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SUPPLEMENTARY FIGURE 1.  The amino acid sequence alignment of vaccinia N1L protein and 

Bcl-XL.  Sequence identity = 3%. 
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SUPPLEMENTARY FIGURE 2.  Modeling of N1L induced-fit-like state.  A.  Native, “closed” N1L 

monomer structure, and a model of “open” N1L monomer after docking to Bim BH3 peptide 

(see Methods).  Arrow indicates the location of the cavity chosen as a site for in silico ligand 

docking experiments.  A representative low energy conformer is shown.  The probable binding 

mode of a ligand is shown in cartoon style. N1L helices are labeled.  B.  The crystal structure of 

Bcl-XL (PDB# 1R2D) is shown as a molecular surface mesh.  The location of BH3 domain is 

indicated by arrow.  The complex with an acyl-sulfonamide-based ligand is shown at the bottom 

as a cartoon (NMR, PDB# 2O2M).  Important BH regions are indicated on a top of the structure.  

Molecular surfaces were colored by partial atomic charges, corrected for interactions with the 

solvent. 
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SUPPLEMENTARY FIGURE 3.  Strategy for optimization of both receptor induced-fit-like states 

and ligand scaffolds.  A.  Block-diagram of a computational strategy applied to the 
discovery and optimization of the N1L antagonists.  Given initial the sets of N1L conformers 

and validated low affinity non-specific ligands, the procedure tries to optimize both, based on 

biological properties of the compounds.  The number of both conformers and active ligands can 

vary from iteration to iteration. The procedure is repeated iteratively until functional 

convergence is achieved (see Methods for details).  B.  The N1L receptor and ligand 

optimization logistics.  The N1L conformer subensembles are shown as circles.  The validated 

and discarded conformer subensembles are colored green and red, respectively.  The validated 

conformers were used as seeds for the generation of new subensembles of N1L conformers 

(indicated by arrows).  The validated ligands are inside the circles, corresponding to the 

subensembles where the best docking score was achieved.  The ligands labels are shown for 

clarity only; they do not correspond to ligand numbering as in the Supplementary Table 1.  See 

Methods for details. 
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SUPPLEMENTARY FIGURE 4.  Sedimentation equilibrium of N1L in the presence of ligand 11.  

Data shown for three concentrations used: 0.45, 0.15 and 0.05 mg/ml. Solid lines show the best-

fit achieved using monomer-dimer model (KD
11
 = 8 µM). Plots of the residuals for each data set 

are shown bellow. 
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SUPPLEMENTARY FIGURE 5.  Antiviral properties of select N1L antagonists.  A.  9, EC50 = 13.2 

µM, CV1 cells; B.  9, EC50 = 10.9 µM, HT1080 cells; C.  11, EC50 = 13.2 µM, CV1 cells; D.  11, 

EC50 = 16.9 µM, HT1080 cells.  RF, normalized GFP fluorescence; LU, luminescence (absolute 

values); Log([L], M), decimal logarithm of ligand concentration in M.  Data were fit to the 

variable slope dose response equation.  Refer to Table 1 for ligand structures.  See Methods for 

assay conditions. 
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SUPPLEMENTARY TABLE 1.  Summary of ligands optimization. 

 

IC50, µµµµM  

Ligand ID 

 

NCI NSC# [N1L] = 1 µµµµM [N1L] = 0.5 µµµµM 

ROUND I 

1 16953 35.0 - 

2 19939 12.4 8.8 

3 53268 46.0 - 

4 53272 54.0 - 

5 53274 39.0 - 

6 53276 16.0 - 

7 156573 31.0 - 

8 273403 55.0 - 

9 369686 6.6 5.6 

10 638495 7.5 5.0 

11 Resveratrol* 21.9 - 

ROUND II 

12 31761 17.9 - 

13 155590 3.5 2.4 

14 163797 15.7 6.3 

15 401220 2.0 1.8 

16 631366 28.9 19.5 

17 648419 20.5 - 

ROUND III 

18 7388 13.7 - 

19 17061 6.1 - 

20 26679 26.5 - 

21 34688 26.2 - 

22 36798 7.8 - 

23 37214 1.9 0.6 

24 52934 13.7 - 

25 112806 25.9 - 

26 126395 3.6 1.5 

27 136955 5.7 - 

28 150537 16.3 - 

29 153166 1.3 1.2 

30 155497 1.7 - 

31 170006 1.6 0.9 

32 209920 9.3 - 

33 269124 18.5 - 

34 348718 5.0 - 

35 348905 13.9 - 

36 402887 36.4 - 

37 408014 31.4 - 

38 607391 46.1 - 

39 647364 48.8 - 

40 647369 44.8 - 

41 664154 1.8 0.9 

Highlighted rows in bold correspond to ligands, chosen for optimization in subsequent protocol 

rounds.  For Round III, the hits from both Round I and II were chosen.  IC50s were determined as 

described in Methods.  For more potent ligands, N1L concentration of 0.5 µM was used in 

competitive binding experiments to obtain better IC50 values (IC50 asymptotically approaches 

true KD with the decrease of a receptor concentration).  
*
Resveratrol was added to the compound 

list because of its structural similarity to ligand 3 (ID10) (Table 1). 
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Supplementary Materials and Methods 

Discovery of Initial N1L Inhibitor Hits.  The initial hits were discovered by using standard virtual 

ligand screening (VLS) protocol as implemented in the ICM program
1
.  The VLS experiments 

were performed with each of 125 receptor conformers, retained after Bim peptide docking.  The 

ligand database, used for in silico docking, was constructed from complete NCI database by 

clustering it by chemical similarity (as implemented in the ICM program).  The final database 

contained approximately 10000 diverse ligands.  For each N1L conformer, top predicted binders 

were retained (the ICM docking score cutoff was applied).  The hit lists for each conformer were 

than pooled together.  The hit list was then sorted by the docking score and redundant ligand 

entries were eliminated.  This procedure produced the intersection of the top binders across 125 

N1L conformers.  The set of top predicted binders was further clustered by chemical similarity, 

and cluster representatives were ordered from NCI for in vitro screening.   

In Vitro Driven In Silico Optimization of Both Receptor and Ligands. The basic idea of the 

ligand optimization protocol is schematically represented in the Supplementary Figure 3.  At 

each round of the protocol two information pools are maintained: a collection of validated 

ligands and a collection of validated receptor conformers organized into subensembles.  Within 

the protocol framework a validated ligand is defined as a compound, which passed a battery of 

independent in vitro tests.  A validated conformer subensemble is defined as a set of receptor 

conformers where a validated ligand achieved the best docking score with at least one of the con-

formers.  These information pools are updated with refined ligand scaffolds and receptor 

conformers during iterative application of the protocol.  The receptor conformers can persist 

from iteration to iteration, while only derivatives of validated ligands are passed to the next 

iteration. 
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The progression from one iteration of the protocol to another is as follows.  First, a new 

collection of receptor conformers is formed based on the current.  To form the new conformer 

collection, each validated ligand is docked into each conformer from current collection using 

standard VLS protocol (as implemented in ICM program), and for each ligand its best receptor 

conformers are selected (based on the ICM docking score).  Then, the side chains of conformers 

in the vicinity of a bound ligand are optimized by biased probability Monte Carlo (BPMC) (see 

Flexible Ligand Docking).  BPMC generates a stack of low energy most probable receptor/ligand 

complex conformations from which at least five are selected.  These new conformations are 

appended to the current conformer collection.  At this stage a new collection of receptor 

conformers can contain hundreds of members.  Then, each ligand is docked using VLS protocol 

into each of the conformers, and new subensembles are formed for each ligand from its top 

scoring conformers.  At least 25 receptor conformers were selected for each ligand.  A new 

subensemble can contain both old and new receptor conformers; different subensembles can 

contain the same conformers.  The conformers, which were not included into any of the 

subensembles, are eliminated.   

Next, a new set of compounds for the next optimization round is compiled based on 

chemical fingerprint similarity (as implemented in the ICM program) to the current validated 

ligands.  To increase the probability of the scaffold hopping event, the chemical search based on 

the chemical fingerprint is used instead of substructure-based search because the chemical 

fingerprint lacks the topological information.  The ligand derivatives are searched in the 

complete ligand database (NCI database, ≈ 270,000 compounds). The top closest 100 ligand 

derivatives (based on a Tanimoto distance) are retained.  The new compound set is then docked 

against updated receptor conformers using VLS protocol, and the top binders for each conformer 
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are retained (the score cutoff is applied).  The hit lists for each conformer were then pooled 

together.  At this point, the joint hit list might contain multiple entries of the same ligands if they 

scored high in multiple receptor conformers.  The hit list was then sorted by the docking score 

and redundant ligand entries were eliminated.  This procedure leaves us with the intersection of 

the top binders across updated collection of N1L conformers.  The set of top predicted binders 

was further clustered by chemical similarity, and cluster representatives were ordered from NCI 

for in vitro screening.   

The new in vitro validated ligand collection is formed as follows.  If a derivative has 

better in vitro properties than the original validated ligand, then it is added to a new set of 

validated ligands.  If none of the derivatives of a particular validated ligand has led to 

improvement of desired property, than this ligand, its derivatives and corresponding 

conformational subensemble are eliminated (Supplementary Figure 3B).  The desired properties 

could be the IC50 values, cellular permeability and non-specific toxicity, protein tertiary structure 

stabilization by ligands (obtained by DSC), specificity (from cross-reactivity and DSC 

experiments) and so on.  When a subensemble is deleted, its conformers are also deleted but only 

if they do not belong to any other existing subensemble.  Then the procedure is repeated 

iteratively.  The iterative application of the outlined above protocol results in both the structural 

refinement of putative induced-fit-like receptor conformations and the optimization of ligand 

scaffolds toward the desired in vitro properties. 

Flexible Ligand Docking.  In the ICM implementation, flexible ligand docking is performed via 

global optimization of the energy function 
2,3
.  The energy terms are based on the all-atom 

vacuum force field ECEPP/3 
4-6
 with extra terms to account for solvation free energy and the 
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entropic contribution 
7
.  Modified intermolecular energy terms such as van der Waals and 

hydrogen bonding as well as a hydrophobic term may also be added 
1
. 

 The conformational search is based on the stochastic global optimization (SGO) 

procedure 
8,9
 which randomly selects a conformation in the internal coordinate space 

10
 and then 

makes a step to a new random position independent of the previous one, but according to a 

predefined continuous probability distribution.  After each random step, a full local minimization 

is performed to improve the efficiency of the procedure.  Since some energy terms have no 

analytical derivatives, a double-energy SGO method 
10
 circumvents this obstacle by minimizing 

the energy with respect to the differentiable terms but calculating the full energy with the non-

differentiable terms.  This double-energy scheme allows for the incorporation of complex energy 

terms, such as surface-based solvation energy into the global optimization process. 

 During the search for the energy minimum in the conformation space of the ligand-

receptor system, the internal coordinates of the ligand as well as its position are allowed to 

change, and also side chains of the active site of the receptor are free to move.  Each step of the 

algorithm consists of a random conformational change of one of two types, torsional and 

positional, followed by local minimization as described above.  A torsional move involves 

randomization within a subspace of torsional angles.  A positional move involves a pseudo-

Brownian random translation and rotation of the ligand as whole 
10
.  The associated energy 

includes a van der Waals term, a hydrophobic term based on the solvent accessible surface 

buried upon binding, a solvation electrostatic term computed as a boundary-element solution of 

the Poisson equation, a hydrogen-bond terms and the entropic term 
1
. 

Virtual Ligand Screening.  The ICM VLS method was used as previously described 
11
.  The 

portion of the single N1L monomer within 5.0 A of the docked Bim peptide was selected for 
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ligand docking.  Five grid potential maps, representing receptor selection, were generated.  These 

maps accounted for the hydrophobic, heavy atom and hydrogen van der Waals interactions, 

hydrogen-bonding interactions and electrostatic potential.   Ligand molecules were prepared for 

docking by energy minimization in the absence of the receptor, and the lowest energy 

conformations were used as starting points for simulations of docking to N1L potential maps by 

the ICM method 
7,12
.  The quality of ligand pose prediction was evaluated by assigning the 

docking score, generated by the ICM scoring function 
13
.  Since the ICM docking method has a 

stochastic element, the docking simulations were conducted at least three times to ensure 

convergence.  The ligand conformations with the lowest (best) scores were retained.  The 

docking score of –32.0 was considered statistically significant score cutoff. 

Computational Facilities.  The Scripps Research Institute maintains a large 64-bit Linux cluster, 

Garibaldi, on the La Jolla campus to support scientific computation and data processing.  The 

Garibaldi cluster has a total of 3936 CPUs available for computations.  Between local and shared 

disks the Garibaldi cluster has over 60 terabytes of disk space available for computational data.  

The Garibaldi cluster uses the Portable Batch System (PBS) for job queuing to ensure maximum 

system throughput. 

 

References 

1. Abagyan, R. & Totrov, M. High-throughput docking for lead generation. Curr Opin 

Chem Biol 5, 375-382 (2001). 

2. Abagyan, R. & Argos, P. Optimal protocol and trajectory visualization for 

conformational searches of peptides and proteins. Journal of Molecular Biology 225, 

519-532 (1992). 

3. Abagyan, R.A. & Mazur, A.K. New methodology for computer-aided modelling of 

biomolecular structure and dynamics. 2. Local deformations and cycles. Journal of 

Biomolecular Structure & Dynamics 6, 833-845 (1989). 



 S13 

4. Momany, F., McGuire, R., Yan, J. & Scheraga, H. Energy parameters in polypeptides. 

IV. Semiempirical molecular orbital calculations of conformational dependence of energy 

and partial charge in di- and tripeptides. J Phys Chem 75, 2286-2297 (1975). 

5. Nemethy, G., Pottle, M. & Scheraga, H. Energy parameters in polypeptides. 9. Updating 

of geometrical parameters, nonbonded interactions and hydrogen bond interactions for 

the naturally occuring amino acids. J Phys Chem 87, 1883-1887 (1983). 

6. Nemethy, G. et al. Energy parameters in polypeptides. 10. Improved geometrical 

parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with 

application to proline-containing peptides. J Phys Chem 96, 6472-6484 (1992). 

7. Totrov, M. & Abagyan, R. Flexible protein-ligand docking by global energy optimization 

in internal coordinates. Proteins Suppl 1, 215-220 (1997). 

8. Abagyan, R., Totrov, M. & Kuznetsov, D. ICM: a new method for structure modeling 

and design: Applications to docking and structure prediction from the distorted native 

conformation. Journal of Computational Chemistry 15, 488-506 (1994). 

9. Abagyan, R. & Totrov, M. Ab initio folding of peptides by the optimal-bias Monte Carlo 

minimization procedure. J Comp Chem 151, 402-421 (1999). 

10. Abagyan, R. & Totrov, M. Biased Probability Monte-Carlo Conformational Searches and 

Electrostatic Calculations For Peptides and Proteins. Journal of Molecular Biology 235, 

983-1002 (1994). 

11. Schapira, M., Abagyan, R. & Totrov, M. Nuclear hormone receptor targeted virtual 

screening. Journal of Medicinal Chemistry 46, 3045-3059 (2003). 

12. Totrov, M. & Abagyan, R. Protein-ligand docking as an energy optimization problem. in 

Drug-receptor thermodynamics: Introduction and applications (ed. Raffa, R.B.) 603-624 

(John Wiley & Sons, Ltd., 2001). 

13. Totrov, M., Abagyan, R. Derivation of Sensitive Discrimination Potential for Virtual 

Ligand Screening. in Proceedings of the Third Annual International Conference on 

Computational Molecular Biology (ed. Istrail, S., Pevzner, P., Waterman, M.) 

(Association for Computing Machinery, New York, 1999). 

 

 

 


