperature and stirred for 36 h before being quenched with 0.2 M HCl (100 mL). The mixture was concentrated under reduced pressure and poured into ethyl acetate (200 mL). The organic phase was separated and the aqueous phase was extracted with ethyl acetate. The combined organic phases were washed with a saturated solution of NaHCO₃ (200 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexanes-ethyl acetate, gradient from 5:1 to 2:1) and re-crystallization (hexane-ethyl acetate ~ 8:1) gave acryloyl imide **14** (5.7 g - 6.7 g, 51% - 60% yield) as colorless needles. The spectroscopic data were in complete agreement with the data from literature.^[1]

NaBH₄ (783 mg, 20.7 mmol) was added in small portions to a stirred suspension of diphenyl diselenide (3.10 g, 9.93 mmol) in EtOH (85 mL) at room temperature over 5-10 min. The resulting colorless clear solution was stirred additionally for 3 min. AcOH (0.90 mL, 15.7 mmol) was added dropwise and stirring was continued for 2 min. The solution of benzeneselenol was then added slowly to a vigorously stirred solution of imide 14 (3.78 g, 16.3 mmol) in THF (55 mL) at -35 °C with a cannula over 10-15 min. After complete addition the reaction mixture turned into a thick white suspension which was stirred for 40 min with the temperature being allowed to warm to -20 °C. The reaction was guenched by the addition of a saturated solution of NH_4Cl (70 mL) and poured into dichloromethane (200 mL). The slightly yellow organic phase was separated and the aqueous phase was extracted with dichloromethane (3x). The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting yellow solid was taken up in ~50 mL hexane and 2 mL dichloromethane, refluxed for 5 min and cooled to room temperature. The product was filtered, washed twice with cold hexane and dried under vacuum. Compound 15 (6.09 g, 96%) was obtained as fine white needles: m. p. = 121 °C; $[\alpha]_D^{25} = +65.9$ (c = 0.735, CH₂Cl₂); IR (thin film) 3026, 1779, 1695, 1386, 1251, 1213, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.55$ (m, 2H, H_{arom}), 7.26 – 7.35 (m, 6H, H_{arom}) 7.21 (m, 2H, H_{arom}), 4.66 (m, 1H, NCH), 4.20 $(dd \sim t, J = 9.1 Hz, 1H, CH_AH_BPh), 4.16 (dd, J = 9.1, 3.4 Hz, 1H, CH_BH_APh), 3.33 - 3.48 (m, 2H, 2H, 2H)$ 13.4, 9.5 Hz, 1H, CH_BH_AO); ¹³C NMR (100 MHz, CDCl₃) δ = 171.8, 153.3, 135.1, 133.1, 129.8, 129.4, 129.2, 129.0, 127.4, 127.2, 66.3, 55.1, 37.8, 36.8, 21.3; HRMS: [M+NH₄]⁺ calcd.: 407.0869, found: 407.0842.

<u>General procedure for aldol reaction and β -elimination to give α -methylene- β -hydroxy imides:</u>

A solution of Bu₂BOTf (1.20 mL, 1.20 mmol, 1.0 M in CH₂Cl₂) was added to a stirred solution of β -(phenylselenyl)propionyl imide **15** (390 mg, 1.00 mmol) in CH₂Cl₂ (5.0 mL, c = 0.2 M) at -78 °C. Stirring was continued for 10 min. Triethylamine (0.25 mL, 1.79 mmol) was added dropwise and the reaction mixture was stirred for 75 min at -78 °C and for 15 min at 0 °C before being re-cooled to -78 °C.

All commercially available aldehydes (1.10 mmol) were freshly distilled and used either directly or as a solution in CH₂Cl₂ (1.0 mL). The aldehyde was added dropwise, the reaction mixture was stirred for 6 h and was allowed to warm to -10 °C. Alternatively, the reaction mixture can be stirred overnight to room temperature in most instances without diminished yield. The reaction was quenched with a saturated solution of NH₄Cl (5 mL) and diluted with CH₂Cl₂ (10 mL). The organic phase was separated and the aqueous phase was extracted once with CH₂Cl₂. The combined organic layers were cooled to 0 °C. Pyridine (0.16 mL, 2.0 mmol) was added followed by the addition of H_2O_2 (0.18 mL, 3.1 mmol, 50 w% in H_2O) and the reaction mixture was stirred vigorously. The reaction progress was monitored by TLC and in cases where the oxidation did not go to completion an additional aliquot of H₂O₂ (0.09 mL, 50 w% in H₂O) was added. After TLC analysis indicated the complete consumption of the starting material, the reaction mixture was poured into the remaining aqueous phase, the organic phase was separated and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was then purified via column chromatography.

Compound 13a from isobutyraldehyde:

Compound **13a** was prepared by the general procedure from imide **15** (505 mg, 1.30 mmol), Bu₂BOTf (2.0 mL, 2.0 mmol, 1.0 M in CH₂Cl₂), NEt₃ (0.50 mL, 3.59 mmol) and isobutyraldehyde (0.20 mL, 2.19 mmol) in 7 mL of CH₂Cl₂. Purification of the crude product by column chromatography (hexane-ethyl acetate = 2:1) gave allylic alcohol **13a** (318 mg, 81%) as a viscous oil: $[\alpha]_D^{26} = +18.1$ (c = 0.585, CH₂Cl₂); IR (thin film) 3522 (br), 2962, 2873, 1782, 1682, 1391, 1353, 1215, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.22 - 7.37$ (m, 5H, H_{arom.}), 5.68 (s, 1H, C<u>H_AH_BC</u>), 5.55 (s, 1H, C<u>H_BH_AC</u>), 4.79 (m, 1H, NCH), 4.28 (dd ~ t, J = 8.9 Hz, 1H, C<u>H_AH_BPh</u>), 4.21 (dd, J = 9.1, 5.0 Hz, 1H, C<u>H_BH_APh</u>), 4.09 (d, J = 7.0 Hz, 1H, C<u>HO</u>H), 3.36 (dd, J = 13.4, 3.4 Hz, 1H, C<u>H_AH_BO</u>), 2.95 (br s, 1H, OH), 2.83 (dd, J = 13.4, 9.4 Hz, 1H, C<u>H_BH_AO</u>), 1.89 (octett, J = 6.8 Hz, 1H, C<u>H</u>CH₃), 1.03 (d, J = 6.7 Hz, 3H, CH₃), 0.98 (d, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 169.6$, 153.7, 147.3, 134.7, 129.2, 128.9, 127.3, 119.9, 77.2, 66.6, 54.8, 37.7, 33.5, 18.7, 18.0; HRMS: [M+NH₄]⁺ calcd.: 321.1809, found: 321.1819.

Compound 13b from propionaldehyde:

Compound **13b** was prepared by the general procedure from imide **15** (394 mg, 1.01 mmol), Bu₂BOf (1.50 mL, 1.50 mmol, 1.0 M in CH₂Cl₂), NEt₃ (0.30 mL, 2.15 mmol) and propionaldehyde (0.09 mL, 1.25 mmol) in 5 mL of CH₂Cl₂. Purification of the crude product by column chromatography (hexane-ethyl acetate = 1:1) gave allylic alcohol **13b** (273 mg, 93%) as a viscous oil: $[\alpha]_D^{24} = +48.2$ (c = 0.845, CH₂Cl₂); IR (thin film) 3502 (br), 2968, 2932, 1783, 1684, 1391, 1353, 1312, 1214 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.28 - 7.35$ (m, 3H, H_{arom.}), 7.22 (m, 2H, H_{arom.}), 5.64 (s, 1H, C<u>H_AH_BC</u>), 5.46 (s, 1H, C<u>H_BH_AC</u>), 4.78 (m, 1H, NCH), 4.30 (m, 2H, C<u>H_AH_BPh</u> and overlapping C<u>H</u>OH), 4.21 (dd, J = 9.1, 4.6 Hz, 1H, C<u>H_BH_APh</u>), 3.34 (dd, J = 13.5, 3.4 Hz, 1H, C<u>H_AH_BO), 2.88 (dd, J = 13.5, 9.1 Hz, 2H, C<u>H_BH_AO</u> and overlapping OH), 1.72 (dq ~ quint, J = 7.5Hz, 2H, CH₂), 1.01 (t, J = 7.4 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 169.5$, 153.7, 147.8, 134.7, 129.3, 128.9, 127.4, 118.4, 73.4, 66.6, 54.9, 37.6, 29.2, 9.8; HRMS: [M+NH₄]⁺ calcd.: 307.1652, found: 307.1663.</u>

Compound 13c from pivaldehyde:

Compound 13c was prepared as follows. Bu₂BOTf (3.0 mL, 3.0 mmol, 1.0 M in CH₂Cl₂) was added to a stirred solution of imide 15 (810 mg, 2.09 mmol) in CH₂Cl₂ (10 mL) at -78 °C and stirring was continued for 10 min. Et₃N (1.0 mL, 7.17 mmol) was added dropwise and the mixture was stirred for 75 min at -78 °C and 10 min at 0 °C before being re-cooled to -78 °C. Pivaldehyde (0.30 mL, 2.76 mmol) was added dropwise, the reaction mixture was stirred overnight and was allowed to warm to room temperature. The reaction was quenched with a saturated solution of NH₄Cl (5 mL), the organic phase was separated and the aqueous phase was extracted 1 time with CH₂Cl₂ (10 mL). The combined organic layers were cooled to 0 °C, pyridine (0.10 mL) was added and 3 aliquots of H₂O₂ (0.20 mL each, 50 wt% in H₂O) were added every 15 min until TLC analysis indicated complete consumption of the intermediate aldol. The reaction mixture was poured into the original aqueous phase, the organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL). Purification of the crude product by column chromatography (hexane-ethyl acetate = 3:1) gave the corresponding allylic alcohol which could not be separated from imide 14 (formed after oxidation of remaining imide 15). Therefore, TBSOTf (0.46 mL, 2.0 mmol) was added to a stirred solution of the impure allylic alcohol and 2,6-lutidine (0.50 mL, 4.29 mmol) in CH₂Cl₂ (10 mL) at 0 °C. The reaction was stirred overnight and was allowed to warm to room temperature. The reaction mixture was diluted with a saturated solution of NaHCO₃ (10 mL), the organic phase was separated and the aqueous phase was extracted with CH_2Cl_2 (2 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. Purification of the crude product by column chromatography (hexane-ethyl acetate = 10:1) gave TBS-ether **13c** (503) mg, 56%) as a colorless, viscous oil which was, in turn, contaminated with small amounts of

TBSOH. $[\alpha]_D^{25} = +54.2$ (c = 0.45, CH₂Cl₂); IR (thin film) 2956, 2858, 1790, 1682, 1361, 1213, 1105, 1083, 874, 837, 776 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.24 - 7.34$ (m, 3H, H_{arom}.), 7.17 (m, 2H, H_{arom}.), 6.00 (s, 1H, CH_AH_BC), 5.79 (s, 1H, CH_BH_AC), 4.85 (m, 1H, NCH), 4.53 (s, 1H, CHOSi), 4.28 (dd ~ t, J = 8.8 Hz, 1H, CH_AH_BPh), 4.15 (dd, J = 9.0, 7.0 Hz, 1H, CH_BH_APh), 3.25 (dd, J = 13.5, 3.5 Hz, 1H, CH_AH_BO), 2.86 (dd, J = 13.5, 8.8 Hz, 1H, CH_BH_AO), 0.95 (s, 9H, 3xCH₃), 0.88 (s, 9H, 3xCH₃), 0.12 (s, 3H, CH₃Si), 0.00 (s, 3H, CH₃Si); ¹³C NMR (100 MHz, CDCl₃) $\delta = 169.7$, 152.9, 143.6, 134.8, 129.4, 128.9, 127.4, 126.5, 77.3, 66.1, 54.9, 37.5, 36.5, 25.9, 25.4, 18.1, -4.7, -5.3; HRMS: [M+NH₄]⁺ calcd.: 449.2836, found: 449. 2848.

Compound 13d from benzaldehyde:

Compound **13d** was prepared by the general procedure from imide **15** (790 mg, 2.03 mmol), Bu₂BOTf (3.0 mL, 3.0 mmol, 1.0 M in CH₂Cl₂), NEt₃ (0.56 mL, 4.02 mmol) and benzaldehyde (0.24 mL, 2.36 mmol) in 10 mL of CH₂Cl₂. Purification of the crude product by column chromatography (hexanes-ethyl acetate = 2:1) gave allylic alcohol **13d** (590 mg, 86%) as colorless crystals: m. p. = 158 °C; $[\alpha]_D^{25} = +58.7$ (c = 0.68, CH₂Cl₂); IR (thin film) 3350 (br), 3025, 1783, 1682, 1387, 1353, 1199, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.26 - 7.48$ (m, 8H, H_{arom}), 7.17 (m, 2H, H_{arom}), 5.62 (d, J = 5.8 Hz, 1H, C<u>H</u>OH), 5.59 (s, 2H, overlapping CH₂C), 4.68 (m, 1H, NCH), 4.23 (dd ~ t, J = 9.0 Hz, 1H, C<u>H_AH_BPh</u>), 4.17 (dd, J = 9.0, 4.2 Hz, 1H, C<u>H_BH_APh</u>), 3.22 (dd, J = 13.5, 3.4 Hz, 1H, C<u>H_AH_BO</u>), 3.14 (d, J = 5.8 Hz, 1H, OH), 2.74 (dd, J = 13.5, 9.2 Hz, 1H, C<u>H_BH_AO</u>); ¹³C NMR (100 MHz, CDCl₃) $\delta = 169.3$, 153.6, 146.5, 140.6, 134.8, 129.4, 129.0, 128.5, 128.1, 127.4, 126.9, 120.7, 74.0, 66.6, 55.3, 37.4; HRMS: [M+NH₄]⁺ calcd.: 355.1652, found: 355.1627.

Compound 13e from 2-furaldehyde:

Compound **13e** was prepared by the general procedure from imide **15** (835 mg, 2.15 mmol), Bu₂BOTf (3.30 mL, 3.3 mmol, 1.0 M in CH₂Cl₂), NEt₃ (1.0 mL, 7.17 mmol) and 2-furaldehyde (0.20 mL, 2.41 mmol, distilled from K₂CO₃) in 12 mL of CH₂Cl₂. The reaction was stirred for 5 h and then was allowed to warm to -15 °C. Purification of the crude product by column chromatography (hexane-ethyl acetate = gradient from 2:1 to 1:1) gave allylic alcohol **13e** (900 mg, 86%) as slightly yellow crystals: m. p. = 89 – 92 °C; $[\alpha]_D^{24}$ = +56.3 (*c* = 0.915, CH₂Cl₂); IR (thin film) 3468 (br), 2922, 1781, 1685, 1391, 1354, 1215, 744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.43 (dd, *J* = 1.8, 0.8 Hz, 1H, H_{furan}), 7.28 – 7.34 (m, 3H, H_{arom}), 7.17 (m, 2H, H_{arom}), 6.41 (d, *J* = 3.2 Hz, 1H, H_{furan}), 6.36 (dd, *J* = 3.2, 1.8 Hz, 1H, H_{furan}), 5.83 (d, *J* = 1.5 Hz, 1H, C<u>H_AH_BC), 5.72 (d, *J* = 1.0 Hz, 1H, CH_BH_AC), 5.66 (s, 1H, C<u>H</u>OH), 4.74 (m, 1H, NCH), 4.27 (dd ~ t, *J* = 9.0 Hz, 1H, C<u>H_AH_BPh), 4.19 (dd, *J* = 9.0, 4.6 Hz, 1H, C<u>H_BH_APh), 3.26 (br s, 1H, OH), 3.23 (dd, *J* = 13.6, 3.4</u></u></u>

Hz, 1H, C<u>H_A</u>H_BO), 2.80 (dd, J = 13.6, 9.0 Hz, 1H, C<u>H_B</u>H_AO); ¹³C NMR (100 MHz, CDCl₃) $\delta = 168.5$, 153.5, 153.3, 144.3, 142.8, 134.6, 129.4, 128.9, 127.4, 121.6, 110.4, 108.3, 67.3, 66.6, 55.0, 37.3; HRMS: [M+NH₄]⁺ calcd. 345.1445, found: 345.1446.

Compound 13f from 4-methylthiazole-5-carboxaldehyde:

Compound **13f** was prepared by the general procedure from imide **15** (729 mg, 1.88 mmol), Bu₂BOTf (2.90 mL, 2.90 mmol, 1.0 M in CH₂Cl₂), NEt₃ (0.85 mL, 6.10 mmol) and a solution of 4methylthiazole-5-carboxaldehyde (270 mg, 2.12 mmol, solution in 2 mL of CH₂Cl₂) in 8 mL of CH₂Cl₂. Purification of the crude product by column chromatography (hexane-ethyl acetate = gradient from 1:1 to 1:2) gave allylic alcohol **13f** (567 mg, 84%) as colorless crystals: m. p. = 144 °C (decomposition); $[\alpha]_D^{24} = +54.7$ (c = 1.19, CH₂Cl₂); IR (thin film) 3200 (br), 3029, 2922, 1784, 1684, 1389, 1353, 1213, 733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.65$ (s, 1H, H_{thiazole}), 7.25 – 7.33 (m, 3H, H_{arom}), 7.17 (m, 2H, H_{arom}), 5.92 (s, 1H, C<u>H</u>OH), 5.65 (d, J = 1.5 Hz, 1H, C<u>H_A</u>H_BC), 5.62 (d, J = 1.0 Hz, 1H, C<u>H_B</u>H_AC), 4.71 (m, 1H, NCH), 4.27 (dd ~ t, J = 9.0 Hz, 1H, C<u>H_A</u>H_BPh), 4.19 (dd, J = 9.0, 4.2 Hz, 1H, C<u>H_B</u>H_APh), 3.88 (br s, 1H, OH), 3.25 (br d, J = 13.4 Hz, 1H, C<u>H_A</u>H_BO), 2.77 (dd, J = 13.4, 9.4 Hz, 1H, C<u>H_B</u>H_AO), 2.43 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 168.5$, 153.5, 151.8, 150.0, 145.2, 134.6, 132.3, 129.3, 129.0, 127.5, 120.9, 67.3, 66.7, 55.3, 37.5, 15.3; HRMS [M+H]⁺ calcd.: 359.1060, found: 359.1058.

<u>Compound 13g from pyridine-3-carboxaldehyde (nicotinealdehyde):</u>

Compound **13g** was prepared by the general procedure from imide **15** (420 mg, 1.08 mmol), Bu₂BOTf (1.60 mL, 1.60 mmol, 1.0 M in CH₂Cl₂), NEt₃ (0.50 mL, 3.58 mmol) and pyridine-3carboxaldehyde (0.13 mL, 1.38 mmol) in 6 mL of CH₂Cl₂. The reaction mixture was stirred overnight and was allowed to warm to room temperature. Purification of the crude product by column chromatography (hexane-ethyl acetate = gradient from 1:1 to 1:5) gave allylic alcohol **13g** (323 mg, 88%) as a slightly yellow crystals: m. p. = 132 – 134 °C (decomposition); $[\alpha]_D^{25}$ = +60.1 (*c* = 0.50, acetone); IR (thin film) 3400 (br), 2855, 1794, 1678, 1351, 1215 cm⁻¹; ¹H NMR (400 MHz, DMSO-D₆) δ = 8.67 (s, 1H, H_{pyridine}), 8.51 (dd, *J* = 4.8, 1.5 Hz, 1H, H_{pyridine}), 7.78 (m, 1H, H_{pyridine}), 7.40 (dd, *J* = 7.8, 4.8 Hz, 1H, H_{pyridine}), 7.27 – 7.36 (m, 3H, H_{arom}), 7.21 (m, 2H, H_{arom}), 6.08 (s, 1H, OH), 5.67 (s, 1H, CH_AH_BC), 5.64 (s, 1H, CH_BH_AC), 5.61 (s, 1H, CHOH), 4.69 (m, 1H, NCH), 4.34 (dd ~ t, *J* = 8.6 Hz, 1H, CH_AH_BPh), 4.21 (dd, *J* = 8.7, 4.6 Hz, 1H, CH_BH_APh), 2.95 (dd, *J* = 13.4, 3.2 Hz, 1H, CH_AH_BO), 2.83 (dd, *J* = 13.4, 8.3 Hz, 1H, CH_BH_AO); ¹³C NMR (100 MHz, DMSO-D₆) δ = 169.3, 153.5, 149.7, 147.5, 138.5, 136.4, 135.9, 130.3, 129.5, 127.8, 124.3, 119.9, 70.8, 67.3, 55.2, 37.4; HRMS: [M+Na]⁺ calcd.: 361.1191, found: 361.1178.

Compound 13h from aldehyde 16:

Aldehyde 16 was prepared from 2-butene-1,4-diol following a literature procedure.^[2]

Compound **13h** was prepared by the general procedure from imide **15** (312 mg, 0.80 mmol), Bu₂BOTf (1.20 mL, 1.20 mmol, 1.0 M in CH₂Cl₂), NEt₃ (0.35 mL, 2.51 mmol) and a solution of aldehyde **16** (350 mg, 1.17 mmol, solution in 1 mL of CH₂Cl₂) in 5 mL of CH₂Cl₂. Purification of the crude product by column chromatography (hexane-ethyl acetate = 3:1) gave allylic alcohol **13h** (372 mg, 88%) as colorless crystals: m. p. = 81 °C; $[\alpha]_D^{24} = +26.4$ (c = 2.705, CH₂Cl₂); IR (thin film) 3504 (br), 2930, 2857, 1786, 1686, 1353, 1214, 1112, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.69 (m, 4H, H_{arom}), 7.25 – 7.44 (m, 9H, H_{arom}), 7.18 (m, 2H, H_{arom}), 5.71 (d, J = 1.0 Hz, 1H, CH_AH_BC), 5.57 (s, 1H, CH_BH_AC), 4.70 (m, 1H, NCH), 4.64 (dd ~ t, J = 5.8 Hz, 1H, CHOH), 4.21 (dd ~ t, J = 8.9 Hz, 1H, CH_AH_BPh), 4.14 (dd, J = 9.0, 4.8 Hz, 1H, CH_BH_APh), 3.79 (m, 2H, CH₂OSi), 3.26 (dd, J = 13.4, 3.4 Hz, 1H, CH_AH_BO), 2.98 (br s, 1H, OH), 2.70 (dd, J = 13.4, 9.4 Hz, 1H, CH_BH_AO), 1.07 (s, 9H, (CH₃)₃C); ¹³C NMR (100 MHz, CDCl₃) $\delta = 168.8$, 153.4, 144.7, 135.6, 134.9, 133.0, 133.0, 129.8, 129.3, 128.9, 127.7, 127.4, 120.3, 71.7, 67.2, 66.5, 54.9, 37.7, 26.8, 19.2; HRMS: [M+Na]⁺: calcd.: 552.2177, found: 552.2200.

Compound 13i from α,β-unsaturated aldehyde 17:

Aldehyde 17 was prepared by Parikh-Doering oxidation from alcohol 22 as described in the literature.^[3]

Compound **13i** was prepared by the general procedure from imide **15** (371 mg, 0.96 mmol), Bu₂BOTf (1.40 mL, 1.40 mmol, 1.0 M in CH₂Cl₂), NEt₃ (0.35 mL, 2.51 mmol) and a solution of aldehyde **17** (195 mg, 0.83 mmol, solution in 1 mL of CH₂Cl₂) in 5 mL of CH₂Cl₂. The reaction was stirred for 4 h and was allowed to warm to -30 °C. Purification of the crude product by column chromatography (hexane-ethyl acetate = 1.25:1) gave allylic alcohol **13i** (296 mg, 76%) as colorless, highly viscous oil. $[\alpha]_D^{24} = +44.1$ (c = 0.845, CH₂Cl₂); IR (thin film) 3479 (br), 2960, 2931, 2859, 1789, 1685, 1514, 1354, 1247 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.20 - 7.36$ (m, 7H, H_{arom}), 6.86 (m, 2H, H_{arom}), 5.79 (dd, J = 15.6, 6.9 Hz, 1H, (E)-CH=CH), 5.62 (ddd, J = 15.6, 6.8, 0.9 Hz, 1H, (E)-CH=CH), 5.62 (d, J = 1.3 Hz, 1H, CH_AH_BC), 5.44 (s, 1H, CH_BH_AC), 4.94 (br s, 1H, CHOH), 4.72 (m, 1H, NCH), 4.43 (s, 2H, PMPCH₂O), 4.26 (dd ~ t, J = 9.0 Hz, 1H, CH_AH_BPh), 4.19 (dd, J = 9.1, 4.1 Hz, 1H, CH_BH_APh), 3.78 (s, 3H, OCH₃), 3.28 – 3.38 (m, 3H, CH_AH_BOCH₂ and overlapping CH_AH_BO), 2.86 (dd, J = 13.5, 9.2 Hz, 1H, CH_BH_AO), 2.67 (d, J = 4.7 Hz, 1H, OH), 2.54 (m, 1H, CHCH₃), 1.06 (d, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 169.3$, 159.1, 153.6, 146.6, 136.6, 134.8, 130.6, 129.5, 129.1, 129.0, 128.9, 127.5, 118.7, 113.7, 74.7, 72.9, 72.6, 66.6, 55.2, 37.6, 36.5, 16.8; HRMS: [M+NH₄]⁺ calcd.: 483.2490, found: 483.2505.

3. Stereochemicial Assignment of the Intermediate Syn Aldols

Aldol 18:

A solution of Bu₂BOTf (3.90 mL, 3.90 mmol, 1.0 M in CH₂Cl₂) was added to a stirred solution of compound 15 (1.01 g, 2.60 mmol) in CH₂Cl₂ (7.5 mL) at -78 °C. The mixture was stirred for 5 - 10 min, then Triethylamine (1.10 mL, 7.89 mmol) was added dropwise and stirring was continued at -78 °C for 80 min and at 0 °C for 10 min. The solution of the enol borane was recooled to -78 °C and isobutyraldehyde (0.37 mL, 4.05 mL) was added dropwise. The reaction mixture was stirred overnight and allowed to warm to room temperature before being quenched with a saturated solution of KHCO₃ (10 mL); the mixture was stirred for additional 60 min before workup. The organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (3 x 15 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexane-ethyl acetate = gradient from 3:1 to 1:1) gave aldol **18** (1.053 mg, 88% yield) as a highly viscous oil. $[\alpha]_D^{25} = -43.9$ $(c = 5.17, CH_2Cl_2)$; IR (thin film) 3475 (br), 2962, 1778, 1693, 1384, 1210 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.58 (m, 2H, H_{arom}), 7.27 – 7.35 (m, 8H, H_{arom}), 4.73 (m, 1H, NCH), 4.58 (m, 1H, CHC(O)), 4.20 (dd ~ t, J = 9.2 Hz, 1H, C<u>H</u>_AH_BPh), 4.17 (dd, J = 9.2, 3.5 Hz, 1H, C<u>H</u>_BH_APh), 3.55 (dd, J = 8.1, 3.2 Hz, 1H, CHOH), 3.44 (dd ~ t, J = 12.1 Hz, 1H, CH_AH_BSe), 3.35 (dd, J = 13.5, 3.2 Hz, 1H, CH_AH_BO), 3.19 (dd, J = 12.3, 3.4 Hz, 1H, CH_BH_ASe), 2.79 (dd, J = 13.5, 9.6 Hz, 1H, CH_BH_AO), 2.37 (br s, 1H, OH), 1.72 (m, 1H, CHCH₃), 1.00 (d, J = 6.6 Hz, 3H, CH₃), 0.80 (d, J =6.8 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 174.9, 152.9, 135.2, 133.3, 130.1, 129.4, 129.1, 128.9, 127.3, 127.3, 77.3, 66.0, 55.5, 46.5, 37.6, 31.4, 24.2, 18.9, 18.6; HRMS: [M+Na]⁺ calcd.: 484.0999, found: 484.1007.

PMP-Acetal 19:

LiBH₄ (60 mg, 2.75 mmol) was added in one portion to a stirred solution of aldol **18** (750 mg, 1.63 mmol) in Et₂O (20 mL) and H₂O (0.02 mL) at 0 °C. The reaction was stirred for 2 h, quenched with a saturated solution of NH₄Cl (10 mL) and poured into CH₂Cl₂ (20 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexane-ethyl acetate = gradient from 2:1 to 1:1) gave the corresponding diol (397 mg, 85%) as colorless crystals: m. p. = 52 °C; $[\alpha]_D^{25}$ = -59.6 (*c* = 0.85, CH₂Cl₂); IR (thin film) 3368, 2959, 2873, 1579, 1477, 1437, 1023, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.54 (m, 2H, H_{arom}), 7.24 – 7.29 (m, 3H, H_{arom}), 4.07 (dd, *J* = 10.8, 4.4 Hz, 1H, CH_AH_BO), 3.81 (dd, *J* = 10.8, 3.4 Hz, 1H, CH_BH_AO), 3.49 (dd, *J* = 8.6, 2.8 Hz, 1H,

C<u>H</u>OH), 3.15 (dd, J = 12.4, 3.6 Hz, 1H, C<u>H_A</u>H_BSe), 3.08 (dd, J = 12.4, 10.0 Hz, 1H, C<u>H_B</u>H_ASe), 2.94 (br s, 2H, 2xOH), 1.89 (m, 1H, C<u>H</u>CH₂), 1.74 (m, 1H, C<u>H</u>CH₃), 0.98 (d, J = 6.5 Hz, 3H, CH₃), 0.70 (d, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 133.0$, 132.9, 130.2, 129.0, 127.0, 80.1, 64.9, 41.5, 30.9, 24.1, 18.9, 18.9; HRMS: [M+NH₄]⁺ calcd.: 306.0967, found: 306.0966.

Freshly distilled 4-methoxybenzaldehyde dimethyl acetal (0.10 mL, 0.57 mmol) was added to a stirred solution of the latter diol (125 mg, 0.435 mmol) in CH₂Cl₂ (12 mL) at 0 °C followed by the addition of (±)-CSA (small spatula, approx. 5 mg). The reaction was stirred for 20 min and quenched with a saturated solution of NaHCO₃ (5 mL). The organic phase was separated and the aqueous phase was extracted twice with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexane-ethyl acetate = 6:1) gave PMP-acetal 19 (171 mg, 97%) as a highly viscous oil. $[\alpha]_D^{25} = -57.0$ (c = 1.15, CH₂Cl₂); IR (thin film) 2960, 2836, 1615, 1518, 1248, 1143, 1098, 1034 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.56 (m, 2H, H_{arom}), 7.41 (m, 2H, H_{arom}), 7.25 (m, 3H, H_{arom}), 6.89 (m, 2H, H_{arom}), 5.46 (s, 1H, CHPMP), 4.63 (d, J = 11.5 Hz, 1H, CH_AH_BO , 3.91 (dd ~ d, J = 11.5 Hz, 1H, CH_BH_AO), 3.81 (s, 3H, OCH₃), 3.42 (dd, J = 10.1, 1.9 Hz, 1H, CHO), 3.29 (dd ~ t, J = 12.2 Hz, 1H, C<u>H</u>_AH_BSe), 3.14 (dd ~ d, J = 12.4 Hz, 1H, C<u>H</u>_BH_ASe), 1.84 (m, 1H, CHCH₃), 1.69 (m, 1H, CHCH₂), 1.01 (d, *J* = 6.4 Hz, 3H, CH₃), 0.67 (d, *J* = 6.8 Hz, 3H, CH₃): ¹³C NMR (100 MHz, CDCl₃) δ = 159.8, 133.4, 131.3, 130.0, 129.0, 127.2, 127.1, 113.6, 101.9, 86.1, 70.1, 55.3, 35.7, 29.3, 24.8, 19.7, 17.1; HRMS: [M+Na]⁺ calcd.: 429.0941, found: 429.0932.

Mosher Ester 18a from (S)-MTPACI:

¹H NMR (400 MHz, CDCl₃) δ = 7.60 (m, 2H, H_{arom.}), 7.56 (m, 2H, H_{arom.}), 7.27 – 7.41 (m, 11H, H_{arom}), 4.96 (dd, *J* = 9.9, 2.1 Hz, 1H, CHOMTPA), 4.59 and 4.58 (m, 2H, NCH and overlapping CHC(O)), 4.37 (dd ~ t, *J* = 8.6 Hz, 1H, C<u>H_A</u>H_BPh), 4.21 (dd, *J* = 8.8, 2.4 Hz, 1H, C<u>H_B</u>H_APh), 3.69 (s, 3H, OCH₃), 3.39 (dd ~ t, *J* = 12.2 Hz, 1H, C<u>H_A</u>H_BSe), 3.26 (dd, *J* = 13.6, 3.1 Hz, 1H, C<u>H_A</u>H_BO), 2.96 (dd, *J* = 13.6, 8.8 Hz, 1H, C<u>H_B</u>H_AO), 2.92 (dd, *J* = 12.6, 2.6 Hz, 1H, C<u>H_B</u>H_ASe), 1.83 (m, 1H, C<u>H</u>CH₃), 0.64 (d, *J* = 6.8 Hz, 3H, CH₃), 0.53 (d, *J* = 6.5 Hz, 3H, CH₃).

Mosher Ester 18b from (R)-MTPACI:

¹H NMR (400 MHz, CDCl₃) δ = 7.58 (m, 4H, H_{arom}), 7.27 – 7.43 (series of m, 11H, H_{arom}), 5.02 (dd, *J* = 9.3, 2.3 Hz, 1H, CHOMTPA), 4.62 (m, 1H, NCH), 4.56 (ddd ~ dt, *J* = 11.7, 2.4 Hz, 1H, CHC(O)), 4.33 (dd ~ t, *J* = 8.7 Hz, 1H, C<u>H_AH_BPh</u>), 4.20 (dd, *J* = 8.9, 2.4 Hz, 1H, C<u>H_BH_APh</u>), 3.53 (s, 3H, OCH₃), 3.35 (dd ~ t, *J* = 12.1 Hz, 1H, C<u>H_AH_BSe</u>), 3.26 (dd, *J* = 13.6, 3.0 Hz, 1H, C<u>H_AH_BO</u>), 2.92 (2x dd ~ m, 2H, C<u>H_BH_ASe</u> and overlapping C<u>H_BH_AO</u>), 1.91 (m, 1H, C<u>H</u>CH₃), 0.82 (d, *J* = 6.5 Hz, 3H, CH₃), 0.70 (d, *J* = 6.8 Hz, 3H, CH₃).

Diol 20:

NaBH₄ (30 mg, 0.793 mmol) was added in one portion to a stirred solution of **18** (160 mg, 0.527 mmol) and CeCl₃ 7H₂O (240 mg, 0.644 mmol) in MeOH (8 mL) at 0 °C. The reaction mixture was stirred at room temperature for 30 min before being quenched with a saturated solution of NH₄Cl (5 mL). CH₂Cl₂ (15 mL) was added, the organic layer was separated and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexane-ethyl acetate = 2:1) gave diol **20** (38 mg, 55% yield) as colorless crystals. The spectroscopic data were in full agreement with the data reported for *ent*-**20** in literature.^[4] m. p. = 47 °C; $[\alpha]_D^{24} = +17.6$ (*c* = 1.80, CHCl₃); IR (thin film) 3405 (br), 2925, 2897, 1384, 1319, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 5.15$ (d, *J* = 1.0 Hz, 1H, C<u>HA</u>H_BC), 5.06 (s, 1H, C<u>HB</u>HAC), 4.27 (d, *J* = 13.2 Hz, 1H, C<u>HA</u>H_BO), 4.09 (d, *J* = 13.2 Hz, 1H, C<u>HB</u>HAO), 3.83 (d, *J* = 7.8 Hz, 1H, C<u>HO</u>H), 2.74 (br s, 2H, 2xOH), 1.82 (m, 1H, CH), 0.98 (d, *J* = 6.6 Hz, 3H, CH₃), 0.83 (d, *J* = 6.8 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 148.7$, 113.6, 80.7, 63.9, 31.8, 19.3, 18.2; HRMS: [M+H]⁺ calcd.: 131.1067, found: 131.1073.

4. Synthesis of the C(15)-C(21) Fragment of Tedanolide C

Allylic alcohol 22:

Compound 22 was prepared according to a slightly modified literature procedure.^[5] Ethyl (triphenylphosphoranylidene)acetate (13.0 g, 37.3 mmol) was added to a solution of known aldehyde $21^{[6]}$ in 120 mL of toluene. The reaction mixture was flushed with argon and stirred overnight at 60 °C. The solution was cooled to ambient temperature, concentrated under reduced pressure and the crude product was purified by column chromatography (hexane-diethyl ether = gradient from 5:1 to 3:1) to give the α,β -unsaturated (*E*)-ester (8.05 g, 91%) as a colorless oil.

DIBAL-H (68.0 mL, 68.0 mmol, 1.0 M in CH_2Cl_2) was added to a stirred solution of the latter unsaturated ester (7.86 g, 28.2 mmol) in 60 mL of CH_2Cl_2 at -78 °C. The mixture was stirred for 4 h and was allowed to warm to -30 °C. The reaction was quenched by the careful addition of a saturated solution of Rochelle's salt and stirred overnight. The organic phase was separated and the aqueous phase was extracted three times with Et_2O . The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexane-diethyl ether = 1:1) gave allylic alcohol **22** (5.87 g, 88%) as a viscous oil. The spectroscopic data of compound **22** were in complete agreement with data from literature.^[6]

Epoxide 23 from Sharpless-Epoxidation of 22:

(+)-L-Diethyl tartrate (1.90 mL, 11.09 mmol) was added to a stirred suspension of 6.2 g of flame-dried molecular sieves (3Å) in 30 mL of CH₂Cl₂ at -35 °C followed by the addition of Ti(Oi-Pr)₄ (2.30 mL, 7.77 mmol). The mixture was stirred for 30 min, then a solution of allylic alcohol 22 (5.25 g, 22.22 mmol) in 14 mL of CH₂Cl₂ was added dropwise in two portions and the reaction mixture was stirred for 30 min. t-BuOOH (6.0 mL, 33.0 mmol, 5.5 M solution in nonane) was added dropwise and the mixture was stirred for 24 h at -30 °C. The reaction was guenched by the addition of 1.80 g of tartaric acid in 15 mL of H₂O and 8.0 g of FeSO₄ 7H₂O and stirred for 90 min at room temperature. The reaction mixture was then poured into 300 mL of CH₂Cl₂ and dried over Na₂SO₄ under vigorous stirring. The product was filtered through Celite, washed with CH₂Cl₂, concentrated under reduced pressure. The crude product was purified by column chromatography (hexane-ethyl acetate = gradient from 1:1 to 1:1.5) to give epoxyalcohol 23 (5.32 g, 95%, d.r. = 15:1) as a colorless, highly viscous oil. $[\alpha]_D^{24} = -21.0$ (*c* = 1.15, CHCl₃); IR (thin film) 3435 (br), 2860, 1612, 1513, 1247, 1088, 1033 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.26 (m, 2H, H_{arom}), 6.88 (m, 2H, H_{arom}), 4.45 (AB-system, 2H, PMPCH₂O), 3.90 (ddd, J = 12.5, 5.3, 2.6 Hz, 1H, CH_AH_BOH), 3.80 (s, 3H, CH₃O), 3.62 (ddd, J = 12.5, 7.0, 4.4 Hz, 1H, C<u>H</u>_BH_AOH), 3.46 (dd, J = 9.2, 5.7 Hz, 1H, CH_AH_BOPMB), 3.42 (dd, J = 9.2, 5.7 Hz, 1H, C_{HB}H_AOPMB), 3.00 (m, 1H, CH_{Aepoxide}), 2.94 (dd, J = 6.8, 2.4 Hz, 1H, CH_{Bepoxide}), 1.80 (m, 1H, CHCH₃), 1.68 (t, J = 6.3 Hz, 1H, OH), 0.99 (d, J = 7.0Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 159.2, 130.5, 129.2, 113.8, 72.8, 72.2, 61.8, 57.8, 56.9, 55.3, 35.7, 13.4; HRMS: [M+NH₄]⁺ calcd.: 270.1700, found: 270.1698.

Allylic alcohol 24 from epoxyaldehyde 8:

A solution of SO₃ pyridine (6.30 g, 39.58 mmol) in 24 mL of DMSO was added over a period of 5 min to a stirred 0 °C solution of epoxyalcohol **23** (4.80 g, 19.02 mmol) and diisopropylethylamine (20.0 mL, 114.8 mmol) in 110 mL of CH₂Cl₂. The reaction mixture was stirred for 90 min before being diluted with 50 mL of a saturated solution of NH₄Cl. The aqueous phase was separated and the organic phase was washed with 100 mL of a 1.0 M solution of KHSO₄. The combined aqueous layers were extracted twice with ethyl acetate and the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was flushed through a short column of silica gel (hexane-ethyl acetate = 2:1) to give epoxyaldehyde **8** (3.93 g, 83%) as a slightly yellow oil. The product was used immediately in the next step without further purification.

Bu₂BOTf (21.0 mL, 21.0 mmol, 1.0 M solution in CH_2Cl_2) was added slowly to a stirred solution of imide **15** (5.95 g, 15.32 mmol) in 36 mL of CH_2Cl_2 at -78 °C. The mixture was stirred for 10 min, then triethylamine (5.4 mL, 38.74 mmol) was added dropwise. The resulting was stirred at -78 °C for 75 min, at 0 °C for 15 min and re-cooled to -78 °C. A solution of freshly prepared

epoxyaldehyde 8 (3.93 g, 15.70 mmol) in 10 mL of CH₂Cl₂ was added slowly in two portions. The reaction mixture was stirred at -78 °C for 5 h and allowed to warm to room temperature overnight before being quenched with 40 mL of a saturated solution of NH₄Cl. The organic phase was separated and the aqueous phase was extracted with CH_2Cl_2 (1x). The combined organic layers were cooled to 0 °C. Pyridine (0.85 mL, 10.5 mmol) was added and then H₂O₂ (0.90 mL, 15.6 mmol, 50% in H₂O) was added. Two additional aliquots of H₂O₂ (0.40 mL each) were added after 15 and 30 min, respectively. After approximately 45 min, TLC analysis indicated complete consumption of the starting material. The reaction mixture was poured into the aqueous layer, the organic phase was separated, and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexane-ethyl acetate = gradient from 2:1 to 1:1) gave compound 24 (5.83 g, 79%) as a colorless, highly viscous oil. $\left[\alpha\right]_{D}^{24} = +24.3$ (c = 1.62, CH₂Cl₂); IR (thin film) 3468 (br), 2963, 2931, 2860, 1785, 1685, 1512, 1354, 1246, 1213, 1110, 1033 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.20 - 7.35$ (series of m, 7H, H_{arom}), 6.86 (m, 2H, H_{arom}), 5.80 (d, J =1.0 Hz, 1H, CH_AH_BC), 5.59 (s, 1H, CH_BH_AC), 4.72 (m, 1H, NCH), 4.44 (m, 3H, PMPCH₂O and overlapping CHOH), 4.25 (dd ~ t, J = 8.9 Hz, 1H, CH_AH_BPh), 4.18 (dd, J = 9.0, 4.6 Hz, 1H, CH_BH_APh), 3.78 (s, 3H, CH_3O), 3.48 (dd, J = 9.2, 5.7 Hz, 1H, $PMBOCH_AH_B$), 3.43 (dd, J = 9.2, 5.8 Hz, 1H, PMBOC<u>H</u>_BH_A), 3.33 (dd, J = 13.6, 3.3 Hz, 1H, C<u>H</u>_AH_BO), 3.04 (m, 3H, CH_{Aepoxide}H_{Bepoxide} and overlapping OH), 2.86 (dd, 1H, J = 13.6, 9.1 Hz, 1H, CH_BH_AO), 1.80 (m, 1H, CHCH₃), 1.01 (d, J = 7.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 168.7$, 159.0, 153.4, 143.6, 134.8, 130.4, 129.4, 129.1, 128.9, 127.3, 120.8, 113.6, 72.7, 72.1, 70.6, 66.5, 58.3, 58.2, 55.1, 55.0, 37.3, 35.5, 13.2; HRMS: $[M+NH_4]^+$ calcd.: 499.2439, found: 499.2443.

Double allylic alcohol 25:

NaBH₄ (500 mg, 13.2 mmol) was added in one portion to a stirred solution of unsaturated imide 24 (5.30 g, 11.0 mmol) and CeCl₃⁻⁷H₂O (6.20 g, 16.6 mmol) in 120 mL of methanol at 0 °C. The mixture was stirred for 30 min. A small aliquot of NaBH₄ (~ 50 mg) was added additionally and stirring was continued for 30 min at 0 °C. The reaction mixture was quenched by the slow addition of a saturated solution of NH₄Cl (50 mL) and poured into CH₂Cl₂. The organic phase was separated and the aqueous phase was extracted four times with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexane-ethyl acetate = gradient from 1:1 to 1:2) gave double allylic alcohol 25 (3.28g, 97%) as a highly viscous colorless oil. (Occasionally, the product could not be fully separated from remaining (S)-4-benzyl oxazolidinone which, however, did not affect the following protection step). $[\alpha]_D^{25} = +20.2$ (*c* = 2.62, CHCl₃); IR (thin film) 3401 (br), 2962, 2863, 1612, 1513, 1247, 1088, 1033 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.25 (m, 2H, H_{arom}), 6.87 (m, 2H, H_{arom}), 5.20 (s, 2H, CH₂C), 4.45 and 4.42 (AB-system, 2H, PMPCH₂O), 4.37 (d, J = 3.2 Hz, 1H, CHOH), 4.21 and 4.14 (AB-system, 2H, CH₂OH), 3.79 (s, 3H, CH₃O), 3.44 (d, J = 5.5 Hz, 2H, PMBOCH₂), 3.04 (dd, J = 6.4, 2.3 Hz, 1H, CH_{Aepoxide}), 2.99 (dd, J = 3.4, 2.4 Hz, 1H, CH_{Bepoxide}), 2.79 (br s, 1H, OH), 2.63 (br s, 1H, OH), 1.85 (m, 1H, CHCH₃), 0.97 (d, J = 7.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 159.2, 146.4, 130.2, 129.3, 114.1, 113.7, 72.8, 72.1, 71.5, 63.9, 58.5, 57.4, 55.2, 35.2, 13.0; HRMS: [M+NH₄]⁺ calcd.: 326.1962, found: 326.1951.

Bis-TES ether 26:

Triethlysilyl chloride (5.0 mL, 29.79 mmol) was added dropwise to a stirred solution of diol 25 (3.28 g, 10.6 mmol), imidazole (7.0 g, 103 mmol) and DMAP (170 mg, 14.0 mmol) in 180 mL of DMF at 0 °C. The reaction mixture was stirred for 36 h and allowed to warm to room temperature during that period. The reaction mixture was re-cooled to 0 °C, then 100 mL of Et₂O was added followed by the addition of 100 mL of H₂O. The organic phase was separated and the aqueous phase was extracted three times with 50 mL of Et₂O. The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexane-ethyl acetate = 10:1) gave bis-silyl ether 26 (5.36 g, 94%) as a colorless oil. $[\alpha]_D^{25} = -2.0$ (c = 4.12, CH₂Cl₂); IR (thin film) 2955, 2876, 1513, 1458, 1247, 1099, 1005, 821, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.26 (m, 2H, H_{arom}), 6.87 (m, 2H, H_{arom}), 5.23 (dd, J = 3.5, 1.7 Hz, 1H, CH_AH_BC), 5.13 (dd ~ t, J = 1.2 Hz, 1H, CH_BH_AC), 4.45 (s, 2H, PMPCH₂O), 4.27 and 4.20 (AB system, J = 14.8 Hz, 2H, CH₂OSi), 4.15 (d, J = 4.2 Hz, 1H, CHOSi), 3.81 (s, 3H, CH₃O), 3.47 (dd, J = 9.1, 5.3 Hz, 1H, C<u>H</u>_AH_BOPMB), 3.39 (dd, J = 9.1, 6.3 Hz, 1H, CH_BH_AOPMB), 2.88 (dd, J = 7.2, 2.1 Hz, 1H, CH_{Aepoxide}), 2.82 (dd, J = 4.2, 2.2 Hz, 1H, CH_{Bepoxide}), 1.70 (m, 1H, CHCH₃), 0.92 - 1.00 (m, 21H, CH₃ and overlapping 6xCH₃CH₂Si), 0.60 (m, 12H, 6xCH₂Si); ¹³C NMR (100 MHz, CDCl₃) δ = 159.1, 148.7, 130.7, 129.1, 113.7, 110.3, 77.2, 72.8, 72.7, 72.4, 62.3, 59.7, 57.8, 55.2, 36.1, 13.6, 6.8, 4.7, 4.4; HRMS: [M+NH₄]⁺ calcd.: 554.3692, found: 554.3729.

Diol 27:

AD mix- β (1.80 g) was added to a vigorously stirred solution of alkene **26** (635 mg, 1.18 mmol) in *t*-BuOH (6 mL) and H₂O (6 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 48 h. Additional OsO₄ (0.25 mL, 0.02 mmol, 2.5 w% in *t*-BuOH) and (DHQD)₂PHAL (46 mg, 0.06 mmol) were added and the mixture was strirred for an additional 48 h at 0 °C. The reaction was quenched with Na₂SO₃ (1.4 g), stirred for 2 h at room temperature and poured into CH₂Cl₂ (20 mL) and H₂O (10 mL). The organic phase was separated and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product by column chromatography (hexane-ethyl acetate = 6:1) gave diol **27** (507 mg, 75% yield; 95% based on recovered starting material) as a 4.5 : 1 mixture of diastereomers (determined by ¹H NMR analysis). An analytical sample of the diastereomeric mixture was purified by HPLC (20% ethyl acetate in hexane, R_t = 13.5 min). The spectroscopic data are given for the main diastereomer. [α]_D²³ = -1.3 (*c* = 2.50, CH₂Cl₂); IR (thin

film) 3487, 2954, 2876, 1513, 1247, 1086, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 7.26 (m, 2H, H_{arom}.), 6.86 (m, 2H, H_{arom}.), 4.45 (s, 2H, CH₂Oar), 3.79 (s, 3H, OCH₃), 3.68 – 3.79 (series of overlapping m, 5 H, CH₂OSi, CH₂OH, CHOSi), 3.51 (dd, *J* = 9.2 Hz, 5.2 Hz, 1H, C<u>H_A</u>H_BO), 3.42 (dd, *J* = 9.2, 6.2 Hz, 1H, C<u>H_B</u>H_AO), 3.09 (dd, *J* = 4.7, 2.3 Hz, 1H, CH_{Aepoxide}), 3.01 (d, *J* = 5.4 Hz, 1H, OH), 2.95 (dd, *J* = 7.2, 2.3 Hz, 1H, CH_{Bepoxide}), 2.91 (s, 1H, OH), 1.74 (m, 1H, C<u>H</u>CH₃), 1.03 (d, *J* = 7.0 Hz, 3H, C<u>H₃</u>CH), 0.96 (t, *J* = 8.1 Hz, 9H, C<u>H₃</u>CH₂Si), 0.95 (t, *J* = 7.8 Hz, 9H, C<u>H₃</u>CH₂Si), 0.62 (q, *J* = 7.7 Hz, 6H, CH₃CH₂Si), 0.61 (q, *J* = 8.2 Hz, 6H, CH₃CH₂Si); ¹³C NMR (100 MHz, CDCl₃) δ = 159.1, 130.5, 129.14, 113.7, 74.4, 72.8, 72.6, 72.4, 63.9, 63.8, 57.4, 55.9, 55.2, 36.2, 13.4, 6.6, 4.2, 4.2; HRMS: [M+Na]⁺ calcd.: 593.3300, found: 593.3319.

5. References in Supporting Information

- [1] Xiao, D.; Vera, M. D.; Laing, B.; Joullié, M. M. J. Org. Chem. 2001, 66, 2734 2742.
- [2] Nicolaou, K. C.; Liu, J.-J.; Yang, Z.; Ueno, H.; Sorensen, E. J.; Claiborne, C. F.; Guy, R. K.; Hwang, C.-K.; Nakada, M.; Nantermet, P. G. J. Am. Chem. Soc. **1995**, *117*, 634 644.
- [3] Ramachandran, P. V.; Burghardt, T. E.; Reddy, M. V. R. J. Org. Chem. 2005, 70, 2329 2331.
- [4] Enders, D.; Voith, M. Synthesis 2002, 1571 1577.
- [5] Brittain, D. E. A.; Griffiths-Jones, C. M.; Linder, M. R.; Smith, M. D.; McCusker, C.; Barlow, J. S.; Akiyama, R.; Yasuda, K.; Ley, S. V. Angew. Chem. Int. Ed. 2005, 44, 2732 – 2737.
- [6] Janssen, D.; Albert, D.; Jansen, R.; Müller, R.; Kalesse, M. Angew. Chem. Int. Ed. 2007, 46, 4898 4901.