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Section 1. Dose–Response Curve for Multiple Reactions
Consider the sequence of reactions given by

Rþ S↔RS

RSþD↔RSD:

The concentration equations for RS and RSD are [RS] = q1[R]
[S] and [RSD] = q2[RS][D], whereas the mass-conservation
equations are [R] + [RS] + [RSD] = RT and [D] + [RSD] = DT.
Combining these equations results in a quadratic (nonlinear)
equation in [RSD]:

q1q2½S�½RSD�2 − ð1þ q1ð1þ q2ðRT þDTÞÞ½S�Þ½RSD�
þ q1q2RTDT ½S� ¼ 0;

[S1.1]

which can be solved to obtain

½RSD� ¼

1þ q1ð1þ q2ðRT þDTÞÞ½S�
−
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T ½S�2
q
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and where the correct root is chosen such that [RSD] is zero when
[S] is zero. Thus, [RSD] does not have a first-order Hill dose–
response curve (FHDC). We can demonstrate that [RSD] does
not even mimic an FHDC by calculating the fold change between
10 and 90% of maximal [RSD]. For an FHDC, this value is 81.
We first define new parameters, so we can rewrite Eq. S1.1 as

a½S�½RSD�2 − ð1þ b½S�Þ½RSD� þ c½S� ¼ 0: [S1.2]

Define Sp to be the amount of steroid that induces pYmax,
where p is a fraction and the maximal induction Ymax is the
solution of the critical-point equation aY 2

max − bYmax þ c ¼ 0.
Hence, 0 ≤ Ymax ≤ b=2a. Solving Eq. S1.2 for [S] gives

½S� ¼ ½RSD�
a½RSD�2 − b½RSD� þ c

: [S1.3]

Substituting in [RSD] = pYmax and c ¼ − aY 2
max þ bYmax in Eq.

S1.3 yields

Sp ¼ p
ðp2 − 1ÞaYmax þ ð1− pÞb:

The p to 1 − p fold change is then

S1− p

Sp
¼
�
1− p
p

�2b− ð1þ pÞaYmax

b− ð2− pÞaYmax
:

Hence, the 10–90% fold change is given by 81(1 − 1.1z)/(1 −
1.9z), where z ¼ aYmax=b and 0 ≤ z ≤ 0:5. The fold change is an
increasing function of Ymax and is not FHDC except when Ymax is
small, which is also where the quadratic term in Eq. S1.1 is small.
This proof can be generalized to an arbitrary number of re-
actions. Dropping the quadratic term in Eq. S1.1 results in an
equation that is bilinear in [S] and [RSD], in which case [RSD]
has an FHDC.
Consider now a third reaction, RSDþ U⇔ RSDU. There is

now an additional concentration equation ½RSDU� ¼ q3½RSD�½U�,
and the conservation equations become ½R� þ ½RS� þ ½RSD�þ
½RSDU�¼ RT , ½D� þ ½RSD� þ ½RSDU� ¼ DT , and ½U� þ ½RSDU� ¼

UT . To derive an equation for [RSDU] in terms of [S], we elimi-
nate the other variables recursively. We first combine [RSD] =
[RSDU]/q3[U] with ½U� ¼ ½RSDU�−UT to obtain [RSD] =
[RSDU]/q3(U

T − [RSDU]). Similarly, we use this result and the
other equations to obtain

½RS� ¼ ½RSDU�
q2q3ðDT − ½RSDU�ÞðUT − ½RSDU�Þ− ½RSDU�

and

½R� ¼ ½RSDU�
q1ðq2q3ðDT − ½RSDU�ÞðUT − ½RSDU�Þ− ½RSDU�Þ½S�:

Substituting into ½R� þ ½RS� þ ½RSD� þ ½RSDU� ¼ RT then gives a
quartic equation in [RSDU], which does not yield an FHDC.

Section 2. Derivation of the FHDC for the General Theory
For reactions obeying the concentration equations and con-
servation Eq. 3 in the main text, the equations can be solved in
pairs so that each product is a first-order Hill function of the
previous product, that is,

½Yi�ð½Yi− 1�Þ ¼ vi½Yi− 1�
1þ wi½Yi− 1�; [S2.1]

where vi and wi have explicit formulas listed in Table 1 in the
main text and have different forms depending on location with
respect to the concentration-limiting step (CLS). We can then
compose these first-order Hill functions (i.e., substitute one
function into another) to obtain any downstream product as a
function of any upstream product.
The calculation is simplified by the observation that the first-

order Hill function is in the family of fractional linear or Möbius
transformations and forms a group under function composition,
which can be represented by matrix multiplication of 2-by-2
matrices. Consider a set of fractional linear functions written in
the form of Eq. S2.1, and we want to compute the composition of
two functions ½Y2�ð½Y1�ð½Y0�ÞÞ to obtain ½Y2� as a function of ½Y0�.
The coefficients of each function are entered as elements of a

matrix ½Yi� ⇒
�

vi 0
wi 1

�
. Then ½Y2�ð½Y1�ð½Y0�ÞÞ is given by a mul-

tiplication of the matrices representing ½Y2� and ½Y1�, that is,�
v2 0
w2 1

��
v1 0
w1 1

�
¼
�

v2v1 0
w2v1 þ w1 1

�
, from which the com-

posed function can be reconstructed to obtain ½Y2�ð½Y1�ð½Y0�ÞÞ ¼
v2v1½Y0�

1þ ðw2v1 þ w1Þ½Y0�. Using this matrix representation, we can

easily calculate any product [Ym] as a fractional linear (first-order
Hill) function of any previous product [Yb−1] (b ≤ m) and obtain

½Ym�ð½Yb− 1�Þ ¼
Vm
b ½Yb− 1�

1þWm
b ½Yb− 1�; [S2.2]

where Vm
b ¼ ∏m

i¼b vi, W
m
b ¼ ∑m

i¼b wi ∏i− 1
j¼b vj; with the convention

∏n
i¼a xi ¼ 1 if n< a and Wm

b ¼ Wcls
b , for m ≥ cls. As is evident

from comparison with Eq. 1 of the main text, Amax = Vb
m/Wb

m

and EC50 = 1/Wb
m. For steps m ≥ cls, the denominators of all

products [Ym] are the same, so the sum of any number of
products [Ycls] to [Yn] will maintain FHDC form. Thus, we can
express the activity of the final protein product as
A ¼ ∑n

m¼cls am½Ym�, where am are positive constants. Noting that
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for m ≥ cls, ½Ym� ¼ Vm
cls½Ycls�, using Eq. S2.2 we can rewrite the

final gene activity as

A ¼ Γ½Ycls� ¼ ΓVcls
b ½Yb− 1�

1þWcls
b ½Yb− 1�

; [S2.3]

where Γ ¼ ∑n
k¼cls ak− clsV k

clsþ1.

Section 3. Inhibition
Consider the general reaction scheme for an inhibitor Ii acting on
an activator Xi.

The mass-conservation law is

½Xi� þ εi½Y ∗
i � þ ½X ′

i� þ ½Y ′
i � ¼ XT

i

and the concentration equations are [1, 2]

½Y ′
i � ¼ αq′i½Ii�½Y ∗

i �
½Y ∗

i � ¼ qi½Yi− 1�½Xi�
½X ′

i � ¼ γq′i½Ii�½Xi�:
Substituting the individual equilibrium conditions back into the
mass-conservation equation gives ½Xi� þ εiqi½Yi− 1�½Xi� þ γq′i½Ii�½Xi�þ
αqiq′i½Ii�½Yi− 1�½Xi� ¼ XT

i , which can be solved for ½Xi� and then
substituted back into the concentration equation for ½Y ∗

i � to yield

½Y ∗
i � ¼

qiXT
i ½Yi− 1�

1þ γq′i½Ii� þ qiðεi þ αq′i½Ii�Þ½Yi− 1�:

The two products ½Y ∗
i � and ½Y ′

i � can then be summed via
½Yi� ¼ ½Y ∗

i � þ β½Y ′
i � to obtain a final expression of

½Yi� ¼ qiXT
i ð1þ αβq′i½Ii�Þ½Yi− 1�

1þ γq′i½Ii� þ qiðεi þ αq′i½Ii�Þ½Yi− 1� ≡
S½Yi− 1�

U þ T½Yi− 1�: [S3.1]

If the inhibitor acts at or after the CLS of a reaction sequence,
then the equations are modified. If the inhibitor acts at the CLS
(i ¼ cls), then the mass-conservation equation becomes ½Xcls�þ
εcls½Y ∗

cls� þ ½X ′
cls� þ ½Y ′

cls� þ∑n
k¼clsþ1 εk½Yk� ¼ XT

cls, leading to Eq.

S3.1 but with T ¼ qcls
�
∑n

k¼clsεk∏
k
j¼clsþ1vj þ αq′cls½Icls�

�
. If the in-

hibitor acts after the CLS, then the mass-conservation equation
is ½Xi� þ ½X ′

i � ¼ XT
i , which implies only linear competitive in-

hibition can occur leading to Eq. S3.1 with αi ¼ 0, βi ¼ 0, and
εi ¼ 0. ½Yi� can be put into the standard form of
½Yi� ¼ vi½Yi− 1�=ð1þ wi½Yi− 1�Þ by setting vi ¼ S=U and wi ¼ T=U,
giving (i) vi ¼ qiXT

i ð1þ αβq′i½I�Þ=ð1þ γq′i½I�Þ and wi ¼ qi
ðεi þ αq′i½I�Þ=ð1þ γq′i½I�Þ if 0< i< cls, (ii) vi is the same as (i) but

wi ¼ qi
�
∑n

k¼iεk∏
k
j¼iþ1qjX

T
j þ αq′i½I�

�
=
�
1þ γq′i½I�

�
if i ¼ cls, and

(iii) vi ¼ qiXT
i =ð1þ γq′i½I�Þ and wi ¼ 0 [i.e., same as (i) with

αi ¼ 0, βi ¼ 0, εi ¼ 0], if i> cls. These results are summarized in
Table 1 of the main text.

Section 4. Isolating Total Concentration of Cofactors in the
Product Function
Here we show how the model form can be explicitly constructed
for an arbitrary number of factors to be visible with effective

parameters, which can then be compared to data. We show
examples for two activators and for an inhibitor and an activator.
From main-text Eq. 4, the general form for the final product is

½P� ¼ Γ½Ycls� ¼ ΓVcls
1 ½Y0�

1þWcls
1 ½Y0�

;

where Γ ¼ ∑n
k¼cls ak− cls V k

clsþ1, V
m
b ¼ ∏m

i¼bvi, W
m
b ¼ ∑m

i¼bwiV i− 1
b ,

and vi and wi differ depending on position with respect to the
CLS and type of factor (see Table 1 of the main text). Now
suppose we have two activators and the first activator acts before
the CLS at step i and the second acts at step j, which can be
before, at, or after the CLS. We want to make the total con-
centrations XT

i and XT
j visible in the final product. We do so by

isolating factors of vi and vj, and wcls ¼ qcls∑n
k¼clsεk∏

k
j¼clsþ1vj. For

the case i< j< cls, we can rewrite Vcls
1 ¼ V i− 1

1 viV
j− 1
iþ1 vjV

cls
jþ1 ¼

qiqjV
j− 1
iþ1 V

cls
jþ1X

T
i X

T
j . Using the decomposition rule Wb

a ¼ Wc
aþ

Vc
aW

b
cþ1, we obtain

Wcls
1 ¼ Wi

1 þ V i
1W

cls
iþ1

¼ Wi
1 þ V i

1

�
Wj

iþ1 þ V j
iþ1W

cls
jþ1

�
¼ Wi

1 þ viV i− 1
1

�
Wj

iþ1 þ vjV
j− 1
iþ1 W

cls
jþ1

�
¼ Wi

1 þ qiXT
i V

i− 1
1

�
Wj

iþ1 þ qjXT
j V

j− 1
iþ1 W

cls
jþ1

�
:

Thus, we can write

½P� ¼ ðC1 þ C2XT
j ÞXT

i ½Y0�
1þ ðC3 þ C4XT

i þ C5XT
i X

T
j Þ½Y0�

; [S4.1]

where C1 ¼ 0, C2 ¼ ΓqiqjV i− 1
i V j− 1

iþ1 V
cls
jþ1, C3 ¼ Wi

1, C4 ¼ qiV i− 1
1

Wj
iþ1, and C5 ¼ qiqj V i− 1

1 Vj− 1
iþ1 Wcls

jþ1 are effective parameters.
Eq. S4.1 gives the final product concentration as a function of
the total concentrations of the factors XT

i and XT
j . However, a

given factor may have an endogenous component and an added
exogenous component. If we are interested in obtaining the
dependence of the final product on the added exogenous com-
ponent only, then we divide the total concentration into two
pieces. For example, supposeXT

j is composed of an endogenous
part XT;e

j and an added exogenous part XT;a
j . If we are interested

in how [P] changes in response to the added part, then we can write
XT
j ¼ XT;e

j þ XT;a
j and redefine the parameters to absorb XT;e

j .

Doing so results in Eq. S4.1 but with C1 ¼ ΓqiqjV i− 1
i V j− 1

iþ1

Vcls
jþ1X

T;e
j , C4¼ qiV i− 1

1 Wj
iþ1þ qiqjV i− 1

1 V j− 1
iþ1 W

cls
jþ1X

T;e
j . Eq. S4.1 is

Eq. 5 in the main text withRT ¼ XT
i and UT ¼ XT;a

j .
For the case i< j ¼ cls, everything is the same as before except

that Wcls
1 ¼ Wi

1 þ qiXT
i V

i− 1
1 Wcls

iþ1, giving C3 ¼ Wi
1 and C5 ¼ 0.

Finally, for the case i< cls< j, Γ ¼ ∑j− 1
k¼clsak− clsV k

clsþ1 þ qjXT
j

V j− 1
clsþ1∑

n
k¼jak− clsV k

jþ1 and

Wcls
1 ¼ Wcls− 1

1 þ wclsV cls− 1
1

¼ Wi
1 þ qiXT

i V
i− 1
1 Wcls− 1

iþ1 þ qiXT
i V

i− 1
1 Vcls− 1

iþ1 wcls

¼ Wi
1 þ qiXT

i V
i− 1
1 Wcls− 1

iþ1 þ qiεclsXT
i V

i− 1
1 Vcls− 1

iþ1

3
�
∑j− 1

k¼clsεkV
k
clsþ1 þ∑n

k¼jεkV
k
jþ1qjX

T
j V

j− 1
clsþ1

�
¼ Wi

1 þ qiXT
i V

i− 1
1 Wcls− 1

iþ1 þ qiqclsXT
i V

i− 1
1 Vcls− 1

iþ1

3∑j− 1
k¼clsεkV

k
clsþ1 þ qiqclsXT

i V
i− 1
1 Vcls− 1

iþ1 qjXT
j V

j− 1
cls ∑n

k¼jεkV
k
jþ1

leading to C1 ¼ qiV i− 1
i V cls

iþ1∑
j− 1
k¼clsak− clsV k

clsþ1, C2 ¼ qiV i− 1
1 Vcls

i

qjV
j− 1
clsþ1∑

n
k¼jak− clsV k

jþ1, C3 ¼ Wi
1, C4 ¼ qiV i− 1

1 Wcls− 1
iþ1 þ qiV i− 1

1
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Vcls− 1
iþ1 ∑j− 1

k¼clsεkV
k
clsþ1, and C5 ¼ qiqjV i− 1

1 Vcls− 1
iþ1 V j− 1

clsþ1∑
n
k¼jεkVk

jþ1.
The results for the three cases are summarized in Table S1.
Now, consider the action of an activator and inhibitor at step i.

In this case, the activator and inhibitor could both act at the
same step or at different steps. First consider the case where
i< cls. Again we decompose

Vcls
1 ¼ V i− 1

1 viV cls
iþ1 ¼ V i− 1

1 Vcls
iþ1

qiXT
i ð1þ αiβiq′i½Ii�Þ
1þ γiq′i½Ii�

and

Wcls
1 ¼ Wi− 1

1 þ Vi− 1
1 Wcls

i

¼ Wi− 1
1 þ Vi− 1

1 ðwi þ viWcls
iþ1Þ

¼ Wi− 1
1 þ Vi− 1

1

�
qiðεi þ αiq′i½Ii�Þ
1þ γiq′i½Ii�

þ qiXT
i ð1þ αiβiq′i½Ii�Þ
1þ γiq′i½Ii�

Wcls
iþ1

�

to obtain the final product

½P� ¼ ðD0ð1þ q′iγi½Ii�Þ þD1XT
i ð1þ q′iαiβi½Ii�ÞÞ½Y0�

1þ q′iγ½Ii� þ ðD2ð1þ q′iγi½Ii�Þ
þD3ðD4 þ q′iαi½Ii�Þ þD5XT

i ð1þ q′iαiβi½Ii�ÞÞ½Y0�

; [S4.2]

where D0 ¼ 0, D1 ¼ ΓVcls
iþ1qiV

i− 1
1 , D2 ¼ Wi− 1

1 , D3 ¼ qiV i− 1
1 ,

D4 ¼ εi, and D5 ¼ qiV i− 1
1 Wcls

iþ1. If necessary, we can break XT
i

into an endogenous and an exogenous part and then redefine the
parameters as before. For the case i ¼ cls,

Wcls
1 ¼ Wcls− 1

1 þ Vcls− 1
1

 
qcls
�
∑n

k¼clsεkVk
clsþ1 þ αiq′cls½Ii�

�
1þ γiq′i½Ii�

!

so that the D parameters are the same as for i< cls except
D4 ¼ ∑n

k¼clsεkVk
clsþ1 and D5 ¼ 0. Finally, for i ¼ j> cls, we have

Γ ¼ Vcls
1 ∑

i− 1

k¼clsþ1
ak− clsV k

clsþ1 þ qiV i− 1
1 ∑

n

k¼i
ak− clsV k

iþ1
XT
i

1þ γiq′i½Ii�
and

Wcls
1 ¼ Wcls− 1

1

þ Vcls− 1
1

�qcls ∑
i− 1

k¼cls
εkVk

clsþ1 þ qclsqiV i− 1
clsþ1 ∑

n

k¼i
εkVk

iþ1X
T
i

1þ γiq′i½Ii�
�
;

which leads to D0 ¼ Vcls
1 ∑i− 1

k¼clsþ1 ak− clsV k
clsþ1, D1 ¼ qiV i− 1

1

∑n
k¼i ak− clsV k

iþ1, D2 ¼ Wcls− 1
1 þ qclsV cls− 1

1 ∑i− 1
k¼cls εkVk

clsþ1, D3 ¼ 0,
D4 ¼ 0, D5 ¼ qclsqiV cls− 1

1 Vi− 1
clsþ1 ∑

n
k¼i εkVk

iþ1, and αi ¼ 0. The pa-
rameters are summarized in Table S1.

Section 5. Influence of Factors on EC50 and Amax

From Eq. S4.2, we find that

Amax ¼ D0ð1þ q′γ½I�Þ þD1XTð1þ q′αβ½I�Þ
D2ð1þ q′γ½I�Þ þD3ðD4 þ q′α½I�Þ þD5XTð1þ q′αβ½I�Þ

and

EC50 ¼ 1þ q′iγ½I�
D2ð1þ q′γ½I�Þ þD3ðD4 þ q′α½I�Þ þD5XTð1þ q′αβ½I�Þ;

where the D parameters are listed in Table S1 and we have
dropped the index subscript. We can consider how the activator
XTor inhibitor ½I� affects Amax and EC50 individually. The
derivative of Amax and EC50 with respect to XT while fixing
½I� ¼ 0 is

∂Amax

∂XT ¼ D1D2 −D0D5

ðD2 þD5XTÞ2 [S5.1]

∂EC50

∂XT ¼ −D5

ðD2 þD5XTÞ2 [S5.2]

and the derivative of Amax and EC50 with respect to ½I� while
fixing XT ¼ 1 is

∂Amax

∂½I� ¼ N½D0ððD3D4 þD5Þγ− ðD3αþD5αβÞÞ
þ D1ðD2αβ− ðD2γþD3αÞÞ� [S5.3]

∂EC50

∂½I� ¼ N½ðD3D4 þ D5Þγ− ðD3αþD5αβÞ�; [S5.4]

where N¼ q′=ðD2ð1þ q′γ½I�ÞþD3ðD4þ q′α½I�ÞþD5ð1þq′αβ½I�ÞÞ2.
Although the parameters are composed of an unknown number
of constants associated with the reactions, they can be estimated
directly from the data as shown in SI Section 6 below. If the
derivatives are positive, negative, or zero, then the respective
quantity increases, decreases, or does not change. The values of
the parameters will then determine the sign of the derivative.
However, some predictions about the mechanisms and location
of a cofactor with respect to the CLS can be made based on how
Amax and EC50 move with the addition of the cofactor.
Eq. S5.1 shows that Amax will increase with the addition of an

activator if D1D2 −D0D5 > 0. This is satisfied if D0 = 0 or is
small, which can hold if the activator acts before or at the CLS or
the endogenous level of the activator is low. Amax will increase
very minimally (i.e., not change) if D1 << D2 and D0 = 0. This
could occur if there are reactions downstream of the activator
that are much “slower” (i.e., association constants and/or total
factor concentrations are much smaller). If the activator acts
after the CLS, then Amax can move in any direction depending
on the sign of D1D2 −D0D5. From Table S1, we see that the
magnitude of D1 is controlled by products downstream of the
activator and D0 by those upstream. Thus, Amax can decrease if
the downstream reactions contribute less to the final product
than upstream reactions (i.e., are slower) and vice versa. Amax
does not change if the two contributions balance each other,
although this would require fine-tuning and thus be unlikely. In
summary, an activator will generally increase Amax. However, if
there are slow reactions downstream of the activator, then Amax
can decrease. The interesting point is that there are situations
where Amax can decrease with the addition of an activator.
For an activator, Eq. S5.2 shows that EC50 always decreases

unless D5 = 0 or if D5 < <D2. From Table S1 we see that D5 =
0 if an activator acts at the CLS. The inequality D5 < <D2 could
be satisfied if there are reactions following the activator that
are slower. Hence, EC50 generally decreases if an activator
acts before or after the CLS but could possibly change very
slowly and appear not to change. If the activator acts at the
CLS then EC50 will not change. Hence, an activator cannot
increase EC50.
From Eqs. S5.3 and S5.4, we see that determining the action

of an inhibitor is less straightforward. However, we can still make
some general statements if we consider the actions of different
types of inhibition (i.e., competitive, uncompetitive, non-
competitive, linear, partial) acting before, at, or after the CLS. If
the inhibitor acts before or at the CLS, then D0 ¼ 0 and Amax
decreases for competitive (α ¼ 0) or linear inhibition (β ¼ 0). If
the inhibitor acts after the CLS, then there can only be competitive
inhibition (α ¼ 0), which means ∂ Amax=∂½I� ¼ Nγ ½D0D5 −D1D2�.
Thus, Amax can increase if the downstream reactions contribute
less to the final product than upstream ones and vice versa, and
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does not change when the two are balanced. Amax can also not
change very much for a competitive or linear inhibitor if D1 < <
D′

2. EC50 does not change (increases weakly, while Amax decreases)
if the inhibitor acts after the CLS and D2 > >D3D4 þD5, which is
possible if there are downstream reactions that are slower.
From Eq. S5.4, we see that EC50 decreases for uncompetitive

inhibition (γ ¼ 0) and increases for competitive inhibition
(α ¼ 0). EC50 does not change for a partial noncompetitive in-
hibitor acting before the CLS (D0 = 0, D4 ¼ 1, α ¼ γ, β ¼ 1).
These behaviors can still hold if the inhibition is mixed but close
to these special cases. Thus, for inhibition, it is possible for Amax
and EC50 to both move in any direction.
From these conditions, we can make some predictions of the

actions of cofactors listed in Table 2 of themain text.We note that
these predicted mechanisms are not exclusive. For specificity and
brevity, we assumed the simplest possibility in Table 2. More
precise predictions can only be made if the D parameters are
estimated from the data.

Section 6. Model Fit to Data and Parameter Estimates for
Ubc9 and Glucocorticoid Receptor
We fit the model for two activators [glucocorticoid receptor
(RT) and Ubc9 (UT)] and steroid (ST) (dexamethasone) given by
Eq. 5 of main text and Eq. S4.1 to experimental data. The da-
taset consisted of luciferase activity as a function of ST, RT, and
UT. In all there were 60 data points taken each in triplicate (see
SI Section 8). The actual form of the model used for the fits was

A ¼ αK1K2DTRTðK3 þ K4UTÞ  ST
1þ K1ð1þ K2RTð1þ K3 þ K4UTÞÞST ;

where A is the luciferase activity, and the concentrations of
ST, RT, and UT are nanomolar. We then fit to the K parameters
and α. DT was an extraneous free parameter that was fixed to
an arbitrary number. The proportionality constant α represents
the luminosity per mole of output protein luciferase and the
proportionality constant of luciferase to the amount of final
complex. This form is just a reparameterization of Eq. 5 in the
main text.
The experiments use plasmids for glucocorticoid receptor (GR)

and Ubc9. To fit the model to the data, we assumed that the
amount of protein expressed is proportional to the amount of
plasmids added. The actual proportionality constant is not
important for the fits, but for convenience we estimated the
concentrations of protein expressed based on the amount of
added plasmids. Assuming 660 g/mol per base pair, a well volume
of 0.00033 L, and 6800 bp per pSG5/GR plasmid and 5163 bp/
Ubc9 plasmid, we calculated the concentration of plasmid (nM)
from the mass in ng of plasmid added. We assumed that the
concentration of the actual number of proteins translated is
directly proportional to the concentration of the plasmid. From
these estimates, we equated 0.1, 2, 10, and 25 ng of GR plasmid
with 6.75E-5, 0.00135, 0.00675, and 0.0169 nM GR, and 135 and
175 ng of Ubc9 plasmid with 0.12 and 0.16 nM. Again, these
values are not important for the model fits. They only change the
scale of the parameters. The only assumption that is important is
that the amount of plasmid added is proportional to the amount
of protein expressed in the cells.
The data were fit using a Bayesian Markov-chain Monte Carlo

method, specifically a variant of the Metropolis–Hastings algo-
rithm with parallel tempering [3]. Initial priors for the parame-
ters {K1, K2, K3, K4, α, DT} were {0.04285, 1335, 0.346736, 3.549,
101,084, 0.080007} and bounded to the range {{0, 100}, {0, ∞},
{0, ∞}, {0, ∞}, {0, ∞}, {0, 0.080007}} with guess ranges of {1,
10, 30, 30, 100,000, 0.080007}. The upper bound of DT was de-
termined from the concentration of luciferase plasmid and was
forced to be below that value. These guess ranges were determined
empirically by trial and error to give a reasonable acceptance rate

of the algorithm. The parallel tempering was run at different
inverse “temperatures” (β) of 0.00001, 0.001, 0.1, 0.4, 0.7, and 1.
The Monte Carlo algorithm was run for 100,000 iterations at
each value of β and the first half of the results was discarded,
resulting in 77.2%, 75.4%, 18.2%, 16.2%, 15.9%, and 15.6%
acceptance rates, respectively. χ2 values at each β were calcu-
lated using the second half of the trial fits (i.e., the last 50,000
values) to allow the transients to decay. The log likelihood
versus β was integrated to obtain the true χ2 of −2066.27 for
this model. The resulting equations for the maximum-likelihood
parameters (lowest χ2) are shown in Fig. 2 of the main text.
The maximum-likelihood parameters had a χ2 value of 1741.36
with parameter values {0.0390839, 1484.67, 0.376871, 4.45226,
183930, 0.0414917}. The posterior statistics of the parameters
are in Table S2.
By the telescoping property of the FHDC, the predicted

luciferase activity for Ubc9 acting after the CLS is consistent with
either a “hit-and-run” scheme

Sþ R ⇔ RS

RSþD ⇔ RSþD′

D′ þ U ⇔ D∗ þ U

A ¼ α½D′� þ β½D∗�
or a complex-forming scheme under the concentration-limiting
conditions predicted by Eq. 3 of the main text,

Sþ R ⇔ RS

RSþD ⇔ RSD

RSDþ U ⇔ RSDU

A ¼ α½RSD� þ β½RSDU�;

where U is Ubc9 and D is an unspecified cofactor acting at the
CLS. As an independent test, we also fit the prediction generated
by the complex-forming scheme (i.e., not necessarily obeying
the conservation equations that preserve FHDC), which requires
the solution of a nonlinear equation in [RSD] and [RSDU]. We
found that this scheme could fit the data only if the parameters
have values such that the conservation equation has the form
of Eq. 3 for which the activity is the same as for the hit-and-
run scheme (i.e., Eq. 5 in the main text), thus validating the
uniqueness of the model.

Section 7. GR Dimerization and FHDC
We show that GR dimerization cannot be necessary for steroid-
induced gene induction to have an FHDC. Consider the first four
reactions of a reaction sequence that includes dimerization

Y0 þ X1 ⇔ Y1
Y1 þ Y1 ⇔ Y1D
Y1 þ X2 ⇔ Y ∗

2
Y1D þ X2 ⇔ Y ′

2

and Y ∗
2 and Y ′

2 both enter subsequent reactions. The concen-
tration equations for the first two reactions are

½Y1� ¼ q1½X1�½Y0�
½Y1D� ¼ q1D½Y1�2

and the conservation equation is

½X1� þ ½Y1� þ 2½Y1D� ¼ XT
1 :

Substituting for ½Y1� and ½Y1D� from the concentration equations
into the conservation equation leads to
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½X1� þ q1½X1�½Y0� þ 2q1Dq21½X1�2½Y0�2 ¼ XT
1 :

This quadratic equation can be solved to yield ½X1� ¼
− ð1þq1½Y0 �Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þq1 ½Y0 �Þ2þ8q1Dq21½Y0�2XT

1

p
4q1Dq21½Y0�2 ,

which gives ½X1�≈XT
1 =1þ q1½Y0� if 8q1Dq21½Y0�2XT

1
< < ð1þ q1½Y0�Þ2 leading to

½Y1�≈ q1XT
1 ½Y0�

1þ q1½Y0�; ½Y1D�≈q1D
�
q1XT

1 ½Y0�
1þ q1½Y0�

�2
;

and so ½Y1D� is not a first-order Hill function. Now, consider the
downstream reactions Y1 þ X2 ⇔ Y ∗

2 and Y1D þ X2 ⇔ Y ′
2 with

concentration equations

½Y ∗
2 � ¼ q∗2½X2�½Y1�

½Y ′
2� ¼ q′2½X2�½Y1D�

and conservation equation ½X2� þ ½Y ′
2� þ ½Y ∗

2 � ¼ XT
2 . Substituting

for ½Y ∗
2 � and ½Y ′

2� from the concentration equations into the mass-
conservation equations gives ½X2� þ q2½X2�½Y1� þ q∗2 ½X2�½Y1D� ¼
XT
2 , which can be solved for [X2] and substituted back into the

concentration equations for ½Y ∗
2 � and ½Y ′

2�. If we assume that
½Y2� ¼ a½Y ′

2� þ b½Y ∗
2 �, then

½Y2� ¼
�
aq∗2 ½Y1� þ bq′2½Y1D�

�
XT
2

1þ q∗2 ½Y1� þ q′2½Y1D�

¼ ðaq∗2q1XT
1 ½Y0�ð1þ q1½Y0�Þ þ bq1Dq′2q

2
1ðXT

1 Þ2½Y0�2ÞXT
2

ð1þ q1½Y0�Þ2 þ q∗2q1X
T
1 ½Y0�ð1þ q1½Y0�Þ þ q′2q1Dq

2
1ðXT

1 Þ2½Y0�2
;

from which we see that FHDC can occur with dimerization only if

aq∗2 > > bq1Dq′2q1X
T
1 ½Y0�

1þq1½Y0� .
This implies that either the dimer concentration or the

downstream effect of the dimer must be small.

Section 8. Experimental Procedures
Unless otherwise indicated, all operations were performed at 0 °C.

Chemicals. Dexamethasone (Dex) is from Sigma. The dual-luci-
ferase reporter assay is from Promega.

Plasmids.Rat GR (pSG5-GR), GREtkLUC, and TIF2/GRIP1 [4]
and pSG5/Ubc9 [5] have been described. Wild-type and mutant
rat GRs (A477T, R479D, and D481R in pCMV4 neo) were
generous gifts from David Pearce (University of California, San
Francisco, CA). The double mutant (rGRA477T/I646A) was
created by following the manufacturer’s protocol for the Stra-
tagene QuikChange II XL Site-Directed Mutagenesis Kit to in-
troduce a point mutation at amino acid 646 into rGR-A477T/
pCMVneo using the following primers (mutant nucleotides are
underlined): rGRI646A forward (5′-CTCTGCTTTGCTCCTG-
ATCTGGCTATTAATGAGCAGAGAATGTC-3′), rGRI646A
reverse (5′-GACATTCTCTGCTCATTAATAGCCAGATCA-
GGAGCAAAGCAGAG-3′). All mutations were verified by
sequencing of the entire receptor gene, during which it was
discovered that three receptors (A477T, R479D, and A477T/
I646A) contained 9 additional glutamine residues (for a total of
28) in the polyglutamine repeat starting at position 78. This is
not unusual, as polymorphisms of rat GR have been noted be-
fore and synthetic GRs with up to 80 glutamines in this region
have been found to display no marked differences in protein
expression, steroid binding, or transactivation [6–8]. A477T/
I646A without the additional 9 glutamine residues was prepared
by removing the LguI/BstXI fragment from the initially prepared
plasmid and inserting it into LguI/BstXI-digested pSG5/GR.
This construct was used in the experiments of Fig. 2 and Fig. S3.

Cell Culture, Transient Transfection, Reporter Analysis, and Western
Blotting. Triplicate samples of cells were transiently transfected,
assayed for luciferase activity, analyzed, and plotted as before, as
was western blotting [4, 9]. Best fits of the dose–response curves
(R2 almost always > 0.95) following first-order Hill plots were
obtained with KaleidaGraph (Synergy Software) unless other-
wise specified.
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Fig. S1. Different possible shapes of sigmoidal dose–response curves. Dose–response curves with different values of the Hill coefficient n are shown. The
dashed lines indicate the change in ligand concentration needed to produce the same response for curves with different values of n.
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Fig. S2. Examples of some possible steps in steroid hormone action that can result in an FHDC. For simplicity, not all currently proposed steps are shown and
no attempt has been made to identify which steps are reversible/cycling or irreversible, because all are allowed as long as the reactions reach a stationary or
steady state. The steroid (S) binds to receptor (R), which then binds to DNA. The bound RS-DNA complex must have a smaller average concentration than the RS
complex, or interact transiently. If a cofactor A binds to the RS-DNA complex, then it must also act transiently or its average concentration must be small
compared with the concentration of the bound RS-DNA complex. The bound RS-DNA-A complex can transition directly into another state G. State G can be
induced in a “hit-and-run” reaction by a cofactor B to transition into a state H. Some point in the reaction sequence could contain a CLS step. After the CLS, the
concentrations of the free cofactors are unperturbed by reactions. Each of the steps after the CLS can be combined to form the final mRNA product, which is
then translated into protein.

Fig. S3. Western blots of overexpressed GR mutant proteins in Cos-7 cells. Cell lysates were separated on 5–12% SDS/PAGE gels and visualized by western
blotting with anti-GR antibody (Affinity Bioreagents; PA1-512). The equal amounts of tubulin (anti-tubulin antibody; AbCam ab4071-100) indicate that equal
amounts of cell-lysate protein were used in each lane.
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Fig. S4. Modulatory activity of Ubc9 is maintained with dimerization-defective GR mutants. The induction properties with Dex of CV-1 cells transiently
transfected with GREtkLUC reporter and wild-type or single mutant GR (n = 3 for each panel) plasmids ± Ubc9 plasmid were determined as in Fig. 2. The
average values (±SEM) were plotted. *P < 0.05, **P ≤ 0.005, ***P ≤ 0.0005 versus no Ubc9.
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Table S1. Parameter values

Position Two activators Activator with inhibitor at same position (i ¼ j)

Before CLS i< cls C1 ¼ 0 or C1 ¼ ΓqiqjV i− 1
i V j− 1

iþ1 V
cls
jþ1X

T;e
j D0 ¼ 0,

C2 ¼ ΓqiqjV i− 1
i V j− 1

iþ1 V
cls
jþ1 D1 ¼ ΓVcls

iþ1qiV
i− 1
1

C3 ¼ Wi
1 D2 ¼ Wi− 1

1

C4 ¼ qiV i− 1
1 Wj

iþ1 or D3 ¼ qiV i− 1
1

C4 ¼ qiV i− 1
1 Wj

iþ1 þ qiqjV i− 1
1 V j− 1

iþ1 W
cls
jþ1X

T;e
j D4 ¼ εi

C5 ¼ qiqjV i− 1
1 Vj− 1

iþ1 W
cls
jþ1 D5 ¼ qiV i− 1

1 Wcls
iþ1

At CLS i ¼ cls Same as before CLS except Same as before CLS except
C3 ¼ Wi

1 D4 ¼ ∑n
k¼clsεkVk

clsþ1 and D5 ¼ 0

C5 ¼ 0
After CLS i> cls C1 ¼ qiV i− 1

i V cls
iþ1∑

j− 1
k¼clsak− clsV k

clsþ1 D0 ¼ Vcls
1 ∑i− 1

k¼clsþ1 ak− clsV k
clsþ1

C2 ¼ qiV i− 1
1 Vcls

i qjV
j− 1
clsþ1∑

n
k¼jak− clsV k

jþ1 D1 ¼ qiV i− 1
1 ∑n

k¼i ak− clsV k
iþ1

C3 ¼ Wi
1 D2 ¼ Wcls− 1

1 þ qclsV cls− 1
1 ∑i− 1

k¼cls εkVk
clsþ1

C4 ¼ qiV i− 1
1 Wcls− 1

iþ1 þ qiV i− 1
1 Vcls− 1

iþ1 ∑j− 1
k¼clsεkV

k
clsþ1 D3 ¼ 0

C5 ¼ qiqjV i− 1
1 Vcls− 1

iþ1 Vj− 1
clsþ1∑

n
k¼jεkVk

jþ1 D4 ¼ 0
D5 ¼ qclsqiV cls− 1

1 Vi− 1
clsþ1 ∑

n
k¼i εkV

k
iþ1 αi ¼ 0

Table S2. Posterior statistics of parameters

Parameter Mean Median SD Interquartile range Value Maximum-likelihood value

K1 0.041 0.040 0.001 0.00076 0.041 ± 0.001 0.039
K2 1435 1430 60 75.6 1440 ± 60 1485
K3 0.374 0.377 0.007 0.007 0.374 ± 0.007 0.377
K4 4.5 4.5 0.4 0.5 4.5 ± 0.4 4.5
α 150,807 160,449 35,508 64,995 150,000 ± 40,000 183,930
Dt 0.054 0.047 0.01 0.02 0.05 ± 0.01 0.041
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