The *Drosophila* gene coding for the α subunit of a stimulatory G protein is preferentially expressed in the nervous system

(guanine nucleotide-binding protein/signal transduction/in situ hybridization)

FRANKLIN QUAN, WILLIAM J. WOLFGANG, AND MICHAEL A. FORTE*

Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201

Communicated by Alfred G. Gilman, March 6, 1989 (received for review December 6, 1988)

In mammals, the α subunit of the stimulatory ABSTRACT guanine nucleotide-binding protein ($G_s \alpha$) functions to couple a variety of extracellular membrane receptors to adenylate cyclase. Activation of $G_s \alpha$ results in the stimulation of adenylate cyclase and an increase in the second messenger cAMP. A 1.7-kilobase cDNA has been identified and characterized from Drosophila that codes for a protein 71% identical to bovine $G_s \alpha$. The similarity is most striking in the regions thought to be responsible for the interactions with receptors and effectors. suggesting that the basic components of this signal-transduction pathway have been conserved through evolution. RNA blot hybridization and DNA sequence analysis suggest that a single transcript, expressed predominantly in the head, is present in Drosophila. In situ hybridization studies indicate that the Drosophila $G_s \alpha$ transcript is localized primarily in the cells of the central nervous system and in the eyes.

Guanine nucleotide-binding (G) proteins couple the receptors for a wide variety of extracellular signals to a number of intracellular effector systems in the production of diverse biological effects. Upon interaction with an activated receptor, the G-protein α subunit (G α) exchanges bound GDP for GTP. The activated α subunit dissociates from the receptor and β/γ subunits to interact with effector enzymes or ion channels (1–3). The intrinsic GTPase activity of the α subunit then hydrolyzes the bound GTP to GDP to return the complex to the unstimulated state. In this scheme, the α subunit is responsible for the specific interaction with both the receptor and the effector, while the β/γ subunits appear to inactivate the α subunit and may anchor the complex to the membrane (1–3). Thus, different G proteins have different α subunits but similar or identical β/γ subunits.

Classification of G proteins is based historically on the functional interaction of α subunits with specific effector proteins. For example, transducins are responsible for the activation of the cGMP phosphodiesterase in the retina. G_s and G_i stimulate and inhibit adenylate cyclase, respectively. G_o is an abundant G protein in the nervous system whose function has yet to be determined. Molecular cloning of cDNAs coding for the various α subunits from a number of mammalian sources (4–8) and yeast (9, 10) has demonstrated that distinct molecular forms exist within each functional class of α subunit (11–15). The functional significance of these alternative forms is unclear.

The study of G-protein function has been limited to conventional *in vitro* biochemistry (1–3) and the genetic manipulation of cultured cells (16–19). The association of G-protein alterations with a variety of pathological conditions (20–23), however, points to a critical role for these proteins and the transduction events they mediate in processes that require the complex interaction of many cells. The sophisticated

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

genetics and ease of manipulation of *Drosophila* make it a particularly attractive system in which to study the role of G proteins in complex biological processes such as development and behavior (24). To this end, we have identified cDNAs for a number of $G\alpha$ subunits expressed in the *Drosophila* nervous system. We report here the isolation and characterization of cDNAs that code for a $G_s\alpha$ -like protein from *Drosophila* and show that the *Drosophila* homolog is expressed most abundantly in the nervous system. We believe that this is the first report of a $G_s\alpha$ protein in a nonmammalian organism.[†]

METHODS

Materials. An adult *Drosophila melanogaster* head cDNA library was kindly provided by P. Salvaterra (City of Hope Research Institute, Duarte, CA). The bovine $G_{s\alpha}$ (4) and rat $G_{i\alpha}$ (5) cDNAs were kindly provided by J. D. Robishaw and H. Itoh, respectively.

Isolation of cDNA Clones. The Drosophila head cDNA library was screened under low-stringency conditions with a 1.0-kilobase (kb) Nco I-Mlu I fragment from the bovine $G_s\alpha$ cDNA. This fragment consists exclusively of coding sequence and spans the entire coding region except for the 185 base pairs (bp) coding for the carboxyl terminus of the protein. Hybridizations were carried out in 25% (vol/vol) formamide/5× SSC/5× Denhardt's solution/50 mM sodium phosphate, pH 6.8/10% (wt/vol) dextran sulfate at 37°C (1× SSC is 0.15 M NaCl/0.015 M sodium citrate, pH 7; 1× Denhardt's solution is 0.02% Ficoll/0.02% bovine serum albumin/0.02% polyvinylpyrrolidone). Filters were washed in 0.5× SSC at 50°C.

Nucleotide Sequencing. Restriction fragments were sequenced by the dideoxy method (25) with double-stranded templates (26) after subcloning into pBS(M13-) (Stratagene).

Northern and Southern Blots. Total RNA was prepared as described (27). $Poly(A)^+$ RNA was selected on oligo(dT)-cellulose (Collaborative Research), electrophoresed in 1.2% agarose/6% formaldehyde gels, and blotted to Nytran (Schleicher & Schuell). Hybridizations were done in 50% formamide/5% SDS/0.4 M sodium phosphate, pH 7.2/1 mM EDTA at 37°C. Washes were done in 0.1× SSC at 65°C. Southern blots were hybridized under low-stringency conditions as described above. High-stringency blots were hybridized in the same buffer containing 50% formamide/3× SSC and washed in 0.1× SSC at 65°C.

Chromosomal Localizations. *In situ* hybridizations to polytene chromosomes were done by using biotinylated probes as described (28) except that the probes were made with biotin-

Abbreviations: G protein, guanine nucleotide-binding protein; G α , G-protein α subunit.

^{*}To whom reprint requests should be addressed.

[†]The sequence reported in this paper has been deposited in the EMBL/GenBank data base (accession no. M23233).

21-dUTP (Clontech) and detected with a horseradish peroxidase system (Vector Laboratories).

Hybridizations to Tissue Sections. Hybridization to tissue sections was done with RNA probes generated in vitro by using either T3 or T7 promoters after the subcloning of the appropriate fragments into pBS(M13-). RNA transcripts were labeled using $[\alpha - [^{35}S]$ thio] UTP. RNA was prepared and hybridized to 8- μ m tissue sections that had been fixed with 4% formaldehyde, then treated in 0.2 M HCl for 20 min, $2 \times$ SSC for 30 min at 60°C, proteinase K at 37°C for 15 min, and 4% formaldehyde for 20 min, and then acetylated and dried (29). After hybridization overnight at 50°C, slides were rinsed briefly in $4 \times$ SSC and then incubated for 15 min at 60°C in 50% formamide/0.3 M NaCl/30 mM Tris, pH 7.5/1 mM EDTA/10 mM dithiothreitol. This procedure greatly improved the signal-to-noise ratio. Slides were then washed in 4 liters of $2 \times$ SSC (room temperature, 30 min), $0.1 \times$ SSC (55°C, 10 min), and $0.1 \times$ SSC (room temperature, 10 min). Slides were dried and coated with photographic emulsion (Kodak NTB2).

RESULTS AND DISCUSSION

Approximately 5×10^5 recombinant phage from the *Drosophila* head cDNA library were screened with the 1.0-kb *Nco I-Mlu I* fragment from the bovine $G_{s\alpha}$ cDNA, and 13 positive phage clones were isolated. Restriction analysis placed these isolates into two groups. The major group consisted of 12 recombinants containing inserts of 1.4-1.7 kb. Southern blot analysis showed that this group hybridized strongly to the bovine $G_{s\alpha}$ cDNA and weakly to a rat $G_{i\alpha}$ cDNA (data not shown). The longest member of this group, $\lambda DGs12$, was chosen for nucleotide sequence analysis (Fig. 1*a*).

The nucleotide sequence and deduced amino acid sequence of $\lambda DGs12$ are shown in Fig. 1b. $\lambda DGs12$ contains an open reading frame coding for a protein of 385 residues (45,003 Da). The assignment of the initiator ATG is based on the homology with the deduced amino acid sequences of other G α subunits, most of which begin with the sequence Met-Gly-Cys (4-8). In addition, the nucleotide sequence around the proposed initiator ATG, CTGCGATGG, is a good match to the Kozak consensus sequence for translation initiation, $CC_{G}^{A}CCATG(G)$ (30), matching in seven of nine positions (underlined). However, this sequence does not match a consensus sequence, $\overset{C}{A}AA\overset{A}{C}CATG$, proposed for Drosophila initiation codons (31). The 5' untranslated region contains two additional ATG codons, at positions -252 and -242, followed by 22-codon and 10-codon open reading frames, respectively. Only the ATG at -252 is in the same reading frame as the initiator ATG. This 5' untranslated sequence is found in at least two additional, independently isolated cDNAs. The 3' untranslated region of λ DGs12 is 194 nucleotides long and terminates in a stretch of 5 adenine residues. Nucleotide sequencing of the 3' untranslated region of two additional independent isolates demonstrated that these cDNAs terminated at the same site but with poly(A) tracts of 14-25 residues. A pair of overlapping consensus polyadenylylation signals (32) are located 12 and 16 bp upstream of these adenine residues.

Fig. 2 shows a comparison of the deduced amino acid sequence of $\lambda DGs12$ to those of $G\alpha$ subunits representative of the various vertebrate G-protein classes (4–8). From this comparison it is evident that $\lambda DGs12$ is a cDNA coding for a $G\alpha$ protein. Taking into account only identical residues, the *Drosophila* protein has an amino acid homology of 71% to the long form of bovine $G_s\alpha$. The level of homology to $G_i\alpha$, $G_o\alpha$, and transducin is lower but still significant (41–44%). The similarity is highest in the four regions of homology that have been identified between the G α subunits, the *ras* oncogene proteins, and bacterial elongation factor Tu (1–8). These highly conserved regions (A, C, E, and G) are thought to be responsible for guanine nucleotide binding and hydrolysis (33, 34). These regions are also highly conserved in this *Drosophila* G α cDNA (Fig. 2). Region C is identical in the *Drosophila* and vertebrate G proteins. Regions A and G are identical to the corresponding regions of bovine G_s α and 73– 78% identical to rat G_i α and bovine G_o α . Region E is less conserved but is still 78% and 56% identical with G_s α and G_i α .

In mammals, the alignment of the deduced amino acid sequence of the various $G\alpha$ polypeptides has shown that $G_{s}\alpha$ is the most divergent member of the G α family (1-8). As noted earlier, the protein coded for by λ DGs12 has a much higher overall homology to $G_{s\alpha}$ (71%) than to any other of the G α subunits (41–43%). In fact, the Drosophila protein is virtually identical to $G_{s}\alpha$ in many of the regions where $G_{s}\alpha$ diverges from the other $G\alpha$ subunits. For example, residues 32-45 of the Drosophila protein are virtually identical to residues 29-42 of bovine $G_{s\alpha}$, matching in 14 of 15 positions. In contrast, only 2 of these residues match the corresponding regions of $G_i \alpha$ and $G_0 \alpha$. The homology to $G_s \alpha$ is also striking in regions interspersed between the postulated guanine nucleotide contact sites, which are thought to carry out the various functions of the G α chains (34). In these models of a composite $G\alpha$ protein, interaction with effector protein has been assigned to the region between the first two guanine nucleotide-binding regions (A and C, Fig. 2). The protein encoded by λ DGs12 and the smaller form of bovine G_s α are 65% identical in this region. The region of receptor interaction has been assigned to the carboxyl-terminal region. Recent studies using chimeric cDNA constructs have suggested that the carboxyl terminus is responsible as well for some portion of effector interaction (19). As shown in Fig. 2, the Drosophila protein and bovine $G_s \alpha$ are 92% identical over the last 64 amino acid residues. The Drosophila protein and other $G\alpha$ proteins are only 27-30% identical over this region. We propose that $\lambda DGs12$ codes for a *Drosophila* $G_s \alpha$ subunit and thus, that this protein interacts with the same classes of receptors and effectors in *Drosophila* as mammalian $G_s \alpha$. This possibility can be tested directly by assessing the ability of Drosophila $G_{s\alpha}$ to functionally complement the lack of endogenous $G_{s}\alpha$ in murine S49 cyc⁻ cells (35).

Protein studies have shown that vertebrate $G_{s}\alpha$ is structurally heterogeneous, existing as at least two species with apparent molecular weights of 45,000 and 52,000 in SDS/ polyacrylamide gels (1-3). Molecular cloning studies have demonstrated the existence of multiple vertebrate $G_s \alpha$ mRNAs, produced by a single gene, that code for proteins varying in both the number and sequence of residues in the region corresponding to amino acids 72-88 of the largest form of $G_s \alpha$ (11, 12). λDG_{s12} is missing amino acids 72-86 of the long form of bovine $G_s \alpha$ (Fig. 2). Thus, $\lambda DGs12$ corresponds most closely to the smaller forms of $G_s \alpha$ found in mammalian tissues. To determine whether we had isolated cDNAs coding for forms of *Drosophila* $G_{s\alpha}$ that also vary in this region, this region of the remaining 11 $G_s \alpha$ isolates was sequenced by using a primer based on the nucleotide sequence of $\lambda DGs12$. All 11 were found to be identical to $\lambda DGs12$ in this region. It is possible, however, that variant forms of Drosophila $G_s \alpha$ exist but are expressed at low abundance, in different tissues, or at specific developmental stages and thus were missed in the initial screening. Alternatively, Drosophila $G_s \alpha$ subunits may be subject to variation in different regions of the protein.

The Drosophila $G_s \alpha$ appears to be a cholera toxin substrate but not a pertussis toxin substrate. The sequence around Arg-189 is essentially identical to that of bovine $G_s \alpha$ around Arg-201, the residue modified by cholera toxin (36). Pertussis toxin modifies susceptible G proteins at a cysteine residue

C														-29	99-C1	CGC	ACCO	GAGTO	GTGC -2	CACC1 280	ATAC	TCT	GGCC	CGAA -2	.GTTG 60	стсс	CATG	AATA	аааа -2	ATGT
	TCG	CCTG	CTGC	AGAG	ATCC/	ACTG	AGCO	GCTG	AGCC/	AACG0 -200	CAAC	GGTO	GTG	CAC	rgag# -180	TCGO	GAGAT	CGG	GATO	GCA0	ACCO	GAG	CCG	CGAG	CACA	CAAG	GGAT	TGTG	GTTI -	GAT
	CCG	GGAJ	ACCC	AAGCI	остси -10	AGCTJ)	ATAC	GGAC	GCAG	ACGO -8	GAGAJ	AGC	ACAA	GGGG	rGCC0 -60	GAGTO	AGTCGCCCGACGCGAACCAGGAAAACCGAGCGACGTGTTGGTGGACCCCGTGGGCTGC -40 -20										rgcg			
	1 MET ATG 1	Gly GGT	Cys TGC	Phe TTT	Gly GGG	Ser TCG	Pro CCC 20	Thr ACC	Ser TCC	10 Lys AAG	Gln CAG	Ser TCG	Asp GAC	Val GTG 40	Asn AAC	Ser TCG	Glu GAG	Asp GAC	Ser TCG	20 Lys AAG 60	Ser AGC	Gln CAG	Lys AAG	Arg CGC	Arg CGG	Ser AGC	Asp GAT 80	Ala GCA	Ile ATA	30 Ser TCT
	Arg AGA	Gln CAG	Leu TTG 1	Gln CAG D0	Lys AAG	Asp GAC	Lys AAA	Gln CAG	Leu CTC	40 Tyr TAC 120	Arg AGG	Ala GCC	Thr ACA	His CAC	Arg AGG	Leu CTG	Leu CTC 140	Leu CTC	Leu CTG	50 Gly GGG	Ala GCG	Gly GGC	Glu GAG 10	Ser TCC 50	Gly GGC	Lys AAA	Ser TCA	Thr ACC	Ile ATA	60 Val GTC 180
	Lys AAG	Gln CAA	MET ATG	Arg CGA	Ile ATA	Leu TTG	His CAT 200	Val GTC	Asp GAC	70 Gly GGA	Phe TTT	Ser TCT	Asp GAC 2	Ser TCG 20	Glu GAA	Lys AAG	Lys AAA	Gln CAG	Lys AAA	80 Ile ATT 240	Asp GAT	Asp GAT	Ile ATT	Lys AAA	Lys AAG	Asn AAT	Ile ATT 260	Arg CGA	Asp GAC	90 Ala GCT
	Ile ATC	Leu TTG	Thr ACT	Ile ATT 280	Thr ACA	Gly GGA	Ala GCC	MET ATG	Ser AGC	100 Thr ACA 300	Leu CTT	Asn AAT	Pro CCA	Pro CCT	Val GTA	Ala GCT	Leu TTA 320	Glu GAA	Lys AAG	110 Lys AAG	Glu GAA	Asn AAT	Glu GAA 3	Pro CCC 40	Arg AGA	Val GTG	Glu GAG	Tyr TAC	Ile ATT	120 Gln CAG 360
	Asp GAT	Tyr TAT	Ala GCA	Ser TCT	Ser AGT	Pro CCG	Asp GAC 380	Phe TTT	Asn AAT	130 Tyr TAT	Prc CCT	Pro CCT	Glu GAA 4	Phe TTT 00	Tyr TAT	Glu GAA	His CAT	Thr ACA	Glu GAA	140 Glu GAA 420	Leu CTA	Trp TGG	Lys AAA	Asp GAC	Lys AAG	Gly GGC	Val GTT 440	Leu CTT	Gln CAA	150 Thr ACC
	Tyr TAT	Glu GAG	Arg AGG	Ser TCG 460	Asn AAT	Glu GAG	Tyr TAT	Gln CAA	Leu TTA	160 Ile ATC 480	Asp GAT	Cys TGT	Ala GCG	Lys AAA	Tyr TAC	Phe TTC	Leu CTG 500	Asp GAC	Arg CGA	170 Val GTG	Ser AGC	Thr ACA	Ile ATC 5	Lys AAG 20	Asn AAT	Pro CCA	Asn AAC	Tyr TAC	Thr ACC	180 Pro CCT 540
	Asn AAT	Glu GAG	Gln CAG	Asp GAT	Ile ATT	Leu CTT	Arg CGG 560	Cys TGC	★ Arg CGT	190 Val GTT	Leu TTG	Thr ACT	Ser TCT 5	Gly GGA 80	Ile ATA	Phe TTT	Glu GAA	Thr ACA	Arg AGA	200 Phe TTT 600	Gln CAA	Val GTG	Asp GAC	Lys AAA	Val GTA	Asn AAC	Phe TTT 520	His CAC	MET ATG	210 Phe TTC
	Asp GAT	Val GTC	Gly GGT	Gly GGC 640	Gln CAG	Arg CGG	Asp GAC	Glu GAG	Arg CGT	220 Arg AGG 660	Lys AAA	Trp TGG	Ile ATT	Gln CAG	Cys TGT	Phe TTC	Asn AAT 680	Asp GAT	Val GTA	230 Thr ACT	Ala GCT	Ile ATC	Ile ATA 7	Phe TTC 00	Val GTA	Thr ACT	Ala GCG	Cys TGC	Ser TCA	240 Ser AGT 720
	Tyr TAT	Asn AAC	MET ATG	Val GTT	Leu TTG	Arg CGG	Glu GAA 740	Asp GAT	Pro CCC	250 Thr ACC	Gln CAG	Asn AAC	Arg CGA 7	Leu CTT 60	Arg CGA	Glu GAA	Ser TCT	Leu TTG	Asp GAT	260 Leu TTG 780	Phe TTC	Lys AAG	Ser AGT	Ile ATT	Trp TGG	Asn AAC	Asn AAC B00	Arg AGA	Trp TGG	270 Leu CTT
	Arg CGC	Thr ACG	Ile ATT	Ser TCT 820	Ile ATT	Ile ATA	Leu CTA	Phe TTT	Leu TTA	280 Asn AAT 840	Lys AAG	Gln CAA	Asp GAT	Leu TTG	Leu TTA	Ala GCA	Glu GAG 860	Lys AAA	Ile ATT	290 Lys AAG	Ala GCT	Gly GGA	Lys AAA 8	Ser AGT 80	Lys AAA	Leu TTG	Ser TCG	Glu GAA	Tyr TAT	300 Phe TTC 900
	Ser TCC	Glu GAG	Phe TTT	Asn AAC	Lys AAA	Tyr TAC	Gln CAA 920	Thr ACG	Pro CCA	310 Ile ATC	Asp GAC	Thr ACA	Gly GGT 9	Asp GAC 40	Ala GCA	Ile ATA	MET ATG	Glu GAA	Ser TCC	320 Asn AAT 960	Asp GAC	Asp GAC	Pro CCA	Glu GAA	Val GTA	Ile ATA	Arg CGA 980	Ala GCA	Lys AAA	330 Tyr TAT
	Phe TTC	Ile ATA	Arg CGA 10	Asp GAC 00	Glu GAG	Phe TTT	Leu CTG	Arg CGT	Ile ATA	340 Ser TCT 1020	Thr ACC	Ala GCT	Ser AGC	Gly GGA	Asp GAC	Gly GGA 1	Lys AAA 340	His CAC	Tyr TAC	350 Cys TGC	Tyr TAT	Pro CCA	His CAT 10	Phe TTC 60	Thr ACA	Cys TGC	Ala GCC	Val GTT	Asp GAC	360 Thr ACA 1080
	Glu GAA	Asn AAC	Ile ATT	Lys AAA	Arg CGT	Val GTG 1	Phe TTT 100	Asn AAT	Asp GAT	370 Cys TGC	Arg AGA	Asp GAC	Ile ATT 11	Ile ATT 20	Gln C AA	Arg AGG	MET ATG	His CAC	Leu CTT	380 Arg CGT 1140	Gln CAA	Tyr TAT	Glu GAA	Leu TTG	Leu TTA	TAG 1	GTT. 160	ATCC	CCAT	390 CGCC
	GTA	ATGC 1180	AAGT	AAAT	AAAA	ATAT	TAAT 1200	GACT	таст	GTTT	TAAA	TATA 1220	АТТА	TCAA	ATGT	AATT	TGTA 1240	TTTA	ААТА	GTCC	CTTG	ATTA 1260	AAAC	AAAA	AATT	CGCT	GCAT 1280	TTAG.	ATCT	GGTA

ТGACCTTTCACAAAACTCAACATTAAAGAAT<u>AAATAAA</u>CAAGATGTTAATAAACAAAAA-1350 1300 1320 1340

FIG. 1. (a) Restriction map and sequencing strategy of λ DGs12. The coding region (nucleotides 1–1155) is indicated by the bar. Arrows indicate the extent and direction of sequencing. (b) Nucleotide sequence and deduced amino acid sequence of λ DGs12. Nucleotide 1 is the first nucleotide of the ATG translation start codon. The potential site of ADP-ribosylation by cholera toxin is indicated by an asterisk. The translation termination codon is indicated by a dot. Potential polyadenylylation signals are underlined.

DGs12	1-74	MGCFGSE	TSKQSD	nsedsksqr	RRSDAIS	SRQLQKDI	QLYRATH	RLLLLGAGESC	KSTIVKQ	MRILHVDGFSI)\$	
Gsα	1-84	MGCLGN-	-SKTED	ORNEE-KOOF	REANKKI	EKOLOKDI	QVYRATH	RLLLLGAGESC	KSTIVKQ	MRILHVNGFNO	SEGGEEDPQAARS	SNS
$Gi\alpha$	1-68	MGCTVS-		—aed-kaa <i>i</i>	ERSKMI	OKNLREDO	SEKAAREV	KLLLLGAGESG	KSTIVKQ	MKI I HEDGY-	-SEEECRQ	
Goα	1-68	MGCTLS-		—AEE-RAAI	ERSKAI	EKNLKEDO	SISAAKDV	KLLLLGAGESG	KSTIVKQ	MKIIHEDGF-	—SGEDVKQ——	
T α 1	1-64	MGAGAS			-HGRELI	сккцкери	AEKDARTV	KLLLLGAGESC	KSTIVKQ	мкцінфодУ—	SLEECLE	
DGs12	75-159			JTRDATLTT	GAMSTL	VPPVALE	KENEPRV	ENTODYASSET	FNYPPEF	YEHTERLWKD	GVLOTVERSNEY	'0T
00010	05 174	DODUM	-		20 AMONT	houter	IDENOEDU		EDEDDEE			~~~
GSU	00-1/1	DGENAI	AND THE		WAMSHU	м <u>ее</u> мыцаг этр фарри	VERVER VI		CMIDEDI	I EHAKALWEDI	GVRACIERSNET	QL
Giù	09-145		WDURWC	TI DSI PAU	THAM	TENCER	ZRADDARGQ	LL ALSCHAFF	CMLPEDL	SGVIRRLWAD	IG VQACE GRSRE I	QL
Gou	69-145		TRPVVIS					VCDVVSRMEDI	EPF SPEL	LSAMMRLWGU	GIQECI NKSKEY	QL
$T\alpha_1$	65-144	·1	ПАЩХС	auroarnan,	RAMITLI	JIQYGDS#	IKODDAKK	LMHMADIIELO	тме-кем	SDIIQKLWKD	GIQACEDRASEY	QL
DGs12	160-24	6 IDCAKYI	LDRVST	I KNPNYI PNE	QDILRC	RVLTSGI	TETRFQVD	KVNFHMFDVGG	QRDERRK	WIQCFNDVTA	IFVTACSSYNM	LR
Gen	172-25	RITDCAGY	LDKTDV		DDDLRCI	RVLTSGIE	ETKEOVD	KVNEHMEDVGO	ORDERRK	WIOCENDVTA	TEVNASSSYNM	ſтЪ
Gia	150-23	6 NDSAAY	DINDLER	AOSDYLETC	ODVLR	RVKmmGTN	ETHETEK	DLHEKMEDVGO	ORSERKK	WINCFEGVTA	TECVALSAVDIA	/1.A
60 0	150-23	6 NDSAKY	LDSLDB	IGAADYOPTH		RVKIITGT	/ETHETEK	NLHERIEDVGO	ORSERKK	WTHCFEDVTA	TECVALSCYDO	лн
τα1	145-23		USDLER	VTPCYVPT	ODVLRS	RVKTTGT	ETOFSEK	DINFRMEDVGO	ORSERKK	WTHCFEGVTO		πh.
101	10 20		Moo na c			G			20°ED-61			
DGs12	247-33	3EDPTQNI	RESID	LFKSIWNNRW	VLRTISI	ILFLNKQI	LLAEKIK.	AGKSKLSEYFS	EFNKYDT	PIDIGDAIME	SNDDPEVIRAKYF	IR
Gsα	259-34		RLOEALN	LFKSIWNNRW	VLRTISV	ILFLNKQI	LLAEKVL	AGKSKIEDYFF	EFARYTT	PEDATPEPGE		IR
Gi α	237-30	5 EDEEMNI	MHESMK	LEDS ICNNR	FTDTSI	ILFLNKK	LFEEKIT	QSPLTICFF	EYTGANK	YDEAAS	Y	ЪБ
Goα	237-30	5 EDETTIN	MHESIM	LEDS ICNNK	FIDISI	ILFINKK	DIFGERIK	- KSPLTICFF	EYTGSNT	YEDAAA	Y	ΠÕ
Τα1	232-30		MHESLH	LENS ICNHRY	FATTS	Vlflnkki	VFSEKIK		DYNGPNT	YEDAGN	У	IK
						······						0
DGs12	334-38	5 DEFLRIS	STASGDG	KHYCYPHFT(CAVDTEN	IKRVFNDO	CRDIIQRM	HLRQYELL				
Gsα	343-39	4 DEFLRIS	STASGDG	RHYCYPHSTO	CAVDTEN	IRRVFNDO	CRDIIQRM	HLRQYELL				
$\texttt{Gi}\alpha$	306-35	5 SKFEDLI	VKRKDTK	E-IYTHETO	CATIDITIAN	VQFVFDAV	TOVIIKN	NLKDCGLF				
Goα	306-35	4 Adreski	VRSPN-K	E-IYCHMT	ANDTHN	IQVVFDAV	TDIIIAN	NLRGCGLY				
T a 1	301-35	0 vdfileri	MRRDVK	E-IYSHMT	ADTOTA	VERVEDAV	лрііке	ицкоссце				

FIG. 2. Alignment of the deduced amino acid sequence (standard one-letter symbols) of the *Drosophila* $G\alpha$ subunit with those of bovine $G_{s\alpha}$, $G_{o\alpha}$, and transducin (T α 1) and rat $G_{i\alpha}$. Only residues identical to those of the *Drosophila* subunit have been boxed. The postulated guanine nucleotide-binding regions (A, C, E, G) are indicated.

found in the conserved sequence Cys-Gly-Leu-(Phe/Tyr) at the carboxyl terminus (36, 37). The *Drosophila* $G_s\alpha$ subunit ends in the sequence Tyr-Glu-Leu-Leu (Fig. 1b).

Southern blot analysis of Drosophila genomic DNA with λ DGs12 as a probe was consistent with the presence of a single gene for $G_{s\alpha}$ (Fig. 3). A single major band of hybridization was seen after digestion of genomic DNA with BamHI, EcoRI, HindIII, or Pst I. The additional low molecular weight band seen with Pst I is consistent with the presence of a *Pst* I site in λ DGs12. The minor high molecular weight band seen in the BamHI, EcoRI, and Pst I digests may have resulted from hybridization to related sequences in the Drosophila genome or to partial digestion products. These additional bands may also have resulted from the presence of small portions of $G_s \alpha$ exons in fragments containing mostly intron sequences. A low molecular weight band was seen with EcoRI digests after long autoradiographic exposures (data not shown). No additional bands were seen at low stringency (Fig. 3). In situ hybridization of the biotinylated 1.7-kb fragment of λ DGs12 to polytene chromosomes localized the Drosophila $G_s \alpha$ gene to position 60A of the genome (data not shown). No mutations have been identified that map to this region of the second chromosome.

In Northern blot analysis of poly(A)⁺ RNA isolated from whole adult flies, heads, and bodies, λ DGs12 hybridized to a single transcript of \approx 1.9 kb found predominantly in heads (Fig. 4). No additional transcripts were detected after longer exposures (Fig. 4). When the poly(A) tail is taken into account, it seems likely that λ DGs12 is close to full length.

To examine the distribution of $G_s \alpha$ mRNAs in *Drosophila*, ³⁵S-labeled RNAs were made *in vitro* from a fragment corresponding to the coding sequence of λ DGs12 and hybridized to tissue sections. As seen in dark-field (Fig. 5*a*) and phagecontrast (Fig. 5*b*) microscopic images, the strongest hybridization of antisense RNA was to the cortex (arrows) of the brain, which contains the neuronal cell bodies. Little or no hybridization was detected in the central neuropil, which contains neurites and synapses but no cell bodies. An intermediate level of hybridization was present in the eyes. The cortex of the optic lobes (small arrows) had consistently lower levels of hybridization than the midbrain cortex (big arrows). In addition, the cortex of the ventral ganglion showed hybridization to these probes (data not shown). Little hybridization above background levels was detected in other tissues such as muscles, gut, fat bodies (Fig. 5), and ovaries. Similar results were obtained with a fragment containing only 5' untranslated sequences (data not shown). No differential pattern of hybridization was observed with sense-strand RNA probes. Thus, $G_s \alpha$ message is most abundant in the central nervous system, with less in the eyes. Its restriction to the cell bodies of neurons is consistent with this being the site of transcription and translation. The signal in the eye could not be localized to a particular cell type, although the photoreceptor cells themselves would be likely candidates.

FIG. 3. Southern blot analysis. *Drosophila* DNA was cut with *Bam*HI (B), *Eco*RI (E), *Hind*III (H), or *Pst* I (P) and analyzed by hybridization to the 1.7-kb *Eco*RI fragment of λ DGs12 under high- or low-stringency conditions. Five micrograms of DNA was run in each lane. *Hind*III fragments of λ DNA were used as size (kb) markers.

Neurobiology: Quan et al.

FIG. 4. Northern blot analysis of λ DGs12. Poly(A)⁺ RNA was isolated from heads (H), whole flies (W), and bodies (B). Twenty micrograms of RNA was loaded in each lane. The 1.7-kb EcoRI fragment of $\lambda DGs12$ was used as probe. Short and long exposures of the same blot are shown. Positions of molecular size standards (0.24- to 9.5-kb RNA "ladder," Bethesda Research Laboratories) are indicated.

Its apparent presence in eyes raises the possibility that this $G\alpha$ could participate in phototransduction to couple the absorption of light to phospholipase C, the effector that functions in this system (38). However, the relatively low level of expression in eyes (Fig. 5) and the high sequence homology to vertebrate $G_s \alpha$ suggest that this is unlikely.

The isolation of cDNA clones for Drosophila $G_s \alpha$ has demonstrated the strong conservation of primary sequence with the vertebrate $G_{s\alpha}$ subunit. In situ hybridization to tissue sections has localized its transcript primarily to cells of the nervous system. Recently, cDNA clones coding for Drosophila $G_i\alpha$ -like (ref. 39; F.Q. and M.A.F., unpublished data) and $G_0\alpha$ -like proteins (N. Thambi, F.Q., W.J.W., and M.A.F., unpublished data) have been isolated in addition to the G-protein β -subunit gene (40). A detailed genetic analysis of the function of these proteins is now possible and is expected to provide basic insights into the role of G proteins in complex, multicellular processes. Genetic manipulation of $G_{s\alpha}$ in *Drosophila* should be particularly interesting in this regard because alterations in the regulation of adenylate cyclase by the *rutabaga* gene and phosphodiesterase by the dunce gene lead to developmental and learning defects, apparently by altering cAMP levels (41-43).

FIG. 5. In situ localization of $G_s \alpha$ transcript in a horizontal section of a fly head. (a) Dark-field image. (b) Phase-contrast image of the same section. Note hybridization in the cortex, which contains the cell bodies (arrows), and the eyes but not in the central neuropil. There is a nonspecific signal over the cuticle (bright line surrounding the head). E, eye; ON, optic lobe neuropil; F, fat body; BN, midbrain neuropil; little arrows, optic lobe cortex; big arrows, midbrain cortex.

This work was supported by grants from the National Institutes of Health (to M.A.F.). F.Q. is the recipient of a Canadian Medical Research Council postdoctoral fellowship.

- Stryer, L. & Bourne, H. R. (1986) Annu. Rev. Cell Biol. 2, 391-419. 1.
- 2. Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615-649
- 3. Neer, E. J. & Clapham, D. E. (1988) Nature (London) 333, 129-134.
- Robishaw, J. D., Russell, D. W., Harris, B. A., Smigel, M. D. & Gil-4. man, A. G. (1986) Proc. Natl. Acad. Sci. USA 83, 1251-1255
- 5. Itoh, H., Kozasa, T., Nagata, S., Nakamura, S., Katada, T., Ui, M., Iwai, S., Ohtsuka, E., Kawasaki, H., Suzuki, K. & Kaziro, Y. (1986) Proc. Natl. Acad. Sci. USA 83, 3776-3780.
- Sullivan, K. A., Liao, Y. C., Alborzi, A., Beiderman, B., Chang, F. H., Masters, S. B., Levinson, A. D. & Bourne, H. R. (1986) Proc. Natl. Acad. Sci. USA 83, 6687-6691.
- Van Meurs, K. P., Angus, C. W., Lavu, S., Kung, H. F., Czarnecki, S. K., Moss, J. & Vaughan, M. (1987) Proc. Natl. Acad. Sci. USA 84, 3107-3111
- Medynski, D. C., Sullivan, K., Smith, D., Van Dop, C., Chang, F. H., Fung, B. K. K., Seeburg, P. H. & Bourne, H. R. (1985) Proc. Natl. Acad. Sci. USA 82, 4311-4315.
- Nakafuku, M., Itoh, H., Nakamura, S. & Kaziro, Y. (1987) Proc. Natl. Acad. Sci. USA 84, 2140-2144.
- 10. Nakafuku, M., Obara, T., Kaibuchi, K., Miyajima, I., Miyajima, A., Itoh, H., Nakamura, S., Arai, K., Matsumoto, K. & Kaziro, Y. (1988) Proc. Natl. Acad. Sci. USA 85, 1374–1378.
- Robishaw, J. D., Smigel, M. D. & Gilman, A. G. (1986) J. Biol. Chem. 11. 261, 9587-9590.
- Bray, P., Carter, A., Simons, C., Guo, V., Puckett, C., Kamholz, J., 12. Spiegel, A. & Nirenberg, M. (1986) Proc. Natl. Acad. Sci. USA 83, 8893-8897
- 13. Beals, C. R., Wilson, C. B. & Perlmutter, R. M. (1987) Proc. Natl. Acad. Sci. USA 84, 7886-7890.
- Jones, D. T. & Reed, R. R. (1987) J. Biol. Chem. 262, 14241-14249. 14.
- Neer, E. J., Michel, T., Eddy, R., Shows, T. & Seidman, J. G. (1987) 15. Hum. Genet. 77, 259-262.
- Haga, T., Ross, E. M., Anderson, H. J. & Gilman, A. G. (1977) Proc. 16. Natl. Acad. Sci. USA 74, 2016–2020.
- 17 Bourne, H. R., Beiderman, B., Steinberg, F. & Brothers, V. M. (1982) Mol. Pharmacol. 22, 204-210.
- Sullivan, K. A., Miller, R. T., Masters, S. B., Beiderman, B., Heide-18. man, W. & Bourne, H. R. Nature (London) 330, 758-760.
- 19. Masters, S. B., Sullivan, K. A., Miller, R. T., Beiderman, B., Lopez, N. G., Ramachandran, J. & Bourne, H. R. (1988) Science 241, 448-451.
- 20. Vallar, L., Spada, A. & Giannattasio, G. (1987) Nature (London) 330, 566-568.
- 21. Gawler, D., Milligan, G., Spiegel, A. M., Unson, C. G. & Houslay, M. D. (1987) Nature (London) 327, 229-232.
- 22. Carter, A., Bardin, C., Collins, R., Simons, C., Bray, P. & Spiegel, A. (1987) Proc. Natl. Acad. Sci. USA 84, 7266-7269.
- Levine, M. A., Ahn, T. G., Klupt, S. F., Kaufman, K. D., Smallwood, 23. P. M., Bourne, H. R., Sullivan, K. A. & Van Dop, C. (1988) Proc. Natl. Acad. Sci. USA 85, 617–621
- 24. Rubin, G. (1988) Science 240, 1453-1459.
- 25. Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USĂ 74, 5463-5467.
- Korneluk, R. G., Quan, F. & Gravel, R. A. (1985) Gene 40, 317-323. 26.
- Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. (1988) Nature (London) 331, 137–142. 27.
- 28. Pardue, M. L. (1986) in Drosophila: A Practical Approach, ed. Roberts, D. B. (IRL, Oxford), pp. 111-137.
- Hafen, E. & Levine, M. (1986) in Drosophila: A Practical Approach, ed. 29 Roberts, D. B. (1RL, Oxford), pp. 139–157. Kozak, M. (1986) *Cell* 44, 283–292.
- 30
- Cavener, D. R. (1987) Nucleic Acids Res. 15, 1353-1361. 31.
- Proudfoot, N. J. & Brownlee, G. G. (1976) Nature (London) 263, 211-32. 214
- 33. Halliday, K. (1984) J. Cyclic Nucleotide Res. 9, 435-448.
- 34. Masters, S. B., Stroud, R. M. & Bourne, H. R. (1986) Prot. Eng. 1, 47-
- Harris, B. A., Robishaw, J. D., Mumby, S. M. & Gilman, A. G. (1985) 35. Science 229, 1274–1277. 36.
- Van Dop, C., Tsubokawa, M., Bourne, H. R. & Ramachandran, J. (1984) J. Biol. Chem. 259, 696-698.
- 37. West, R. E., Jr., Moss, J., Vaughan, M., Liu, T. & Liu, T. Y. (1985) J. Biol. Chem. 260, 14428-14430.
- 38. Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G. & Pak, W. (1988) Cell 54, 723-733.
- 39. Provost, N. M., Somers, D. E. & Hurley, J. B. (1988) J. Biol. Chem. 263, 12070-12076.
- 40. Yarfitz, S., Provost, N. & Hurley, J. (1988) Proc. Natl. Acad. Sci. USA 85, 7134-7138.
- Byers, D., Davis, R. & Kiger, J. (1981) Nature (London) 289, 79-81. 41.
- 42. Livingstone, M. S., Sziber, P. P. & Quinn, W. G. (1984) Cell 37, 205-215.
- 43. Bellen, H. J., Gregory, B. K., Olsson, C. L. & Kiger, J. A. (1987) Dev. Biol. 121, 432-444.