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RBC recovery test

To study dynamics of RBC recovery after stretching with force f , we introduce the time-dependent elonga-
tional index e(t) analogously to that in (1) as follows

e(t) =
(λ − λ∞)(λ0 + λ∞)

(λ + λ∞)(λ0 − λ∞)
= exp

[

−
(

t

tc

)δ
]

, (1)

where λ = DA/DT , λ0 and λ∞ correspond to the ratios at times t = 0.0 and t = ∞, tc is the characteristic
time, and δ is the exponent (Note that in (1) δ = 1, and thus equation (1) is a generalization of the equation
(11) in (1)). Similar to the creep test, the time scale exponent is set to α = 0.75. Figure 1 (left) shows RBC
recovery after deformation by the force 7 pN with ηm = 0.022 Pa · s. In the case of δ = 1 we observe a
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Figure 1: RBC recovery after deformation by the force of f = 7 pN for different fits (left) and after different
stretching forces (right).

rather poor fit to the RBC recovery, while the fit with δ = 0.7 yields excellent agreement with the recovery
dynamics. Figure 1 (right) demonstrates sensitivity of the recovery dynamics to the total stretching force
(or initial stretch). The response appears to be not sensitive to small initial stretches, however the RBC
recovery response is different for the case of a high initial stretch, where non-linear effects may be present.
In addition, we note that RBC recovery showed a long tail decay and it is important to have a long enough
sample to correctly measure λ∞, which may greatly affect fitting parameters. Thus, the experiments on
RBC recovery has to be followed for at least several seconds, in contrast to the RBC recovery (1) observed
over approximately 0.5 s.
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Dissipative Particle Dynamics

Dissipative Particle Dynamics (DPD) (2, 3) is a mesoscopic particle method, where each particle represents
a molecular cluster rather than an individual atom, and can be thought of as a soft lump of fluid. The DPD
system consists of N point particles of mass mi, position ri and velocity vi. DPD particles interact through
three forces: conservative (FC

ij), dissipative (FD
ij ), and random (FR

ij) forces given by

F
C
ij = FC

ij (rij)r̂ij ,

F
D
ij = −γωD(rij)(vij · r̂ij)r̂ij ,

F
R
ij = σωR(rij)

ξij√
dt

r̂ij ,

(2)

where r̂ij = rij/rij , and vij = vi − vj . The coefficients γ and σ define the strength of dissipative and
random forces, respectively. In addition, ωD and ωR are weight functions, and ξij is a normally distributed
random variable with zero mean, unit variance, and ξij = ξji. All forces are truncated beyond the cutoff
radius rc, which defines the length scale in the DPD system. The conservative force is given by

FC
ij (rij) =











aij(1 − rij/rc) for rij ≤ rc,

0 for rij > rc,

(3)

where aij is the conservative force coefficient between particles i and j.
The random and dissipative forces form a thermostat and must satisfy the fluctuation-dissipation theorem

in order for the DPD system to maintain equilibrium temperature T (4). This leads to:

ωD(rij) =
[

ωR(rij)
]2

, σ2 = 2γkBT, (4)

where kB is the Boltzmann constant. The choice for the weight functions is as follows

ωR(rij) =











(1 − rij/rc)
k for rij ≤ rc,

0 for rij > rc,

(5)

where k = 1 for the original DPD method. However, other choices (e.g., k = 0.25) for these envelopes have
been used (5, 6) in order to increase the viscosity of the DPD fluid.

The time evolution of velocities and positions of particles is determined by the Newton’s second law of
motion

dri = vidt, (6)

dvi =
1

mi

∑

j 6=i

(

F
C
ij + F

D
ij + F

R
ij

)

dt. (7)

The above equations of motion were integrated using the modified velocity-Verlet algorithm (2).

RBC model framework

The average equilibrium shape of a RBC is biconcave as measured experimentally (7), and is represented
by

z = ±D0

√

1 − 4(x2 + y2)

D2
0

[

a0 + a1
x2 + y2

D2
0

+ a2
(x2 + y2)2

D4
0

]

, (8)
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where D0 = 7.82 µm is the average diameter, a0 = 0.0518, a1 = 2.0026, and a2 = −4.491. The surface
area and volume of this RBC are equal to 135 µm2 and 94 µm3, respectively.

In the simulations, the membrane network structure is generated by triangulating the unstressed equilib-
rium shape described by (8). The cell shape is first imported into a commercial grid generation software to
produce an initial triangulation based on the advancing-front method. Subsequently, free-energy relaxation
is performed by flipping the diagonals of quadrilateral elements formed by two adjacent triangles, while the
vertices are constrained to move on the prescribed surface. The relaxation procedure includes only elastic
in-plane and bending energy components.

The membrane model is constructed as a set of vertex points {xi}, i ∈ 1...Nv. The potential energy of
the system V ({xi}) is described in the paper. Particle forces are derived from the above energies as follows

fi = −∂V ({xi})/∂xi, i ∈ 1...Nv. (9)

Exact force expressions can be found in (8).

Mechanical properties

Theoretical analysis of a hexagonal network is presented to derive linear macroscopic properties of the
network. We extend the linear analysis of a two-dimensional sheet of springs built with equilateral triangles
(9). Figure 2 presents an element of the hexagonal network where vertex v is placed at the origin. From the
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Figure 2: An element of the hexagonal triangulation.

virial theorem, the Cauchy stress at the vertex v surrounded by the area element S is given by

ταβ =− 1
S

[

f(r1)
r1

rα
1 r

β
1 + f(r2)

r2

rα
2 r

β
2 + f(|~r2−~r1|)

|~r2−~r1| (rα
2 −rα

1 )(rβ
2 −r

β
1 )
]

−

−
(

ka(Atot

0
−NtA)

Atot

0

+ kd(A0−A)
A0

)

δαβ,

(10)

where f(·) is the spring force, α, β are x or y, Nt is the total number of triangles, Atot
0 = NtA0, and

S = 2A0. Substitution of Atot
0 for the global area contribution to the stress allows us to combine it with

the local area term as −(ka + kd)(A0 − A)/A0δαβ . The linear shear modulus is derived from a network
deformation by applying the engineering shear strain γ,

~r′1 = ~r1J = (rx
1 + ry

1γ/2; rx
1γ/2 + ry

1), J =







1 γ/2

γ/2 1






. (11)
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The shear deformation is area-preserving, and therefore only spring forces contribute to the membrane
shear modulus. Expansion of τxy in Taylor series provides the linear shear modulus of the network as follows

τ ′
xy = τxy +

∂τ ′
xy

∂γ

∣

∣

∣

∣

γ=0

γ + O(γ2), µ0 =
∂τ ′

xy

∂γ

∣

∣

∣

∣

γ=0

. (12)

As an example of differentiation we obtain

∂
(

f(r′
1
)

r′
1

rx′

1 ry′

1

)

∂γ

∣

∣

∣

∣

∣

∣

γ=0

=

(

∂ f(r1)
r1

∂r1

(rx
1ry

1)
2

r1
+

f(r1)r1

2

)∣

∣

∣

∣

∣

r1=l0

. (13)

Using a geometrical argument it can be shown that (rx
1ry

1)2 + (rx
2ry

2)2 + (rx
2 − rx

1 )2(ry
2 − ry

1)2 = 2A2
0.

Equations (12) and (13) allow us to derive the linear shear modulus of the network given in the paper.
The linear-elastic area-compression modulus K is calculated from a small area expansion with the re-

sulting in-plane pressure given by

P = −1

2
(τxx + τyy) =

3lf(l)

4A
+

(ka + kd)(A0 − A)

A0
. (14)

With the compression modulus K defined as

K = − ∂P

∂ log (A)

∣

∣

∣

∣

A=A0

= − 1

2

∂P

∂ log (l)

∣

∣

∣

∣

l=l0

= − 1

2

∂P

∂ log (x)

∣

∣

∣

∣

x=x0

, (15)

we use equations (14) and (15) to derive the linear area-compression modulus shown in the paper.
The area-compression modulus is much larger than the shear modulus for a nearly area-incompressible

material. The Young’s modulus Y of the two-dimensional sheet can be found as follows

Y =
4Kµ0

K + µ0
, Y → 4µ0, if K → ∞, (16)

with the Poisson’s ratio ν given by

ν =
K − µ0

K + µ0
, ν → 1, if K → ∞. (17)

In order to satisfy the area-incompressibility assumption we have set ka + kd À µ0, while in practice,
the values of µ0 = 100 and ka + kd = 5000 are used, that provide nearly area-incompressible membrane
with Young’s modulus about 2% smaller than its asymptotic value of 4µ0. The analytical expressions were
verified through a number of numerical tests using a regular two-dimensional sheet of springs. Note the
two-dimensional sheet is isotropic for shear and stretching linear-deformations, while anisotropy is found at
large deformations.

Membrane bending rigidity

In this section we discuss the correspondence of our bending model to the macroscopic model of Helfrich
(10) given by

E =
kc

2

∫

A
(C1 + C2 − 2C0)

2dA + kg

∫

A
C1C2dA, (18)

where C1 and C2 are the local principal curvatures, C0 is the spontaneous curvature, and kc and kg are the
bending rigidities.

We base the derivation on the spherical shell. Figure 3 shows two equilateral triangles with sides a,
whose vertices rest on the surface of a sphere of radius R. The angle between their normals n1 and n2 is
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Figure 3: Two equilateral triangles placed on the surface of a sphere of radius R.

equal to θ. For the spherical shell we can derive from equation (18) E = 8πkc(1 − C0/C1)
2 + 4πkg =

8πkc(1 − R/R0)
2 + 4πkg, where C1 = C2 = 1/R and C0 = 1/R0. For the triangulated sphere we have

Et = Nskb[1−cos(θ−θ0)] in the defined notations. We expand cos(θ−θ0) in Taylor series around (θ−θ0)
to obtain Et = Nskb(θ − θ0)

2/2 + O((θ − θ0)
4). From figure 3 we find that 2r ≈ θR or θ = a√

3R
, and

analogously θ0 = a√
3R0

. Furthermore, Asphere = 4πR2 ≈ NtA0 =
√

3Nta2

4 = Nsa2

2
√

3
, and thus a2/R2 =

8π
√

3/Ns. Finally, we obtain Et = Nskb(
a√
3R

− a√
3R0

)2/2 = Nskba
2

6R2 (1 − R/R0)
2 = 8πkb

2
√

3
(1 − R/R0)

2.
Equating the macroscopic bending energy E for kg = −4kc/3, C0 = 0 (11) and Et gives us the relation
kb = 2kc/

√
3 in agreement with the continuum limit in (11). The spontaneous angle θ0 is set according

to the total number of vertices Nv on the sphere. It can be shown that cos (θ) = 1 − 1
6(R2/a2−1/4)

=

(
√

3Ns − 10π)/(
√

3Ns − 6π), while Ns = 2Nv − 4. The corresponding bending stiffness kb and the
spontaneous angle θ0 are then given by

kb =
2√
3
kc, θ0 = cos−1

(√
3(Nv − 2) − 5π√
3(Nv − 2) − 3π

)

. (19)

RBC-solvent boundary conditions

The RBC membrane encloses a volume of fluid and is itself suspended in a solvent. In particle methods, such
as DPD, fluids are represented as a collection of interacting particles. Thus, in order to impose appropriate
boundary conditions (BCs) between the membrane and the external/internal fluids two matters need to be
addressed:

i) enforcement of membrane impenetrability to prevent mixing of the inner and the outer fluids,

ii) no-slip BCs imposed through pairwise point interactions between the fluid particles and the membrane
vertices.

Membrane impenetrability is enforced by imposing bounce-back reflection of fluid particles at the mov-
ing membrane triangular plaquettes. The bounce-back reflection enhances the no-slip boundary conditions
at the membrane surface as compared to specular reflection; however, it does not guarantee no-slip. Ad-
ditional dissipation enhancement between the fluid and the membrane is required to achieve no-slip at the
membrane boundary. For this purpose, the DPD dissipative force between fluid particles and membrane ver-
tices needs to be properly set based on the idealized case of linear shear flow over a flat plate. In continuum,
the total shear force exerted by the fluid on the area A is equal to Aηγ̇, where η is the fluid’s viscosity and γ̇
is the local wall shear-rate. In DPD, we distribute a number of particles on the wall to mimic the membrane
vertices. The force on a single wall particle exerted by the sheared fluid can be found as follows

Fv =

∫

Vh

ng(r)FDdV, (20)
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where FD is the DPD dissipative force (12) between fluid particles and membrane vertices, n is the fluid
number density, g(r) is the radial distribution function of fluid particles with respect to the wall particles,
and Vh is the half sphere volume of fluid above the wall. Here, the total shear force on the area A is
equal to NAFv, where NA is the number of wall particles enclosed by A. The equality of NAFv = Aηγ̇
results in an expression of the dissipative force coefficient in terms of the fluid density and viscosity, and
the wall density NA/A, while under the assumption of linear shear flow the shear rate γ̇ cancels out. This
formulation results in satisfaction of the no-slip BCs for the linear shear flow over a flat plate. It also serves
as an excellent approximation for no-slip at the membrane surface in spite of the assumptions made. Note
that in the absence of conservative interactions between fluid and wall particles g(r) = 1.

System sizes and computer times

The developed parallel code is based on LAMMPS Molecular Dynamics Simulator (13) distributed by
Sandia National Laboratories as an open source code under the terms of the GPL license. The DPD code
was built up on top of LAMMPS. Table 1 shows examples of system sizes and computer times. The system

simulation system size (particles) processors timesteps computational time (s)

TTC 3587 4 500000 3623

Thermal fluctuations 3500 4 1000000 7112

Couette flow 24500 16 1050000 12254

Poiseuille flow 6587 8 500000 3412

Table 1: System sizes and computer times.

size corresponds to the total number of particles N including RBC vertices and those representing the
internal/external fluids. The computational time scales linearly with N .
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