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SUPPORTING MATERIALS

Note S1. Calculations of fiber persistence length based on a
bundle model

The persistence length of a fibrin fiber can be estimated in a number of
different ways. A coarse-grained approach is to model the fiber as a ho-
mogeneous, isotropic cylinder with radius r and Young’s modulus E. The
persistence length is then given as:

Lp =
EI

kBT
, (S1)

where I = πr4/4 is the moment of inertia and kBT denotes thermal energy,
where kB is the Boltzmann constant and T is absolute temperature. The
Young’s modulus of fibrin has been measured by bending and stretching of
individual fibers within fibrin clots using optical tweezers (1). Using values
of E between 2 MPa (unligated fibers) and 15 MPa (ligated fibers), lp of a
fiber with a diameter of 100 nm would be 2-17 mm.

An alternative estimate of lp can be obtained by taking into account that
the fiber is a bundle of N wormlike protofibrils, each having a persistence
length lpf

p of 0.5 µm (2, 3). The effective persistence length of such a bundle
depends on the resistance of the crosslinks between the protofibrils to shear-
ing (4, 5). When the crosslinks strongly resist shear and rigidly glue the
protofibrils together (fully coupled regime), the bundle behaves as a homo-
geneous beam and lp = N 2lpf

p . On the other hand, when the crosslinks do not
resist shear and ‘tilt’ freely during bundle bending (decoupled bending), the
protofibrils bend independently and lp = Nlpf

p . Since crosslinks in general
have a finite shear stiffness, lp is expected to eventually crossover from N 2

scaling to N scaling with increasing N. The importance of crosslink shear-
ing depends on several molecular parameters, including the axial spacing
between crosslinks, the shear stiffness of the crosslinks, and the extensional
stiffness of the protofibrils. For a bundle of N = 65 protofibrils (as in our
experiments), lp is 33 µm in the decoupled limit and 1.5 mm in the fully
coupled limit.

Note S2. Determination of fiber size by turbidimetry

Fiber diameters, d, and mass-length ratios, µ, were measured by turbidime-
try, using a UV1 Spectrophotometer (Thermo Optek). The turbidity,
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τ = (1/l)ln(1/T ), where l is the path length in cm (here 1 cm) and T is the
measured transmission. The diameter was extracted from the dependence
of τ on wavelength, λ, between 350-650 nm, following the method of Carr
and Hermans (10). When the fiber radius is much smaller than λ, τ scales
as λ−3, and the slope is proportional to the mass-length ratio, µ. This pro-
portionality is not observed for our clots, indicating that the fiber diameter
is not negligible compared to λ. This is consistent with the observation
with AFM that the fiber diameter is on the order of 100 nm. When the
fiber radius is similar to λ, µ and d are obtained instead by plotting c/τλ3

versus λ−2. The intercept of this plot is equal to A/µ, where A = 0.68·1023

is a material constant (expressing λ in cm and cp in g/cm3). The ratio of
slope and intercept is proportional to the square of the fiber radius, Br2,
with B/A = 20.9 a material constant. Our networks fall into the second
category, with c/τλ3 scaling as λ−2 (Fig. S1 A).

Note S3. Calculation of persistence length of fibers from
single filament fluctuations at high frequencies

The viscoelastic response of semiflexible polymer networks at high frequen-
cies can be used to measure the polymer persistence length. At high frequen-
cies the shear modulus is controlled by the relaxation of individual polymer
chains, leading to the characteristic response (6, 7):

G∗(ω) =
1
15

ρκlp(−2iζ/κ)3/4ω3/4 − iωη, (S2)

where ρ is the filament length per volume, κ = lpkBT is the bending
stiffness, ζ = 4πη/ln(0.6λ/d) is the lateral drag coefficient and η is the
solvent viscosity at 37 ◦C. Using for λ the characteristic mesh size, we find
lp = 60 µm for our fibers.

It is possible that our microrheology experiments measure direct fiber
motion, since the bead sizes used are comparable to the mesh size of the
network, and since our beads bind to the fibers. Such motion is expected
to be dominated by the transverse motion of fibers, which is also predicted
to exhibit the same qualitative dynamics that we observe: the transverse
motion is also characterized by the same 3/4 exponent in either time or
frequency dependence (8, 9):

〈(4h(t))2〉 ' 0.082 {ln [
κln( L

πa)t
4πηa4

] (
kBT

κ
)1/3 kBT

η
t}4/3 (S3)
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If this were the origin of our observations, the corresponding persistence
length would be 20 µm. However, if the bead measures fiber fluctuations,
the bead fluctuations are expected to be anisotropic, contrary to our ob-
servations. Furthermore, the apparent elastic shear modulus derived from
the bead fluctuations is close to the bulk modulus. Thus, we believe that
our microrheology results measure network rheology. In either case, our
experiments clearly indicate significant thermal fluctuations.

Note S4. Calculations of the protofibril stretch modulus

For an isotropic network of fibers with stretch modulus κs, K s = 1/15ρκs

(6, 7). Using κs as an adjustable parameter, we find good agreement with
our data for κs = 21 nN. This corresponds to a stretch modulus of 320 pN
per protofibril, which is higher than values of 50-100 pN that were found
for protofibril gels polymerized from fish fibrinogen (2). However, we expect
significant filament alignment in the stretch regime, which is not captured
by the isotropic approximation. This alignment means that a larger fraction
of filaments bears the load imposed by the applied stress. Thus, the actual
force per fiber will be lower than the above. For comparison, for a highly
aligned network, we can estimate the macroscopic modulus as 1/8ρκs, based
on the following. For a small strain increment δγ, the stress contribution due
to a filament oriented with polar angle θ relative to the vertical axis and az-
imuthal angle φ is given by δσ = ρ sin θ cos θ cosφκsδε, where the extensional
strain of the filament is δε = sin θ cos θ cosφδγ. Under shear, approximately
half of the filaments will experience stretching, while the other half experi-
ences compression. The latter will tend to buckle under shear and will not
contribute to the macroscopic stress (11–13), while diagonal filaments, such
as the one indicated in the inset to Fig. 2A, will bear most of the load. Thus,
assuming half of the filaments is oriented so as to stretch and bear the load,
we obtain δσ ' 1/4ρκsδε = 1/8ρκsδγ. This results in Ks = 1/8ρκs and
a somewhat smaller value for κs of about 170 pN, in better agreement with
ref. (2).
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Supporting Figures
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Figure S 1: Turbidity measurements on fibrin gels. (A) Wavelength de-
pendence of the turbidity of 1.5 µM (squares), 3 µM (circles), and 15 µM
(triangles) fibrin networks. Straight lines were fitted to the data to allow
calculation of mass-length ratio that is proportional to the intercept of these
lines and fiber diameter obtained from the ratio of slope and intercept. (B)
Mass-length ratio is independent of fibrinogen concentration up to 10 µM
and after decreases. (C) Corresponding concentration dependence of fiber
diameter. (D) The protein mass density within the fibers remains constant
and low (symbols), at about 0.28 g/cm3 (line), similar to previous observa-
tions (10).
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Figure S 2: Time dependence of shear strain (Bottom) after imposition and
subsequent removal of a steady shear stress (Top) for a network of 6 µM
fibrin. After imposition of a constant stress, the fibrin network shows a very
fast strain response with no subsequent creep. This characteristic solid-like
behavior was observed for all fibrin networks. When the stress is released,
an immediate and nearly complete recovery of the strain takes place. This
suggests that the sample is predominantly elastic. At the beginning of a
creep test, the strain response has a superposed damped oscillation (Inset).
This inertio-elastic oscillation is characteristic for highly elastic materials
(14–16).
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Figure S 3: Concentration dependence of rupture stress. Dashed line indi-
cates power-law fit.
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Figure S 4: Stress-stiffening curves for fibrin networks with concentrations
as indicated. The stiffening response becomes weaker with increasing fib-
rinogen concentration.
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Figure S 5: Repeatability of stress-stiffening curves for 15 µM fibrin net-
work. (A) Stress-stiffening curves were repeatable during many consecutive
stress sweeps in the nonlinear regime, even when the stress was brought up
almost to the breakage point. Occasionally the stiffness in the linear regime
increased after a previous stress sweep. This work-hardening phenomenon is
reminiscent of the behavior of actin networks crosslinked by filamin, where
it was explained by alignment and bundling of filaments at large strain (17).
(B) The stiffening curves obtained by gradually increasing the applied stress
were indistinguishable from curves obtained by gradually decreasing the ap-
plied stress. (C) Only when the samples were subjected to strains close to
the rupture strain, some hysteresis was observed.
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