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1 Review of chemotaxis signaling pathway

The bacterium Escherichia coli chemotaxes by utilizing a biased random walk towards a nutrient
source (or away from a toxin source) [1–4]. The swimming path consists of runs, i.e. straight
swimming driven by coherent motion of flagella, and tumbles characterized by lack of net movement
and random reorientation of the cell.

The molecular components of the chemotaxis signaling pathway and relationships between them
are well-characterized [5], and are shown schematically in Fig. 1. Transmembrane chemoreceptors
localize predominantly at cell poles, where they form large clusters. There are five different types
of chemoreceptors, each with specific sensing capabilities. The two most abundant receptor types,
Tar and Tsr, bind respectively the amino acids aspartate (and its non-metabolizable analogue
MeAsp) and serine. Tsr also binds aspartate and MeAsp with much lower affinity. Binding of
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Figure 1: Schematics of chemotaxis signaling and its measurement by FRET. (A) Chemotaxis signaling
pathway in E. coli from receptors to rotary motors and flagella, including phosphotransfer from CheA to
CheY and CheB, CheY-P diffusion to rotary motors, and dephosphorylation of CheY-P by phosphatase
CheZ. Adaptation involves receptor methylation by CheR and demethylation by CheB-P. (B) FRET pair
CFP/YFP used in experiments by Sourjik and Berg [6]; YFP tags CheY and CFP tags CheZ. CFP is
excited by laser light and transfers its energy to YFP during FRET. YFP de-excites by fluorescence. (C)
Fast switching between on (white discs) and off state (black discs) of an MWC receptor complex.

ligand induces signaling by the receptor across the membrane to the kinase CheA. CheA as well as
the protein CheW (not shown in Fig. 1) have been suggested to be involved in receptor-receptor
coupling and signal integration. When active, CheA autophosphorylates and rapidly passes on
a phosphoryl group to its response regulators CheY and CheB. Phosphorylated CheY (CheY-P)
diffuses to the rotary motors which drive the cell’s flagella. Upon binding to the motors, CheY-
P induces a switch in rotary direction resulting in tumbling. CheZ is a phosphatase of CheY-P.
Attractant binding reduces the activity of CheA, lowering the concentration of CheY-P in the cell,
and therefore suppressing tumbling. In contrast, repellents cause an increase of activity, enhancing
tumbling.

Adaptation is mediated by the proteins CheR and CheB. CheR methylates receptors to enhance
their signaling activity. Phosphorylated CheB (CheB-P) demethylates receptors, which reduces
their activity. During persistent stimulation by a chemical, the combined effect of receptor methy-
lation by CheR and demethylation by CheB-P leads to adaptation of the kinase activity to a
steady-state, allowing the sensing of new changes in attractant or repellent concentrations.

2 Whole-pathway model

We consider the following reactions shown in Fig. 1: (1) auto-phosphorylation of CheA and forma-
tion of CheA-P (concentrations [Ap]) when receptors are active, (2) phosphorylation of CheY and
formation of CheY-P ([Yp]), (3) association of CheY-P and CheZ ([YpZ]), leading to the dephos-
phorylation of CheY-P and dissociation into CheY and CheZ, and (4) phosphorylation of CheB
and formation of CheB-P ([Bp]).

Assuming the law of mass-action, our model comprises the following set of ordinary differential
equations:

d[Ap]
dt

= A · kA ([A]tot − [Ap])︸ ︷︷ ︸
CheA autophosphorylation

− kY ([Y ]tot − [Yp]) [Ap]︸ ︷︷ ︸
CheY phosphorylation

− kB ([B]tot − [Bp]) [Ap]︸ ︷︷ ︸
CheB phosphorylation

(1)
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d[Yp]
dt

= kY ([Y ]tot − [Yp]) [Ap]︸ ︷︷ ︸
CheY phosphorylation

− k1 ([Z]tot − [YpZ]) [Yp]︸ ︷︷ ︸
CheY-P/CheZ

association

+ k2[YpZ]︸ ︷︷ ︸
CheY-P/CheZ
dissociation

(2)

d[YpZ]
dt

= k1([Z]tot − [YpZ])[Yp]︸ ︷︷ ︸
CheY-P/CheZ association

− (k2 + k3) [YpZ]︸ ︷︷ ︸
CheY-P/CheZ dissociation

and CheY-P dephosphorylation

(3)

d[Bp]
dt

= kB ([B]tot − [Bp]) [Ap]︸ ︷︷ ︸
CheB phosphorylation

− k−B[Bp],︸ ︷︷ ︸
spontaneous

dephosphorylation of CheB-P

(4)

where the ki (with i = 1, 2, 3, A, B,−B and Y ) are kinetic rate constants for the individual reactions.
The activity A of a receptor complex in Eq. 1 is determined by the MWC model, given by

A =
1

1 + eF
, with (5)

F = N

[
ε(m) + νa ln

(
1 + c/Koff

a

1 + c/Kon
a

)
+ νs ln

(
1 + c/Koff

s

1 + c/Kon
s

)]
, (6)

as described in the main text. In addition, we include the adaptation dynamics by methylation and
demethylation of receptors, catalyzed by CheR and CheB-P, respectively (cf. Eq. 2 in the main
text),

dm

dt
= gR (1−A)︸ ︷︷ ︸

methylation by Che-R

− ĝB[Bp]2A,︸ ︷︷ ︸
demethylation by CheB-P

(7)

= gR(1−A)− gBA3 (8)

where gR and ĝB are effective rate constants, and ĝB[Bp]2 ≈ gBA2 as [Bp] is approximately pro-
portional to the receptor complex activity (Fig. 2D). This adaptation model is further explained in
the next section. The parameter values we used for the whole-pathway model are listed in Table 1.

2.1 Rescaling of parameters

In order to reduce the number of parameters, we normalize the protein concentrations by their
respective total concentrations in the cell, [Ap] → [ap] = [Ap]/[A]tot, [Yp] → [yp] = [Yp]/[Y ]tot,
[YpZ] → [ypz] = [YpZ]/[Y ]tot and [Bp] → [bp] = [Bp]/[B]tot. Furthermore, we rescale the time by
the autophosphorylation rate of CheA, kA, t → τ = kA · t, and introduce rescaled rate constants
according to k1 → κ1 = k1[Y ]tot/kA, k2 → κ2 = k2/kA, k3 → κ3 = k3/kA, kY → κY = kY [A]tot/kA,
kB → κB = kB[A]tot/kA and k−B → κ−B = k−B/kA. Overall, this transformation yields dimen-
sionless kinetic variables and parameters by measuring phosphorylated protein fractions in units of
total protein concentrations and rate constants relative to the autophosphorylation rate constant
of CheA. Using the ratios of total protein concentrations, α1 = [Y ]tot/[A]tot, α2 = [B]tot/[A]tot,
and α3 = [Z]tot/[Y ]tot, we obtain the transformed set of equations

d

dτ
[ap] = A · (1− [ap])− α1κY (1− [yp]) [ap]− α2κB (1− [bp]) [ap] (9)

d

dτ
[yp] = κY (1− [yp]) [ap]− κ1 (α3 − [ypz]) [yp] + κ2[ypz] (10)

d

dτ
[ypz] = κ1(α3 − [ypz])[yp]− (κ2 + κ3) [ypz] (11)

d

dτ
[bp] = κB (1− [bp]) [ap]− κ−B[bp]. (12)
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Figure 2: Steady-state concentrations of individual proteins and CheY-P/CheZ pairs for the whole-pathway
model for Eq. 9-12, as a function of the receptor complex activity A. Note the different scales of the vertical
axes. The adapted activity is A∗ ≈1/3.

The transformed equation for the methylation level of receptors is obtained by replacing time
t → τ , gR → γR = gR/kA and ĝB → γB = ĝBB2

tot/kA in Eq. 7, yielding

dm

dτ
= γR (1−A)− γB[bp]2A. (13)

The new parameter values of this transformed model are listed in Table 1.

2.2 Steady-state concentrations

We analyzed the steady-state concentrations of phosphorylated proteins and CheY-P/CheZ pairs.
Setting the time-derivatives of Eq. 9-12 to zero, we solved for the steady-state concentrations of
CheA-P, CheY-P and CheB-P, as well as the concentration of CheY-P/CheZ pairs as a function
of the receptor complex activity A. The results are shown in Fig. 2. CheA-P shows a strong
non-linear dependence on the activity A, i.e., it is strongly activated at high receptor complex
activity. It is also notable that only a small fraction of the CheA concentration is phosphorylated
at maximal receptor activity A = 1, which nicely fits estimates from in vitro measurements [7]. All
other phosphorylated fractions of protein, as well as the concentration of CheY-P/CheZ pairs are
approximately proportional to receptor complex activity A.

2.3 Time courses and steady-state assumption

We tested if the phosphorylation and CheY-P/CheZ association reactions, Eq. 9-12, are in quasi-
steady state compared to the slower methylation and demethylation reactions of receptors, Eq. 13.
For this purpose, we increased all rate constants for phosphorylation, dephosphorylation, as well
as CheY-P/CheZ association and dissociation by one order of magnitude, such that concentrations
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Figure 3: Time courses for the concentrations of phosphorylated proteins and CheY-P/CheZ pairs ac-
cording to the whole-pathway model Eq. 9-13, using ambient MeAsp concentration c0=0.1 mM and two
different concentration step sizes, ∆c=0.05 mM (column A) and ∆c=0.4 mM (column B). Thick solid curves
represent the model with parameter values as in table 1, thin dashed lines assume the quasi steady-state
for all phosphorylation reactions (phosphorylation and dephosphorylation kinetic constants in the model
increased by a factor 20). Insets zoom into the dynamics around the addition or removal time, respectively.
Concentrations were normalized to their respective adapted values.
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Table 1: Parameters of the whole-pathway model for chemotaxis signaling for Eq. 1-7, including references
to literature values where possible, and rescaled parameters for Eq. 9-13. The literature values are given in
parentheses where different from our parameter values. k1 was determined by the condition that at steady-
state with A∗=1/3, the concentration [Yp]∗ = [Y ]tot/3 [8]. gR was determined by the steady-state activity
A∗ and the value for ĝB .

Parameter Value Reference Scaled
parameter

Value

[A]tot 5 µM [8] α1 1.94
[B]tot 0.28 µM [9] α2 0.056
[Y ]tot 9.7 µM [9] α3 0.113
[Z]tot 1.1 µM [8] κY 50
kA 10 s−1 [7] κB 7.5
kY 100 µM−1 s−1 [10] κ1 4.88
kB 15 µM−1 s−1 [10] κ2 0.05
k1 5.0 µM−1 s−1 [8] κ3 20
k2 0.5 s−1 [8] κ−B 0.135
k3 200 s−1 (30 s−1) [8] γR 0.0006
k−B 1.35 s−1 (0.35 s−1) [11,12] γB 0.0246
gR 0.006 s−1 —
ĝB 3.14 µM−2 s−1 —

are forced to be in quasi steady-state at each time point. Comparing the results to the time courses
with the original parameter values shown in Fig. 3, we found only minor deviations (exemplified
in insets). Therefore, the above mentioned reactions are indeed in quasi-steady state to a good
approximation. This, together with the approximate linearity of the steady-state concentration of
CheY-P/CheZ pairs as function of receptor complex activity A, permits us to replace the number
of FRET (CheY-P/CheZ) pairs by the receptor complex activity (with appropriate proportionality
factors) as assumed in the main text. Similarly, Eq. 2 in the main text arises by replacing CheB-P
concentration in the demethylation rate in Eq. 13 by the receptor complex activity A, where the
methylation and demethylation rate constants are gR = γRkA and gB = γBkA ([bp]/A)2 ≈ γBkA,
respectively.

3 Additional data and best fit of dynamic MWC model

In Fig. 4 we show additional, previously unpublished dose-response data measured as described in
the main text (cf. Fig. 1 in the main text). The model in panel A is the dynamic MWC model
from the main text. Panel B shows the best fit of the dynamic MWC model, where we used the
demethylation rate constant gB, the coefficients determining the receptor complex size as a linear
function of ambient concentration, and the ligand dissociation constants of Tar and Tsr as fitting
parameters. We found that parameters overall stay similar to the previously used parameters; in
particular the ligand dissociation constants do not change significantly. The main difference is larger
receptor complex sizes than determined by fitting the static MWC model to individual addition
dose-response curves. To compensate for the larger complex sizes, the adaptation rates are also
slightly increased, marking the trade-off between increased activity responses by larger complex
sizes and reduced activity responses by faster adaptation (controlling for MeAsp concentration
dynamics).

Figure 5 quantifies the difference between measured dose-response curves and the static, as well
as the dynamic MWC model, respectively, as detailed in the main text (cf. Fig. 1 in main text).
We plot squared errors for each addition and removal dose-response curve. While the error for the
dynamic MWC model is slightly larger for addition curves, its error for removal curves is much
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Figure 4: Dynamic MWC model. (A) Same as Fig. 1 in the main text (main panel), however showing
additional, previously unpublished data. Shown are dose-response curves for wild-type cells to step changes
of MeAsp concentration (after adaptation to ambient concentrations 0, 0.03, 0.1, 0.3, 0.5, 1, 2 and 5 mM).
Symbols represent averaged response from FRET data as measured by Sourjik and Berg [6]. Filled and
open circles correspond to response to addition and removal of attractant, respectively. Solid lines represent
the dynamic MWC model of mixed Tar/Tsr-receptor complexes, including ligand rise (addition) and fall
(removal), as well as adaptation (receptor methylation) dynamics. (B) Best global fit of dynamic MWC
model with fitting parameters gB=0.127 s−1, Koff

a =0.02 mM, Kon
a =0.50 mM, Koff

s =216 mM, Kon
s =106 mM,

as well as a0 = 22 and a1=9.6 mM−1 for the total receptor complex size N = a0 + a1c0.
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Figure 5: Residual absolute squared errors per addition (left panel) and removal (right panel) dose-response
curve for the static and dynamic MWC model as shown in Fig. 1 in the main text. Note the different axis
scales for addition and removal plots.

smaller than that for the static MWC model. Hence, the dynamic MWC model is suited better to
describe the experimental data.

Figure 6 shows the free-energy change associated with each concentration step change. For in-
creasing ambient concentrations, the free-energy changes generally decrease at a fixed concentration
step change ∆c. This is the reason for the reduced response amplitudes in the dynamic MWC model
at large MeAsp step removals, because adaptation compensates for smaller free-energy changes at
increasing ambient concentrations.

4 Parameters for static and dynamic MWC model

In Tab. 2, we list all parameters of the static and dynamic MWC model used for Fig. 1-3 in the
main text and Fig. 4A in the Supplementary Text S1, as well as Fig. 4B and 8A in Text S1.
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Figure 6: Changes in the free-energy difference δF = F − F ∗ of a mixed-receptor complex upon con-
centration step changes ∆c of MeAsp (lines), where F ∗ is the adapted free-energy difference. The curves
correspond to ambient concentrations c0=0, 0.03, 0.1, 0.3, 0.5, 1, 2 and 5 mM with free-energy differences
for experimental concentration step changes indicated by symbols (filled circles for addition, open circles for
removal of MeAsp).

Table 2: Fitting parameters for the static and dynamic MWC model. Parameters include dissociation
constants for Tar and Tsr receptors in the on and off states, respectively, Koff

a , Kon
a , Koff

s , Kon
s [13], the

parameters of the linear approximation of the dependence of the receptor complex size on ambient concen-
tration, N(c0) = a0 + a1c0, as well as methylation and demethylation constants, gR and gB in Eq. 2 in the
main text, respectively. Fitted parameters are indicated by crosses.

Parameter
Fig. 1-3 (main text), 4A (Text S1) Fig. 4B (Text S1) Fig. 8A (Text S1)

static dynamic dynamic (best fit) static (best fit)
Koff

a [mM] 0.02 0.02 0.02 x 0.056 x
Kon

a [mM] 0.5 0.5 0.50 x 0.15 x
Koff

s [mM] 100 100 216 x 100
Kon

s [mM] 106 106 106 x 106

a0 17.5 x 17.5 22 x 37 x
a1 [mM−1] 3.35 x 3.35 9.6 x -0.78 x
gR [s−1] N/A 0.0069 0.0079 N/A
gB [s−1] N/A 0.11 x 0.127 x N/A

5 Effect of receptor complex size on data collapse

We found from fitting the MWC model to dose-response curves from FRET that receptor complex
size increases with ambient concentration (Fig. 2A in the main text). Hence, we would like to
determine how the data collapse depends on this effect. According to Eq. 4 in the main text, the
rate of activity change is proportional to the receptor complex size N . As we do not have a model
which describes how receptor complex size changes in time in response to concentration changes,
we plot in Fig. 7 the data collapse for different N corresponding to the concentrations used in the
experiments. This provides the envelope in which the data collapse is expected to change with
N . We find that the data collapse does not change very much compared to the data collapse for
ambient concentration c0, and hence we neglected the effect of changing complex size in Fig. 3 in
the main text.
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concentration upon small (red line) and large (blue line) concentration changes as in Fig. 3 in the main text.

6 Unsuitable receptor signaling models

We tested four alternative models for receptor signaling in an attempt to find a model, which
describes the gradually reduced response amplitudes upon MeAsp removals at increasing ambient
concentrations (cf. Fig. 1 in main text) without relying on adaptation and MeAsp dynamics.
Dose-response curves for each model are shown in Fig. 8. We found none of the models produced
a satisfying fit to the experimental data.

A Saturation model

While ligand dissociation constants for the Tar receptor were previously determined from FRET
data [13], slightly different values may lead to saturation of Tar receptors at smaller concentrations
of MeAsp and reduced response amplitudes. Figure 8A shows a fit of the static MWC model to
addition as well as removal data. We fitted the parameters of the linear relationship between the
receptor complex size and ambient concentration c0, as well as the ligand dissociation constants
for the Tar receptor, Kon

a and Koff
a . We find an unsatisfying fit, especially for the response to

addition of MeAsp. Furthermore, the determined receptor complex size decreases with ambient
concentration (see Inset). This contradicts experiments which indicate an increasing receptor com-
plex size [14], as well as stabilization of polar receptor clusters with increasing receptor methylation
level (corresponding to increasing ambient concentration) [15].

B Imprecise adaptation model

Figure 8B shows the effect of imprecise adaptation on the response amplitudes. For simplicity,
we assume a linear decline of the adapted activity A∗(c0) with increasing ambient concentration
c0, with A∗(0) = 1/3 and a 20 percent imprecision at concentration 10 mM (see Inset). We
observe that imprecise adaptation has only a small effect on the response amplitudes. Furthermore,
imprecise adaptation tends to increase response amplitudes at high ambient concentrations due to
normalization by a decreasing value of A∗(c0).

C Phase-separation model

In this model, a fraction w of mixed receptor complexes composed of Tar and Tsr receptors form
homogeneous receptor complexes of only Tar and only Tsr receptors at high ambient concentrations.
This separation reduces activity amplitudes at concentrations below the ligand dissociation constant
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Koff
s for Tsr, as complexes of Tsr do not contribute to the response. The total activity from mixed

and homogeneous receptor complexes is

A = [1− w(c0)]Amixed + w(c0)
(
νaA

Tar + νsA
Tsr

)
. (14)

The individual activities of mixed, Amixed, and homogeneous receptor complexes of Tar, ATar,
and Tsr, ATsr, were calculated according to the static MWC model. Mixed receptor complexes
are composed of Tar and Tsr with ratio νa : νs=1:1.4. Homogeneous receptor complexes of Tar
and Tsr, respectively, have the same ratio. The resulting dose-response curves for this model are
shown in Fig. 8C, assuming the probability of separation w(c0) from the Inset. As the ambient
concentration does not correspond nicely to the data points with decreasing response, we did not
find a well-fitting function w(c0). Furthermore, this model predicts a smaller response to MeAsp
when cells are pre-adapted to a ligand for which Tsr, but not Tar is sensitive (e.g. Serine). This
contradicts experiments, which show that cells remain sensitive (Ref. [16] and V.S., manuscript in
preparation).

D Receptor lattice model

In the static MWC model the absolute cooperativity of the receptors in a complex results in a
saturating response upon removal of attractant (cf. Inset of Fig. 1 in main text). Here, we consider
an Ising lattice of NT two-state receptor trimers, where each trimer is coupled to neighboring trimers
with finite interaction strength. We ask if a weaker coupling between receptors can describe the
dose-response data, and in particular the reduced response amplitudes for removals.

Figure 8D shows dose-response curves for different interaction strengths. We find, that in order
to describe the addition data, a strong interaction between neighboring trimers has to be assumed.
In this limit, the lattice model resembles the MWC model where all lattice sites are infinitely
strongly coupled with all other receptors. In the Inset of Fig. 8D we show the activity distribution
from all lattice states. As expected, the distribution becomes increasingly bimodal around the two
states with all receptors on and all receptors off.

In the following we describe the details of the model and our simulations. We used a 4-by-4
square lattice of mixed receptor trimers with periodic boundary conditions. Each trimer consisted
of Tar and Tsr receptors with probabilities νa and νs, respectively, where νa:νs=1:1.4 is the in vivo
ratio of Tar and Tsr in a cell. The distribution of Tar and Tsr in trimers on the lattice was the
same in all simulations. Furthermore, each trimer has only two states, on and off. We numerate all
possible states of the whole lattice (in total n = 216 states for a 4-by-4 lattice, i.e. NT =16 receptor
trimers). Assuming the lattice is in equilibrium, we can calculate the distribution of individual
lattice states, and hence the average activity of the lattice. The probability of each lattice state
depends on its energy, which has a contribution from the free-energy difference between the on and
off states of each trimer and from the interaction between neighboring trimers. The free-energy
difference of trimer j is computed according to the MWC model

F j = ε(mj) +
3∑

l=1

ln
(

1 + c/Koff
l

1 + c/Kon
l

)
, (15)

where the index l = a, s describes the receptor type, Tar or Tsr, within a trimer. The average
methylation level of receptors in a trimer j is denoted by mj . The methylation energy is ε(mj) =
3 · (1− 0.5mj).

The interaction energy between neighboring trimers depends on their respective states. If they
are in the same state (both on or both off), we assign the interaction energy J , if they are in different
states, we assign the interaction energy −J . The total energy Ek of a lattice state k is determined
by summing over all free-energy differences of individual trimers and interaction energies between
neighboring trimers.
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Figure 8: Alternative models for receptor signaling. (A) Saturation model. MWC model with optimized
dissociation constants Koff

a = 0.056 mM and Kon
a = 0.15 mM. (A Inset) Total receptor complex size N =

a0 + a1c0 for fitted parameters a0=37 and a1=-0.78 mM−1. (B) Imprecise adaptation model. (B Inset) The
steady-state activity decreases with ambient concentration, A∗(c0)/A∗(0) = 1− (0.2/10 mM)c0, where 20%
imprecision is reached at 10 mM. (C) Phase-separation model. Receptor complexes are found in separated
complexes with probability w depending on the ambient concentration c0. Receptor complex size is assumed
constant, N =18, for mixed and homogeneous receptor complexes. (C Inset) The probability w(c0) =
p1 + p2

c0
c0+p3

, with p1=0.01, p2=0.99, p3=0.8 mM. (D) Receptor lattice model. Mixed trimers of Tar and
Tsr dimers are arranged on a 4×4 square lattice with periodic boundary conditions. The average activity of
the lattice was calculated by exact enumeration. An attractive interaction between neighboring trimers in
the same state was assumed, with interaction energy J=-0.4 kBT (solid line), J=-0.35 kBT (dotted line),
and J=-0.3 kBT (dashed line). (D Inset) Corresponding distributions of activities from all states (lattice
configurations) when adapted to zero ambient concentration.
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The methylation level mj of each trimer j cannot be calculated analytically due to the finite
coupling strength between receptor trimers, and hence was determined numerically using our adap-
tation model

dmj

dt
= gR(1−Aj)− gB(Aj)3. (16)

According to this model, the methylation level mj of the trimer j depends on its average activity

Aj =
1
Z

n∑

k=1

sj
ke
−Ek , (17)

where Z =
∑

k e−Ek is the partition function, i.e. the sum over all lattice states and sj
k is the state

(1=on, 0=off) of trimer j in lattice state k. The steady-state of Eq. 16 determines the methylation
level of each trimer, and therefore the adapted free-energy difference ε(mj) in Eq. 15. The average
activity of the whole lattice is determined by calculating the average trimer activity

A =
1

NT

NT∑

j=1

Aj , (18)

where NT is the number of trimers on the lattice.

7 Comparison of different adaptation models

In Fig. 4 in the main text we compare different adaptation models to FRET data by collapsing the
time courses, plotting the rate of activity change dA/dt as a function of the activity A. Here, we
describe in detail the different models analyzed. In all of the models we assume precise adaptation,
i.e. that methylation and demethylation rates only depend on the receptor complex activity. For
each adaptation model, we use a least-squares fit to the FRET data to determine the methylation
and demethylation rate constants, assuming an adapted activity A∗=1/3 and receptor complex size
N = 17.8. The parameters and quality of fit χ2 for each of the models are listed in Tab. 3.

Our model Eq. 2 in the main text

dm

dt
= gR(1−A)− gBA3 (19)

is denoted by “(1−A), A3”, referring to the activity dependence of the methylation and demethy-
lation rates, respectively. The best fit to the rate of activity change from FRET (fitting parameter
gR=0.0019 s−1, resulting in gB=0.030 s−1 and quality of fit χ2=0.0021), and a representative time
course for this model are shown in Fig. 4A and B in the main text, respectively (red solid lines).
Note that this model describes the experimental data well, even at high activities. This model
also shows a strong asymmetry in the time course with slow adaptation to addition and rapid
adaptation to removal of MeAsp (cf. Fig. 2C in the main text).

We considered a variation of this model, denoted by “(1 − A), A2”, without cooperativity of
CheB-P molecules,

dm

dt
= gR(1−A)− gBA2, (20)

where only one CheB-P molecule is necessary for demethylation of a receptor. Together with one
factor A from the activity of receptors, this leads to a demethylation rate proportional to A2. While
this model is almost as well-suited to describe the rate of activity change from FRET as our main
model (fitting parameter gR=0.0031 s−1; gB=0.017 s−1, χ2=0.0022; see Fig. 4A in main text), the
asymmetry of adaptation to addition and removal of MeAsp is less pronounced (Fig. 4B in main
text). Fitting dose-response data using this adaptation model resulted in adaptation rates which
were much higher than observed in FRET time courses.
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Table 3: Parameters of the adaptation models when fitted to the rate of activity change from FRET
shown in Fig. 4A in the main text. The size of receptor complexes was assumed to be N = 17.8 in all
models. a K1 = Kr/[T ] and K2 = Kb/[T ], where Kr=0.39 µM and Kb=0.54 µM are taken from Ref. [17].
b K2 = Kb/[T ] with Kb=1.25 µM [18]. The concentration of receptors is [T ]=17 µM.

Adaptation model gR (fitted) other parameters χ2

“(1−A), A3” 0.0019 s−1 gB=0.030 s−1 0.0021
“(1−A), A2” 0.0031 s−1 gB=0.017 s−1 0.0022

“ 1−A
1−A+K1

, A
A+K2

” 0.0188 s−1 gB=0.020 s−1 0.0036
K1= 0.0229a

K2= 0.0318a

“ 1−A
1−A+K1

, A2

A+K2
” 0.0046 s−1 gB=0.014 s−1 0.0025

K1= 0.0229a

K2= 0.0318a

“const, A
A+K2

” 0.00318 s−1 gB=0.014 s−1 0.0032
K2= 0.0735b

Furthermore, the model denoted by “(1−A), A” without CheB-P feedback [19–22]

dm

dt
= gR(1−A)− gBA (21)

yields the fitting parameter gR=0.0048 s−1, resulting in gB=0.0091 s−1 and quality of fit χ2=0.0025.
Both, the fit of this model to the rate of activity change from FRET, and time courses, are described
worse than with the other two models.

Another class of adaptation models was proposed in Ref. [17] where the idea of ultrasensitivity to
the adaptation dynamics of CheR and CheB-P was introduced. This model was proposed mainly
for small changes in activity, such as for fluctuations around the steady-state activity due to noise.
We denote by “(1−A)/(1−A + K1), A/(A + K2)” the following model

dm

dt
= gR

1−A

1−A + K1
− gB

A

A + K2
. (22)

In this model, CheR (CheB) methylates (demethylates) inactive (active) receptors with Michaelis-
Menten-type kinetics with Michaelis-Menten constant K1 (K2). In this model, there is no CheB-P
feedback on the demethylation rate. If K1 and K2 are small, the adaptation rate depends only
weakly on the receptor activity. This results in long adaptation (relaxation) times, as well as
strong sensitivity to protein fluctuations of either CheR or CheB through rates gR and gB. We
used K1 = Kr/[T ] = 0.0229 and K2 = Kb/[T ] = 0.0318, where we took Kr and Kb from [17]
and the concentration of receptors is [T ]=17 µM. As shown in Fig. 4A in the main text, the model
without CheB-P feedback “(1−A)/(1−A+K1), A/(A+K2)” does not describe the rate of activity
change from FRET (fitting parameter gR=0.0188 s−1; gB=0.020 s−1, χ2=0.0036). Furthermore,
the time course shown in panel B looks qualitatively different from experimental time courses (cf.
Fig. 2C in main text).

A variant of the model also includes CheB-P feedback, which introduces another factor A in the
demethylation rate [17]. We denote this model by “(1 − A)/(1 − A + K1), A2/(A + K2)”, which
corresponds to

dm

dt
= gR

1−A

1−A + K1
− gB

A2

A + K2
. (23)

This model fits the FRET activity change in Fig. 4A in the main text relatively well (fitting pa-
rameter gR=0.0046 s−1; gB=0.014 s−1, χ2=0.0025). However, this model is not very different from
the simpler model “(1−A), A2”, as the CheB-P feedback introduces a strong activity-dependence.
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In the model suggested by Barkai and Leibler [18] CheR methylation does not depend on the
activity state of receptors, and hence active, as well as inactive receptors get methylated. The
kinetics of the methylation level is described by

dm

dt
= gR − gB

A

A + K2
, (24)

where the parameter value K2 = Kb/[T ]=0.074 with Kb=1.25 µM [18], and [T ] as above. Note
that this model is a special case of above model “(1−A)/(1−A + K1), A/(A + K2)” with K1=0.
Fitting to the FRET activity change yields gR=0.00318 s−1, resulting in gB=0.014 s−1 and quality
of fit χ2=0.0032. The predicted data collapse, as well as time courses are very similar to the model
“(1−A)/(1−A + K1), A/(A + K2)”, and is therefore not plotted in Fig. 4 in the main text.

8 Analysis of adaptation noise

The receptor methylation level is subject to fluctuations due to the random nature of methylation
and demethylation events. However, the adaptation dynamics also filters fluctuations in ligand
concentration (translated into fluctuations of the receptor activity), averaging over and smoothing
high-frequency noise by its slower dynamics. Here, we estimate the variance of the methylation
level of a receptor complex due to these two noise sources. Equation 2 of the main text describes
the deterministic kinetics of the average methylation level of receptors in a mixed receptor complex,

dm

dt
= gR(1−A)− gBA3. (25)

Now, we consider the kinetics of the total methylation level of a receptor complex. The total
methylation level M is the sum of the individual methylation levels mi of all receptors in a complex,
M =

∑N
i=1 mi, with N the number of receptors per complex. The rate of change of the total

methylation level is
dM

dt
= NRkR(1−A)−NBkBA3, (26)

where we explicitly indicated the number of the modifying CheR and CheB-P molecules, NR and
NB, respectively. The modification rates for a single receptor are related to the rates for a receptor
complex via g̃R = NRkR/N and gB = NBkB/N , respectively. To describe fluctuations about the
mean total methylation level due to methylation and demethylation events, we introduce the noise
η(t) and write

dM

dt
= NRkR(1−A)−NBkBA3 + η(t). (27)

We assume η(t) is the sum of individual noise terms contributed from each modifying enzyme CheR
and CheB-P acting on groups of receptors, so-called assistance neighborhoods [19, 20,23],

η(t) =
NR∑

i=1

ηR(i)(t) +
NB∑

i=1

ηB(i)(t), (28)

where ηR(i) and ηB(i) are independent Gaussian white noises with zero mean 〈ηR(i)(t)〉 = 〈ηB(i)(t)〉=0,
autocorrelations 〈ηR(i)(t)ηR(i)(t′)〉 = qR · δ(t − t′) and 〈ηB(i)(t)ηB(i)(t′)〉 = qB · δ(t − t′), and van-
ishing cross-correlations. To estimate the noise intensities qR and qB, we assume that the number
of methyl groups, which are added (removed) by each enzyme molecule CheR (CheB-P) in a time
interval, are Poisson distributed, i.e. their variance equals the mean number of added (removed)
methyl groups. Therefore, the noise intensity qR associated with each CheR molecule is determined
by its mean rate of methylation,

qR = kR(1−A∗). (29)

Similarly, the noise intensity qB for demethylation is

qB = kBA∗3, (30)
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where we only consider noise from one molecule of CheB-P. We are interested in the steady-state
fluctuations of the total methylation level. Therefore, we linearize Eq. 26 around the steady state
to obtain the kinetics of the deviation δM from the mean methylation level

d(δM)
dt

= −
(
NRkR + 3NBkBA∗2

)
δA + η(t) (31)

= −
(
NRkR + 3NBkBA∗2

)(
∂A

∂F

)(
∂F

∂M
· δM +

∂F

∂c
· δc

)
+ η(t). (32)

In the second step, we used that the receptor complex activity is subject to fluctuations from the
methylation level, as well as the ligand concentration. The derivative of receptor complex activity
with respect to the free-energy difference (at steady state) is given by

∂A

∂F
= −A∗(1−A∗). (33)

The total methylation level of a receptor complex enters the free-energy difference through

F = N − 1
2
M

︸ ︷︷ ︸
=
PN

i=1(1− 1
2
mi)

+νaN ln
(

1 + c/Koff
a

1 + c/Kon
a

)
+ νsN ln

(
1 + c/Koff

s

1 + c/Kon
s

)
, (34)

where mi are the methylation levels of receptors i. Therefore, the derivative of the free-energy
difference F with respect to M is given by

∂F

∂M
= −1

2
. (35)

The derivative of the free-energy difference F with respect to c is given by

∂F

∂c
= νaN

(
1

c + Koff
a

− 1
c + Kon

a

)
+ νsN

(
1

c + Koff
s

− 1
c + Kon

s

)
≡ µ. (36)

In summary, the kinetics of δM is determined by

d(δM)
dt

= −
(
NRkR + 3NBkBA∗2

)
A∗(1−A∗)

︸ ︷︷ ︸
≡λ

·
(

1
2
δM − µδc

)
+ η(t). (37)

To calculate the variance of the methylation level, we Fourier-transform Eq. 37,

iωδM̂ = −λ

(
1
2
δM̂ − µδĉ

)
+ η̂, (38)

where the hat symbol denotes the Fourier transform. The power spectrum SM of fluctuations in
M is defined as the average of the absolute value squared of δM̂

SM (ω) = 〈|δM̂ |2〉 =
qM + λ2µ2〈|δc|2〉

ω2 + λ2/4
. (39)

Here, qM denotes the noise intensity of methylation and demethylation, and λ2µ2〈|δc|2〉 is due to
the uncertainty from the ligand concentration1, where we assumed the two contributions are inde-
pendent. In this formula, we see explicitly the noise filtering of fluctuations in ligand concentration
by the kinetics of the methylation level, given by the frequency-dependent factor.

1Fluctuations of the ligand concentration characterized by 〈δc2〉 can be quantified as presented in Ref. [24,25] by

〈δc2〉 =
α

πaDτ
· c, (40)

which corresponds to the time-averaged low-frequency limit of the noise power spectrum [25,26]. The parameter
a is the size of the ligand binding site of a receptor, D is the ligand diffusion constant, and τ is an averaging
time due to slower downstream reactions. The parameter α is of the order one and depends on further receptor
details [25,26]. Using α ≈ 1, a=1 nm, D=100 µm2/s, a typical ligand concentration c =

p
Koff

a Kon
a = 0.1 mM [21],

and τ = 1/kA = 0.1 s corresponding to slow autophosphorylation of CheA, we obtain 〈δc2〉 = 5 · 10−6 mM2.
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In the following, we calculate the variance of the methylation level of a receptor complex only
due to methylation and demethylation events. As η(t) is composed of independent white noises,
its total noise intensity qM is the sum of the individual noise intensities,

qM = 〈|η̂|2〉 = NRqR + NBqB = 2NRqR = 2NRkR(1−A∗). (41)

The last equality uses the fact that at steady state methylation and demethylation rates balance
each other in Eq. 26. To calculate the variance of the methylation level we need to integrate the
power spectrum over all frequencies ω,

〈δM2〉 =
∫

dω

2π

qM

ω2 + λ2/4
=

2qM

λ
, (42)

and obtain

〈δM2〉 =
2NRqR(

NRkR + 3NBkBA∗2
)
A∗(1−A∗)

=
2gR(

gR + 3gBA∗2
)
A∗

=
2

A∗ + 3(1−A∗)
(43)

= 0.87.

Here, we used that the adapted activity is A∗ ≈ 1/3, and that the relation between the methylation
and demethylation rate constants gR and gB is given by the steady state of the methylation kinetics
Eq. 25,

gB = gR
1−A∗

A∗3
. (44)

This result can be compared to results for other adaptation models previously reported in the
literature. Reference [20] uses a linear dependence of methylation and demethylation rates on the
receptor activity, instead of the nonlinear dependence in Eq. 25,

dm

dt
= gR(1−A)− gBA. (45)

In an equivalent approach using assistance neighborhoods as described above, the authors calculate
the variance of the total methylation level to be

〈δM2〉 =
1

|∂F/∂M | = 2. (46)

Hence, the variance of the total methylation level of a receptor complex is reduced for adaptation
kinetics with strong activity dependence of the demethylation rate (Eq. 25), compared to the linear
adaptation model (Eq. 45). The reason for this is the stronger negative feedback, leading to the
rapid attenuation of fluctuations in the receptor complex activity. Mathematically, the prefactor of
the linearized demethylation rate in Eq. 43 leads to the reduction of the variance of the methylation
level of the receptor complex.

9 Quantification of adaptation imprecision

In Fig. 9 we quantify the imprecision of adaptation. Cells were adapted to 100 µM ambient
concentration with adapted pre-stimulus activity A∗pre measured by FRET. Concentration step
changes of various sizes were added, and cells adapted to the new concentration with post-stimulus
adapted activity A∗post. We define a measure of imprecision as

Imprecision =
A∗post −A∗pre

A∗pre

. (47)

We find that adaptation is highly variable from experiment to experiment (high standard deviation).
However, cells are found to consistently adapt imprecisely at high concentrations.
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Figure 9: Imprecision of adaptation. FRET time courses were measured for cells adapted to 0.1 mM
ambient concentration, and subject to various concentration step changes ∆c. Levels of adapted FRET
activity were determined before and after each added concentration step change, and the imprecision was
calculated as (A∗post−A∗pre)/A

∗
pre. Symbols correspond to mean values of imprecision, and error bars indicate

the standard mean error based on three replicates. The star indicates statistically significant difference from
zero with Student’s t-test p-value smaller than 0.05. (Inset) Example FRET time course for ∆c=2 mM with
adapted pre- and post-stimulus activity indicated.
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