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1 Fuzzy Identification of Molecular Subtypes

1.1 Mixture Modeling

In order to identify the molecular subtypes of BC tumors, we performed a clustering in a
two-dimensional space. The dimensions were defined by the ESR1 and ERBB2 module
scores [8]. These scores were scaled such that quantiles 2.5% and 97.5% equal to -1
and +1 respectively. This scaling was robust to outliers and ensured the module scores
to lie approximately in {—1,+1}, allowing for comparison between datasets using different
microarray technology and normalizatiorﬂ

We used a simple clustering model that is a mixture of Gaussians with equal variance
and shape. We selected the most likely number of clusters with respect to the Bayesian
information criterion (BIC) We applied a scaling procedure such that the BIC values for one
cluster and the maximum value is equal to 0 and 1 respectively. This allowed for comparison
of BIC estimates between different datasets.

We demonstrated that our clustering model was robust by validating it on 20 independent
datasets (see Supplementary Table 1). The probabilities for a given tumor to belong to each
subtype are given in Supplementary Table 2.

Note that an implementation of our method for breast cancer molecular subtype identifi-
cation is available form the R package genefu?]

Training set Once fitted on the training set (VDX), this model returns a set of probabilities
for a patient to belong to each cluster (called subtype).

As we can see in the figure below (left), the BIC estimates increased dramatically until
three clusters and reached a plateau afterwards. Therefore, we considered a mixture of
three Gaussians since this number of clusters was likely given the data. The scatterplot
in the figure below (right) illustrates the application of this model on the training set, each
subtype having a different color and symbol.

'As mentioned in the main text of the article, we applied the same scaling procedure to the subtype risk
scores.
®http://cran.r-project.org/web/packages/genefu/
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The following table gives the parameters of the clustering model (mixture of three Gaus-
sians with equal shape and variance) as fitted on the training set (VDX).

i ER-/HER2- HER2+ ER+/HER2-

ESR1 -0.77 0.09 0.59

ERBB2 -0.71 0.68 -0.26
Y x| 0.06 0.06 0.06

7 0.29 0.16 0.56

Independent datasets We applied this model on several independent datasets. Moreover
we fitted from scratch a clustering model for each these datasets as for the training set. This
allowed for computing the BIC as a function of the number of clusters on each independent
datasets to test the goodness of the selected number of clusters. Additionally, we assessed
the quality of clustering by computing the prediction strength.

The set of figures below show the identification of the ER-/HER2-, ER+/HER2- and
HER2+ molecular subtypes of tumors for each dataset separately. It is worth to note that
we were not able to identify the BC subtypes for some publicly available datasets because:
(i) the number of probes was not sufficient to compute the ESR1 and ERBB2 module scores;
(i) the BC population of patients was not representative of a global population of breast can-
cer patients, introducing a bias in the scaling of the ESR1 and ERBB2 module scores (e.g.
ER-positive BC cohort).
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We computed the average of scaled BIC with respect to the number clusters considered
in the Gaussian mixture model-based clustering. As sketched by the figure below, we ob-
served that three was the most likely number of clusters, supporting our choice made on the
training set.
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The table below reports the prediction strength of the clustering model with respect to
the breast cancer molecular subtypes, in the 20 independent public breast cancer microar-
ray datasets (all datasets but VDX). We observed good prediction strengths (> 0.8) for all
datasets except for STNO2, DUKE2 and MUG datasets.

Dataset ER-/HER2- HER2+ ER+/HER2-

NKI 1.00 1.00 1.00
TBG 1.00 1.00 0.83
UPP 1.00 0.93 0.87
UNT 1.00 0.89 0.92

MAINZ 1.00 1.00 0.90
STNO2 1.00 0.69 0.97

NCI 0.85 0.83 0.93
MSK 1.00 1.00 0.96
STK 1.00 0.91 0.87

DUKE 1.00 0.82 0.92
UNC2 1.00 0.87 0.96
CAL 1.00 1.00 0.95
DUKE2 1.00 0.64 0.95
NCH 1.00 0.82 0.98
LUND2 1.00 0.89 0.87
LUND 1.00 1.00 0.81
MUG 0.66 0.61 0.49
FNCLCC 1.00 0.91 0.93
MDA 1.00 1.00 0.95
MDA4 1.00 1.00 0.73
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2 Performance Assessment

We present here the performance criteria used to assess the accuracy of a prognostic gene
signature through their risk score and risk group predictions, as implemented in the R pack-
age survcompﬁ. In the following the quantity r; and g; will denote the risk score and the risk
group for patient /, respectively. R is a real value and G is either 0 or 1 for a low or high-risk
patient respectively.

Let denote the time by t. Survival data for the ith patient are denoted as follows: t; stands
for the event time, ¢; for the censoring time, and §; for the censoring indicator (§; = 1 if t; < ¢;
and §; = 0if t; > ¢;). We introduce the counting process di(t) = 1if t; < tAJ; = 1 and
ai(t) = 0if t; > t to denote survival status at any time t where d;(t) = 1 indicates that patient /
experienced an event prior to time t.

Concordance Index The concordance index (C-index) computes the probability that, for a
pair of randomly chosen comparable patients, the patient with the higher risk prediction will
experience an event before the lower risk patient. The C-index takes the form

2ijeq Hri>r}
1€2]

where r; and r; stand for the risk predictions of the ith and the jth patient, respectively, and Q2
is the set of all the pairs of patients {/, j} for whom there is no tie in risk predictions (r; # ;)
and who meet one of the following conditions: (i) both patients i and j experienced an event
and time f; < t; or (ii) only patient / experienced an event and t; < ¢;.

Note that the C-index is a generalization of the AUC(t) (with similar interpretation), though
it is unable to represent the evolution of performance with respect to time.

C-index =

Standard Error Standard error, confidence intervals and p-values for the C-index are
computed by assuming asymptotic normality.

Time-Dependent ROC Curve The receiver operating characteristic (ROC) curve is a stan-
dard technique for assessing the performance of a continuous variable for binary classifica-
tion. A ROC curve is a plot of sensitivity versus 1 — specificity for all the possible cutoff
values of the continuous variable, denoted by c. In survival analysis, the continuous variable
is the risk score, and the binary class to predict is the event occurrence, denoted by D(t). As
the event occurrence is time-dependent, time-dependent ROC curves are more appropriate
than conventional ones. Heagerty et al. proposed to summarize the discrimination potential
of a risk score R, estimated at the diagnosis time t = 0, by calculating ROC curves for cumu-
lative event occurrence by time t. Once we define the sensitivity SE and the specificity SP
as follows

SE(c,t,r)
SP(c,t,r)

Pr{r>c|d(t)=1} (1)
Pr{r < c|d(t) = 0} (2)

*http://cran.r-project.org/web/packages/survcomp/
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the ROC curve ROC(t) at time t is the plot of SE(c, t, r) versus 1 — SP(c, t, r) where the cutoff
point ¢ is the parameter. In order to estimate the conditional probabilities in and (@), ac-
counting for possible censoring, the nearest neighbor estimator for the bivariate distribution
function proposed by Akritas et al. is used preferably to the KM estimator. Indeed the KM
estimator does not guarantee that sensitivity and specificity are monotone.

From the time-dependent ROC curve ROC(t) we can summarize the performance of a
risk score by deriving the area under the curve quantity, denoted by AUC(t).

AUC(?) lies in [0, 1], the performance of the risk score produced by a random model being
equal to 0.5. The performance increases as the departure from 0.5 increases.

Hazard Ratio The hazard ratio can be defined as a summary of the difference between two
survival curves, representing the reduction in the risk of event between two different groups.
It is a form of relative risk. Proportional hazards regression model assumes that the relative
risk of event between the two groups is constant at each interval of time.

Let G be an indicator variable, which takes the value zero if an individual is in the first
group (e.g. low-risk group) and unity if an individual is in the second group (e.g. high-risk
group). If g; is the value of G for the ith individual in the study, i € {1,..., n}, the hazard
function for this individual can be written as

hi(t) = Xo(t) exp(5i)

where g; = 1 if the jth individual is on the second condition or zero otherwise. Because of the
type of the indicator variable G, \y(f) is the hazard function for an individual in the first group.
Moreover, the hazard function for any individual in the second group is ¥ \(t) (proportional
hazards). v is the relative hazard or hazard ratio (HR) with ¢ = exp(p3)

This is the proportional hazards model for the comparison of two groups. In this thesis,
the indicator variable G is unity for the high-risk group and zero for the low-risk group. So the
hazard ratio permits to assess if the risk of the high-risk group is higher than in the low-risk

group.

Standard Error Once the parameter 3 is estimated, giving 3, the corresponding esti-
mate of the hazard ratio is ¢) = exp(/3). The confidence interval of 1) can be obtained from the
standard error of 3. So a (100 — «)% confidence interval for the true hazard ratio ¢, can be
obtained by exponentiating the confidence limit for 5 because the distribution of the logarithm
of the estimated hazard ratio will be more closely approximated by a normal distribution than
that of the hazard ratio itself.
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3 Identification of Prognostic Genes

We used a fuzzy ranking-based gene selection method to identify the prognostic genes in
a specific breast cancer molecular subtype. The score given to each gene is based on the
significance of the weighted concordance index. We introduced the weighted version of the
concordance index in order to select genes relevant for a specific subtype (see Section 3.7),
making fuzzy our feature selection method. The weights were defined as the probability for
a patient to belong to the subtype of interest.

The only hyperparameter to tune was the signature size k, i.e. the number of selected
genes in the signature. To do so, we assessed the stability with respect to the signature size
by resampling the training set (see Section[3.2).

3.1 Weighted Concordance Index

Survival data for the jth patient, i € {1,2,..., n}, are denoted as follows: t; stands for the
event time, ¢; for the censoring time, and §; for the censoring indicator (§; = 1 if ; < ¢;
and 6; = 0if f; > ¢;). We introduce the counting process di(t) = 1if ; < tAd; = 1 and
ai(t) = 0if t; > t to denote survival status at any time t where d;(t) = 1 indicates that patient /
experienced an event prior to time t.

The concordance index (C-index) computes the probability that, for a pair of randomly
chosen comparable patients, the patient with the higher risk prediction will experience an
event before the lower risk patient. The C-index takes the form

Yijeq Hni>n}
1€2]
where r; and r; stand for the risk predictions of the ith and the jth patient, respectively,
and Q is the set of all the pairs of patients {/,j} for whom r; # r; (no ties in r) and meet one
of the following conditions: (i) both patients / and j experienced an event and time t; < t; or
(i) only patient i experienced an event and f; < ;.
We introduced a weighted version of the concordance defined as

C-index =

> ijea Wil{ri > rj}
> ijeq Wi

where wj; = w;w; is the weight for the pair of patients {/, }. Note that in this study, the
weights w; were defined as the probability to belong to a specific breast cancer molecular
subtype (see Figure 1 in the main manuscript).

Standard errors, confidence intervals and p-values for the C-index are computed by as-
suming asymptotic normality. Note that, in this study, the larger C-index, the better is the
predictability of time to event.

3.2 Signature Stability

The selection of the signature size was performed according to a stability criterion that as-
sesses the stability of the ranking for different signature size and selects the most stable
size. Let X be the set of features and freq(x;) be the number of sampling steps in which a
feature x; € X has been selected out of m sampling steps. The set X is sorted by frequency
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into the set x(1), X(2), ..., X(n) Where freq(x;) > freq(x(;)) if i < jwhere i,j € {1,2,..., n}. Afirst
measure of stability for a given signature size k is returned by

_ Xk freq(x)

Stab(k) o

This statistic is equal to 1 if the same signature is always selected over sampling steps. In

1 . ,
the case of no overlap, Stab is equal to - if Kk > 0 and 0 otherwise. However, since the
Stab statistic can be made artificially high by simply increasing k, we formulated an adjusted
statistic

Stabgi(k) = max {0, Stab(k) — aﬁ}

where « is a penalty factor depending on the number of selected features. In our study the
penalty factor o was fixed to 1 in order to facilitate the selection of the trade-off between
signature size and stability. Indeed, the Stab,; criterion is equal to 0 for the two extreme
cases, i.e. when either no feature or all ones are selected.

14



4 Gene Ontology and Functional Analysis

In order to characterize the three subtype signatures, we used two different approaches:
Pathway analysis and correlations with published gene expression signatures.

4.1 Pathway Analysis

The signature for the ER-/HER2+ subtype is composed of 63 unique genes. Information was
found in the IPKB for 50 of these genes and 37 were significantly associated with a partic-
ular function such as cell death (n=21 genes), cellular movement (n=16), immune response
(n=11), molecular transport (n=10) and cell-to cell interactions (n=10). There are 22 genes
included in the HER2+ subtype signature. Twenty could be used for functional analysis and
these genes were significantly associated with the following ontology classes: cancer-related
functions (n=11), cellular growth and proliferation (n=9), gene expression (n=7) and immune
response (n=6). For the ER+/HER2- subtype, we used our proliferation module (AURKA),
which, as reported previously represents mainly cell cycle and proliferation genes.

The following figures report the results from the Ingenuity Pathway Analysis of the sub-
type signatures for the (a) ER-/HER2-, (b) HER2+ and (c) ER+/HER2- subtypes.

15
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4.2 Correlations with Published Gene Signatures

In order to gain further insight into the biological information included in the subtype sig-
natures, we evaluated their correlation within their respective subtype to gene expression
signatures representing known biological processes: ESR1, ERBB2, AURKA, STAT1, PLAU,
VEGF, CASP3 modules, IRMODULE , SDPP, and GGlI. These correlations were estimated
from our database of ~ 3500 primary breast tumors by combining the Fisher’s Z transformed
correlation coefficients through a meta-analytical framework as implemented in the R pack-
age survcomp.

As illustrated in the table below, the ER-/HER- signature was significantly associated
with the 2 immune response modules within the ER-/HER2- subtype, IRMODULE ad STAT1.
Interestingly, the HER2+ signature was even more strongly associated with these immune
response modules. In addition, this signature also correlated with our previously described
tumor invasion module (PLAU). As expected and as reported previously, the AURKA signa-
ture is strongly correlated to the Genomic Grade Index (GGI) within the ER+/HER2- subtype.

ER-/HER2- signature in  HER2+ signature AURKA signature in

ER-/HER2- tumors in HER2+ tumors ER+/HER2- tumors

ESR1 -0.07 0.18 0.17
ERBB2 0.00 -0.09 0.25
AURKA -0.18 -0.27 1

STATH -0.55 -0.70 0.16
PLAU 0.08 0.48 -0.36
VEGF 0.05 0.29 0.33
CASP3 0.00 -0.01 0.06
IRMODULE -0.49 -0.67 -0.06
SDPP -0.24 -0.29 -0.49
GGl -0.18 -0.24 0.91

Table 7: Pearson correlation coefficients between the current gene signatures (in rows) and
the subtype gene signatures used in GENIUS (in columns).
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5 Development of GENIUS CRISP and Comparison with GENIUS

In this section, we describe the development of the crisp version of GENIUS, called GENIUS CRISP
(see Figure[8). In this model, the subtype of each tumor was assigned univocally to the one
having the maximum posterior probability estimated during the subtypes identification step
(Section 2). Therefore, the probabilities P(1), P(2) and P(3) were not taking into account
anymore to identify the subtype signatures and to combine the subtype risk scores (contrary

to GENIUS, see Figure 1 in the paper).

Crisp identification of prognostic genes We used the traditional concordance index to
identify prognostic genes in a specific subtype. Contrary to the weighted concordance index
used for GENIUS (see Section [3.7), only the tumors belonging to the subtype of interest are
used to estimate the concordance index.

The only hyperparameter to tune was the signature size k, i.e. the number of selected
genes in the signature. To do so, we assessed the stability with respect to the signature size
by resampling the training set (see Section[3.2).

Figure [9 sketches the subtype signature stability with respect to the signature size for the
ER-/HER2- and HER2+ subtypes. The number of genes to include in the subtype signature
(orange dashed line) was selected in order to maximize the stability with respect to the size
by sampling 90% of the training set 200 times. In these settings, 10 and 23 prognostic genes
were selected for the ER-/HER2- and HER2+ subtype signatures respectively. Although
these subtype signatures were very similar to those identified for GENIUS, up to 15% of the
genes were different for both lists (data not shown).

Model building The subtype risk scores are computed as for GENIUS (see Methods in
the main manuscript).

Crisp decision The final risk score of a tumor is defined as the subtype risk score corre-
sponding to its subtype (see Figure[8). No combination of subtype risk scores is performed.

5.1 GENIUS vs GENIUS CRISP

In order to assess the potential improvement of the fuzzy (GENIUS) over the crisp prognostic
model (GENIUS CRISP), we statistically compared their prognostic performance.

5.1.1 Risk Score Predictions

Figure [10]illustrates the GENIUS and GENIUS CRISP risk score predictions with respect to
the subtypes. The Pearson’s correlation coefficients are given in Table We observed a
low correlation within the ER-/HER2- subtype, while the correlation is high for the HER2+
and ER+/HER2- subtypes. Overall, we observed a high correlation between GENIUS and
GENIUS CRISP risk score predictions as expected given the large maximum posterior prob-
abilities for the vast majority of tumors in the training and validation sets (see Supplementary
Table 2).

In order to assess whether the differences observed at the risk score predictions level
have any impact on prognosis, we compared the performance of GENIUS and GENIUS CRISP.

20
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Figure 8: Design of GENIUS CRISP: (a) Training phase to build GENIUS CRISP; (b) Vali-
dation phase to test GENIUS CRISP in the independent dataset of untreated breast cancer
patients Subtype of a patient is identified with respect to the maximum probability of his tu-
mor belongingness as computed by the subtype clustering model. Only patients having a
tumor of a specific subtype are used to identify corresponding subtype signature.

The forestplot is sketched in Figure while the corresponding concordance index esti-
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Figure 10: Plot of GENIUS and GENIUS CRISP risk score predictions with respect to the
subtypes.

mates, confidence intervals and p-values are given in Table[9] Figure [12]sketches the time-
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Correlation

ER-/HER2- 0.55
HER2+ 0.98
ER+/HER2- 0.99
ALL 0.9

Table 8: Correlation between GENIUS and GENIUS CRISP risk score predictions with re-
spect to the subtypes.

dependent ROC curves for GENIUS and GENIUS CRISP with respect to the subtypes.

Test for GENIUS

superiority

ALL: GENIUS —M—

GENIUS CRISP = = 4E-4
ER+/HER2-: GENIUS —m—

GENIUS CRISP —m— 0.31
ER-/HER2-: GENIUS _—

GENIUS CRISP _ 0.0011
HER2+: GENIUS —_—

GENIUS CRISP —_— 0.2

[ I I I I I |
0.2 0.3 0.4 0.5 0.6 0.7 0.8

concordance index

Figure 11: Forestplot of GENIUS and GENIUS CRISP performance for risk score predictions
with respect to the subtypes.

5.1.2 Risk Group Predictions

Table [10| reports the discrepancies between GENIUS and GENIUS CRISP risk group pre-
dictions with respect to the subtypes.

We observed large discrepancies in the ER-/HER2+ subtypes. In the global popula-
tion of patients, we observed ~ 8% of patients being classified differently by GENIUS and
GENIUS CRISP.

In order to assess whether the differences observed at the risk group predictions level
have any impact on prognosis, we compared the performance of GENIUS and GENIUS CRISP.
The forestplot is sketched in Figure[T3|while the corresponding concordance index estimates,
confidence intervals and p-values are given in Table[T1]
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subtype classifier C-index 95%CI p-value n

ALL GENIUS 0.703 [0.666,0.74] 1.0E-27 724
GENIUS CRISP 0.674 [0.635,0.713] 9.3E-19 724
GENIUS 0.702 [0.652,0.752] 6.9E-16 503
ER+/HER2 GENIUS CRISP 0.7 [0.651,0.75] 1.8E-15 503
ER-/HER2- GENIUS 0.655 [0.577,0.732] 7.1E-05 116
GENIUS CRISP 0.525 [0.432,0.617] 3.0E-01 116
HER2+ GENIUS 0.641 [0.549,0.733] 9.3E-04 105

GENIUS CRISP 0.633 [0.543,0.723] 1.9E-03 105

Table 9: Concordance index estimates, confidence intervals, p-values and number of pa-
tients for GENIUS and GENIUS CRISP risk score predictions with respect to the subtypes.

subtype GENIUS CRISP GENIUS
GENIUS

0 1

ALL o 1
0460 28

GENIUS CRISP | 5" =0

GENIUS

0 1

ER+/HER2- 9
0382 2

GENIUS CRISP | | °0° .°.

GENIUS

ER-/HER2- o 1
o[ 27 22

GENIUSCRISP | 5 ¢

GENIUS

HER2+ 050171
GENIUSCRISP . | 7 -

Table 10: Contingency table of the GENIUS and GENIUS CRISP risk group predictions.

5.2 Conclusions

The fuzzy version of GENIUS yielded consistently better performance than the crisp one
(p < 0.05 for GENIUS superiority over GENIUS CRISP in both risk score and risk group pre-
dictions in the global population of patients). It is worth to note that the most stable signature
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Figure 12: Time-dependent ROC curves for GENIUS and GENIUS CRISP in the (a) global
population, the (b) ER+/HER2-, (c¢) ER-/HER2- and (d) HER2+ subtypes.

for ER-/HER2- subtype in GENIUS CRISP contains only 10 genes and did not yield signif-
icant prognostic performance. Increasing the signature size to the second peak of stability
(signature size of 91 genes, see Figure [9A) yielded significant prognostic performance in
the validation set while staying poorer than the performance of the corresponding GENIUS
subtype signature (data not shown).

These results highlight the benefit from a prognostic point of view to take into account
the probability of the tumors belonging to each subtype in order to compute accurate risk
predictions.
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Test for GENIUS

superiority
ALL: GENIUS -
GENIUS CRISP — 7E-4
ER+/HER2-: GENIUS —
GENIUS CRISP . 0.073

ER-/HER2-: GENIUS —_—
GENIUSCRISP @ ———— 0.016

HER2+: GENIUS S —
GENIUS CRISP — 0.018

[ I I I I I I |
03 04 05 06 07 08 09 1

concordance index

Figure 13: Forestplot of GENIUS and GENIUS CRISP performance for risk group predictions
with respect to the subtypes.

subtype classifier C-index 95%ClI p-value n
ALL GENIUS 0.818 [0.771,0.865] 3.1E-37 724
GENIUS CRISP 0.769 [0.714,0.823] 3.3E-22 724
GENIUS 0.808 [0.744,0.873] 3.0E-21 503
ER+/HER2- GENIUS CRISP 0.798 [0.732,0.865] 8.5E-19 503
ER-/HER2- GENIUS 0.763 [0.622,0.904] 1.3E-03 116
GENIUS CRISP 0.584 [0.424,0.745] 1.5E-01 116
HER2. GENIUS 0.802 [0.685,0.918] 2.9E-07 105

GENIUS CRISP 0.723 [0.586,0.861] 7.2E-04 105

Table 11: Concordance index estimates, confidence intervals, p-values and number of pa-
tients for GENIUS and GENIUS CRISP risk group predictions with respect to the subtypes.
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6 Development of SUBCLASSIF and Comparison with GENIUS

In this section, we describe the development of SUBCLASSIF (see Figure[14), a prognostic
model using crisp subtypes identification and published gene signatures. This approach
consists in a simple integration of the subtypes identification and the current gene signatures
in order to perform breast cancer prognostication.

In SUBCLASSIF model, the subtype of each tumor was assigned univocally to the one
having the maximum posterior probability estimated during the subtypes identification step
(Section 2). We used in this crisp risk prediction model, recently published gene signatures
known to be prognostic in specific subtypes:

e IRMODULE for patients whose tumor belong to the ER-/HER2- subtype.
e SDPP for patients whose tumor belong to the HER2+ subtype.
e AURKA for patients whose tumor belong to the ER+/HER2- subtype.

Data set

Crisp subtypes

identification

ER-/HER2- HER2+ @

subtype

)

{Current prognostic}

gene signature

I

subtype
signature

|

Model
building
SUBCLASSIF

<o

risk score  risk group

Figure 14: Design of SUBCLASSIF. Current prognostic gene signature is either IRMODULE,
SDPP or AURKA for ER-/HER2-, HER2+ or ER+/HER2- subtype respectively.
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6.1 GENIUS vs SUBCLASSIF

In order to test whether the approach used for GENIUS outperforms the simple integration
of subtypes identification and current prognostic gene signatures used in SUBCLASSIF, we
statistically compared these two risk prediction models.

6.1.1 Risk Score Predictions

Figure illustrates the GENIUS and SUBCLASSIF risk score predictions with respect to
the subtypes. We observed an overall Pearson’s correlation of 0.81.

SUBCLASSIF score
0
|

-1

A ER-/HER2-
0 HER2+
© ER+/HER2-

-2

GENIUS score

Figure 15: Plot of GENIUS and SUBCLASSIF risk score predictions with respect to the
subtypes.

Correlation

ER-/HER2- 0.53
HER2+ 0.48
ER+/HER2- 0.99
ALL 0.81

Table 12: Correlation between GENIUS and SUBCLASSIF risk score predictions with re-
spect to the subtypes.

In terms of risk score predictions, GENIUS yielded better performance whatever the sub-
types and significantly outperformed SUBCLASSIF in the global population of patients. Fig-
ure [17] sketches the time-dependent ROC curves for GENIUS and SUBCLASSIF. GENIUS
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exhibited consistently larger AUC than SUBCLASSIF, with the best improvement observed
in the ER-/HER2- subtype. Less clear is the superiority of GENIUS in the HER2+ subtype
where SDPP yielded larger sensitivities while GENIUS yielded better specificities when lower
sensitivity is allowed.

Test for GENIUS

superiority

ALL: GENIUS —l—

SUBCLASSIF —— 0.04
ER+/HER2-: GENIUS s

SUBCLASSIF — 0.31
ER-/HER2-: GENIUS

SUBCLASSIF S — 0.22
HER2+: GENIUS

SUBCLASSIF 0.39

[ I I I 1
0.4 0.5 0.6 0.7 0.8

concordance index

Figure 16: Forestplot of GENIUS and SUBCLASSIF performance for risk score predictions
with respect to the subtypes.
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Figure 17: Time-dependent ROC curves for GENIUS and SUBCLASSIF in the (a) global
population, the (b) ER+/HER2-, (c) ER-/HER2- and (d) HER2+ subtypes.
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6.1.2 Risk Group Predictions

In terms of risk group predictions, GENIUS consistently outperformed SUBCLASSIF, its
superiority being significant in the HER+ subtype and in the global population of patients.

ALL: GENIUS
SUBCLASSIF
ER+/HER2-: GENIUS
SUBCLASSIF
ER-/HER2-: GENIUS
SUBCLASSIF
HER2+: GENIUS
SUBCLASSIF

Test for GENIUS
superiority

0.018

0.073

0.22

0.048

[
0.3

concordance index

0.9 1

Figure 18: Forestplot of GENIUS and SUBCLASSIF performance for risk group predictions

with respect to the subtypes.

6.2 Conclusions

We observed that GENIUS model significantly outperformed the simple approach used in
SUBCLASSIF both at the level of risk score and risk group predictions.
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7 Supplementary Figures

Supplementary Figure 1

Supplementary Figure 1 sketches the datasets used for each analysis: (a) subtype identifica-
tion; (b) training set used to build GENIUS; (c) validation set used to assess the performance
of GENIUS; (d) validation set to compare the performance of GENIUS vs the state-of-the-art
prognostic signatures and the clinical prognostic indices.

Note that there are a few samples in common between UPP, UNT and TBG datasets.
We therefore removed from UNT the common patients in TBG and from UPP the common
patients in TBG and UNT.

|
| |
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Supplementary Figure 2

Supplementary Figure 2 sketches the subtype signature stability with respect to the signature
size for the (a) ER-/HER2- and (b) HER2+ subtypes. The number of genes to include in the
subtype signature (orange dashed line) was selected in order to maximize the stability with
respect to the size by sampling 90% of the training set 200 times.

© | © |
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Stability
Stability

0.4

0.2

0 200 400 600 800 1000 0 200 400 600 800 1000

signature size signature size
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AURKA score

-2

Supplementary Figure 3

Supplementary Figure 3 reports the correlations between GENIUS and the other prognostic

gene signatures as well as the clinical prognostic indices.
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Supplementary Figure 4

Supplementary Figure 4 sketches the time-dependent ROC curves for GENIUS and all the
state-of-the-art prognostic gene signatures in the (a) global population, the (b) ER+/HER2-,

(c) ER-/HER2- and (d) HER2+ subtypes.
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Supplementary Figure 5

Supplementary Figure 5 sketches the time-dependent ROC curves at 5 years for the risk
score predictions computed by GENIUS, GGI, AOL and NPI, in the (a) global population, the

(b) ER+/HER2-, (c) ER-/HER2- and (d) HER2+ subtypes in the validation set.
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Supplementary Figure 6

Supplementary Figure 6 sketches the Kaplan-Meier survival curves for AOL and NPI risk
group predictions in the (AOL: a, NPI: b) global population, the (AOL: ¢, NPI: d) ER+/HER2-,
(AOL: e, NPI: f) ER-/HER2- and (AOL: g, NPI: h) HER2+ subtypes in the validation set.
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Supplementary Figure 7

Supplementary Figure 7 sketches the Kaplan-Meier survival curves for the combination of
GENIUS and AOL/NPI predictions using the official cutoffsﬁ in the (AOL: a; NPI: b) global
population, the (AOL: c; NPI: d) ER+/HER2-, (AOL: e; AOL: f) ER-/HER2- and (AOL: g; NPI:
h) HER2+ subtypes of the validation set.
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8 Supplementary Tables

Supplementary Table 1

Supplementary Table 1 describes all the cohorts of breast cancer patients in terms of clinical

information.
| Reference | Dataset | Technology Survival | Treatment | Patients | Probes |

[25,64] NKI Agilent RFS, DMFS, OS | untreated, chemo 345 | 24,481

[5] STNO2 | cDNA Stanford | RFS, OS untreated, 122 | 7,787
chemo, hormono

[6] NCI cDNA NCI RFS untreated, 99 | 6,878
chemo, hormono

[61] MSK Affymetrix DMFS heterogeneous 99 | 22,283

[41] UPP Affymetrix RFS untreated, hor- 251 | 22,283
mono

[65] STK Affymetrix RFS untreated, 159 | 22,283
chemo, hormono

[18,19] VDX Affymetrix RFS, DMFS untreated 344 | 22,283

[24] UNT Affymetrix RFS, DMFS untreated 137 | 22,283

[66] UNC2 Agilent RFS, OS heterogeneous 248 | 21,495

[53] DUKE Affymetrix (O] heterogeneous 171 | 12,625

[52] CAL Affymetrix RFS, DMFS, OS | chemo, hormono 118 | 22,283

[34] TBG Affymetrix RFS, DMFS, OS | untreated 198 | 22,283

[63] NCH Agilent RFS, DMFES, OS | untreated, 135 | 17,086
chemo, hormono

[54] DUKE2 | Affymetrix NA chemo 160 | 61,359

[58] MAINZ Affymetrix DMFS untreated 200 | 22,283

[57] LUND2 Swegene NA hormono 105 | 27,648

[56] LUND Swegene NA heterogeneous 143 | 26,824

[55] FNCLCC | Nylon FNCLCC | NA chemo 150 | 9,216

[59] MDA Affymetrix NA chemo 133 | 22,283

[60] MDA4 Affymetrix NA chemo 129 | 22,283
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Supplementary Table 2

Supplementary Table 2 gives the subtype identification and probabilities to belong to each
subtypes as computed by the clustering model on the 20 public breast cancer microarray
datasets used in this study.

Columns description :
samplename Identifier of the tumor sample.

dataset Identifier of the dataset including the tumor sample.

proba.ER-/HER2- Posterior probability for the sample to belong the the ER-/HER2-
molecular subtype.

proba.HER2+ Posterior probability for the sample to belong the the HER2+ molec-
ular subtype.

proba.ER+/HER2- Posterior probability for the sample to belong the the
ER+/HER2- molecular subtype.

most.likely.subtype Molecular subtype of the tumor sample wit the maximum pos-
terior probability of benlonging.
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Supplementary Table 3

Supplementary Table 3 lists the genes selected for the subtype signatures (ER-/HER2-,
HER2+ and ER+/HER2-).

Columns description :

subtype.sighature Name of the molecular subtype for which the prognostic genes
(subtype signature) were selected.

probe Identifier of the Affymetrix probe set.

EntrezGene.ID Entrez gene id as defined by the Entrez Gene databasef
coefficient Coefficient {—1,+1} used to compute the subtype risk score.
NCBIl.gene.symbol NCBI gene symbol as defined by the Entrez Gene database.

Description Description of the gene.

%http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
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Supplementary Table 4

Supplementary Table 4 reports the C-index estimates, confidence intervals and p-values
for the risk score predictions of GENIUS, all the state-of-the-art prognostic signatures and
clinical prognostic indices.

Subtype Signature C-index 95%CI p-value n
GENIUS 0.7 [0.67,0.74] 2.6E-27 724
AURKA 0.67 [0.63,0.71] 4.5E-19 724
GGl 0.67 [0.63,0.71] 9.1E-19 724
STAT1 0.51 [0.47,0.55] 3.0E-01 724
ALL PLAU 0.47 [0.42,0.51] 7.8E-02 724
IRMODULE 0.58 [0.54,0.62] 5.1E-05 724
SDPP 0.66 [0.62,0.7] 2.6E-16 724
AOL 0.63 [0.59,0.67] 2.5E-11 724
NPI 0.67 [0.63,0.7] 3.2E-18 708
GENIUS 0.7 [0.65,0.75] 8.4E-16 503
AURKA 0.7 [0.65,0.75] 1.8E-15 503
GGl 0.7 [0.64,0.75] 4.3E-14 503
STATH 0.51 [0.46,0.57] 3.5E-01 503
ER+/HER2- PLAU 0.44 [0.38,0.5] 2.0E-02 503
IRMODULE 0.6 [0.54,0.65] 2.0E-04 503
SDPP 0.67 [0.62,0.72] 1.4E-10 503
AOL 0.65 [0.59,0.7] 3.7E-08 503
NPI 0.69 [0.64,0.74] 4.9E-14 490
GENIUS 0.65 [0.57,0.73] 7.1E-05 116
AURKA 0.47 [0.38,0.57] 3.0E-01 116
GGl 0.51 [0.41,0.6] 4.3E-01 116
STATH 0.6 [0.52,0.68] 5.1E-03 116
ER-/HER2- PLAU 0.49 [0.4,0.58] 4.3E-01 116
IRMODULE 0.63 [0.55,0.70] 5.1E-04 116
SDPP 0.55 [0.46,0.64] 1.4E-01 116
AOL 0.54 [0.44,0.63] 2.2E-01 116
NPI 0.52 [0.43,0.62] 3.1E-01 114
GENIUS 0.65 [0.55,0.74] 9.3E-04 105
AURKA 0.56 [0.46,0.65] 1.2E-01 105
GGl 0.52 [0.43,0.61] 2.9E-01 105
STATH 0.61 [0.53,0.7] 4.9E-03 105
HER2+ PLAU 0.58 [0.49,0.68] 4.9E-02 105
IRMODULE 0.65 [0.57,0.73] 9.5E-05 105
SDPP 0.63 [0.55,0.72] 1.4E-03 105
AOL 0.56 [0.48,0.64] 6.3E-02 105
NPI 0.56 [0.48,0.65] 7.7E-02 104
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Supplementary Table 5

Supplementary Table 5 reports the proportions of patients in the low- and high-risk groups
with respect to the subtypes as computed by GENIUS and GGl in the validation set. Note
that GGl classified most of ER-/HER2- patients at high risk (86%) in contrast to GENIUS

(60%).

Subtype GENIUS GGl Total
Low-risk High-risk Low-risk High-risk

ER-/HER2- | 50 (40%) | 75 (60%) 17 (14%) | 108 (86%) | 125

HER2+ | 50 (47%) | 56 (52%) 37 (35%) | 69 (65%) | 106

ER+/HER2- | 384 (74%) | 130 (25%) || 430 (84%) | 84 (16%) | 514

ALL | 484 (64%) | 261 (35%) || 484 (65%) | 261 (35%) | 745
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Supplementary Table 6

Supplementary Table 6 reports the C-index estimates, confidence intervals and p-values
for the risk group predictions of GENIUS, all the state-of-the-art prognostic signatures and
clinical prognostic indices.

Subtype Signature C-index 95%CI p-value n
GENIUS 0.82 [0.77,0.86] 6.8E-40 724
AURKA 0.72 [0.65,0.78] 4.3E-12 724
GGl 0.72 [0.65,0.78] 3.1E-12 724
STAT1 0.5 [0.42,0.58] 4.9E-01 724
ALL PLAU 0.4 [0.32,0.48] 9.1E-03 724
IRMODULE 0.59 [0.51,0.66] 9.6E-03 724
SDPP 0.73 [0.67,0.79] 1.3E-13 724
AOL 0.66 [0.59,0.73] 2.5E-06 724
NPI 0.72 [0.66,0.78] 2.2E-12 708
GENIUS 0.81 [0.74,0.87] 3.0E-21 503
AURKA 0.8 [0.73,0.86] 8.5E-19 503
GGl 0.78 [0.71,0.85] 2.1E-15 503
STATH 0.46 [0.34,0.58] 2.8E-01 503
ER+/HER2- PLAU 0.43 [0.32,0.55] 1.2E-01 503
IRMODULE 0.63 [0.54,0.73] 3.3E-03 503
SDPP 0.73 [0.65,0.81] 2.7E-08 503
AOL 0.72 [0.64,0.8] 1.4E-07 503
NPI 0.79 [0.72,0.86] 6.8E-17 490
GENIUS 0.76 [0.62,0.90] 1.3E-04 116
AURKA 0.39 [0.24,0.54] 6.9E-02 116
GGl 0.49 [0.33,0.64] 4.3E-01 116
STATH 0.71 [0.57,0.85] 1.9E-03 116
ER-/HER2- PLAU 0.45 [0.29,0.6] 2.4E-01 116
IRMODULE 0.70 [0.57,0.84] 1.9E-03 116
SDPP 0.62 [0.46,0.77] 7.1E-02 116
AOL 0.5 [0.34,0.67] 4.8E-01 116
NPI 0.5 [0.34,0.66] 4.9E-01 114
GENIUS 0.80 [0.68,0.92] 1.9E-07 105
AURKA 0.54 [0.38,0.7] 3.1E-01 105
GGl 0.53 [0.37,0.69] 3.5E-01 105
STATH 0.74 [0.61,0.88] 2.8E-04 105
HER2+ PLAU 0.63 [0.48,0.79] 4.6E-02 105
IRMODULE 0.76 [0.63,0.89] 4.7E-05 105
SDPP 0.68 [0.54,0.83] 7.3E-03 105
AOL 0.59 [0.44,0.75] 1.2E-01 105
NPI 0.59 [0.43,0.74] 1.4E-01 104
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