3' uridylation precedes decapping in a novel pathway of bulk mRNA turnover

Olivia S. Rissland and Chris J. Norbury

Supplementary Figure 1. *act1* cRACE sequences from WT cells. The 5' and 3' ends of various types of *act1* cRACE sequences are plotted as the distance (in nt, as indicated on the horizontal axis) from the start codon. The open reading frame (ORF) is marked with a line.

Supplementary Figure 2. In *S. cerevisiae*, *ACT1* mRNA is degraded by deadenylationdependent mechanisms. (a) Poly(A) tail lengths of decapped *S. cerevisiae ACT1* messages were binned into groups of ten nt. Tail lengths were then plotted as percentage of adenylated species. (b) The percentage of decapped, adenylated transcripts that contain [in black] or lack [in white] a terminal uridyl residue is plotted for *act1* messages isolated from *S. pombe* (n=40) or *S. cerevisiae* cells (n=22).

Supplementary Figure 3. *adh1*, *gar2*, *hcn1*, *pof9* and *urg1* cRACE sequences from WT cells. The 5' and 3' ends of various types of *adh1* (\mathbf{a} , \mathbf{b}), *gar2* (\mathbf{c} , \mathbf{d}), *hcn1* (\mathbf{e} , \mathbf{f}), *pof9* (\mathbf{g} , \mathbf{h}) and *urg1* (\mathbf{I} , \mathbf{j}) cRACE sequences are plotted as the distance (in nt, as indicated on the horizontal axis) from the start codon. Where appropriate, the open reading frame (ORF) is marked with a line.

Supplementary Figure 4. *hcn1* mRNA is degraded mainly by deadenylationdependent decay. (a) The percentage of adenylated [black] and nonadenylated [white] sequences for capped (n=18) and decapped (n=12) *hcn1* transcripts is shown. (b) Poly(A) tail lengths of decapped [black] and capped [white] sequences were binned into groups of five nt. Tail lengths were then plotted as percentage of adenylated species.

Supplementary Figure 5. Uridylation precedes extensive 5' – 3' mRNA degradation. (**a**) The 5' ends of *act1* cRACE sequences, generated from either the upstream or downstream primer, are plotted as the distance (in nt, as indicated on the horizontal axis) from the start codon. The open reading frame (ORF) is marked with a line. (**b**) The percentages of uridylated sequences in cRACE products generated using the downstream (n=40) and upstream (n=14) *act1* primers are shown, as well as that observed in *ski2* Δ cells.

Supplementary Figure 6. *act1* cRACE products from various strains. The 5' (**a**) and 3' (**b**) ends of various types of *act1* cRACE sequences from WT, *cid1* Δ , *dcp1-ts*, *lsm1* Δ and *ski2* Δ are plotted as the distance (in nt, as indicated on the horizontal axis) from the start codon. The open reading frame (ORF) is marked with a line.

40%

20%

0%

Wild-type

■TACCG ■ACCG

cid1∆

dcp1-ts

lsm1∆

Supplementary Figure 8. *urg1* mRNA is stabilized in *cid1* Δ *ccr4* Δ , *cid1* Δ *pan2* Δ , *cid1* Δ *parn* Δ and *lsm1* Δ cells. Cells were harvested at 0, 10, 20 and 30 minutes after uracil washout. After probing for *urg1* and *pik1* by northern blotting, *urg1* levels were normalized to *pik1* mRNA. The percent of *urg1* remaining at each time point was calculated by a comparison to the normalized amount at 0 minutes. The half-life of *urg1* in different strains is shown. At least two independent replicates were performed for each strain. * denotes *p*<0.05; ** denotes *p*<0.001; *** denotes *p*<0.005. Error bars represent standard deviation.

3' Ends of urg1 Sequences

Supplementary Figure 9. *urg1* cRACE sequences from various strains. The 3' ends of various types of *urg1* cRACE sequences from WT, *ccr4* Δ , *cid1* Δ , *pan2* Δ and *pan3* Δ are plotted as the distance (in nt, as indicated on the horizontal axis) from the start codon. The open reading frame (ORF) is marked with a line.

Clone	3′ End	Tail
ASC01	TCTTCTGATATA (+1190)	(A) ₁₃
ASC02	ATTCTTCTGATA (+1188)	(A) ₁₇ U
ASC03	ATTCTTCTGATA (+1188)	(A) ₂₁
ASC04	ATATATATAAA (+1196)	(A) ₂₇ G(A) ₈
ASC05	ATTCTTCTGATA (+1188)	(A) ₃₅
ASC13	CGATTCTTCTGA (+1186)	(A) ₁₉
ASC15	TCTTCTGATATA (+1190)	(A) ₁₅
ASC16	TCTTCTGATATA (+1190)	(A) ₂₅ U
ASC17	ATTCTTCTGATA (+1188)	(A) ₁₆
ASC19	ATTCTTCTGATA (+1188)	(A) ₁₂ GA
ASC20	ATTCTTCTGATA (+1188)	(A) ₃₀
ASC21	ATTCTTCTGATA (+1188)	(A) ₁₁ UCA
ASC22	ATTCTTCTGATA (+1188)	(A) ₇
ASC24	TGAGGAACTTTG (+1260)	No Tail
ASC25	CGATTCTTCTGA (+1186)	(A) ₁₄
ASC26	ATTCTTCTGATA (+1188)	(A) ₁₈ U
ASC27	TCTTCTGATATA (+1190)	(A) ₁₃
ASC28	ATTTCAATCTTT (+1211)	No Tail
ASC30	ATTCTTCTGATA (+1188)	(A) ₃₈
ASC31	TCTTCTGATATA (+1190)	(A) ₂₈
ASC34	ATATATATAAA (+1196)	C(A) ₃₆

Supplementary Table 1. *act1* HSC-RACE products from wild-type cells.

Clone	3′ End	Tail
AdSC01	TTTGTAACGTTT (+1152)	No Tail
AdSC02	ACATACTTTTGA (+1167)	No Tail
AdSC03	ATATATATAAA (+1196)	(A) ₅ U
AdSC04	ATTCTTCTGATA (+1188)	(A) ₁₃ UU
AdSC05	GTAACGTTTTTT (+1155)	No Tail
AdSC06	TTCAATCTTTTT (+1209)	No Tail
AdSC07	ATTCTTCTGATA (+1188)	(A) ₁₄ UU
AdSC08	TCTTCTGATATA (+1190)	(A) ₄ U
AdSC09	ACTTTTTGATTC (+1148)	No Tail
AdSC10	ATTCTTCTGATA (+1188)	(A) ₂₀
AdSC14	CGATTCTTCTGA (+1186)	(A) ₁₄ U
AdSC15	TATAAATTTCAA (+1202)	(A) ₂₆
AdSC16	ATATATATAAA (+1196)	(A) ₆ UU
AdSC17	CGATTCTTCTGA (+1188)	(A) ₁₂ U
AdSC18	CGATTCTTCTGA (+1186)	(A) ₁₈
AdSC19	TTCAATCTTTTT (+1209)	No Tail
AdSC20	TATAAATTTCAA (+1202)	(A) ₂₆
AdSC21	ATATATATAAA (+1196)	(A) ₈ UU
AdSC22	CGATTCTTCTGA (+1188)	(A) ₈ (U) ₄
AdSC23	ATATATATAAA (+1196)	(A) ₇ U
AdSC25	CGATTCTTCTGA (+1188)	(A) ₁₀ UU
AdSC26	ATATATATAAA (+1196)	(A) ₈ U
AdSC27	CGATTCTTCTGA (+1188)	(A) ₁₁ U
AdSC28	TTCAATCTTTTT (+1209)	No Tail
AdSC29	TATAAATTTCAA (+1202)	(A) ₇
AdSC30	TTCTGATATATA (+1190)	(A) ₁₀ UC(U) ₄
AdSC31	TCTTCTGATATA (+1190)	(A) ₁₉

Supplementary Table 2. *act1* HSC-RACE products from *dcp1-ts* cells.

Name	Sequence (5' to 3')	Use
M13 Reverse Primer	CAGGAAACAGCTATGAC	Sequencing
M13 Forward Primer	GTAAAACGACGGCCAG	Sequencing
5' T7 Actin	TAATACGACTCACTATAGGGAGGAAAGTAGAAAGAGAAG	HSC-RACE RNA probe; cRACE 1 st PCR primer
3' T7 Actin	CCACTATGTATCCCGGTATTGC	HSC-RACE RNA probe
RNase H Actin	CTCATCATACTCTTGCTTGG	HSC-RACE
Seq Actin	GCTCCTCTTACTTTTGTAACG	HSC-RACE; cRACE 2 nd PCR primer
RT Actin	GAAGCACTTACGGTAAACGATAC	HSC-RACE
Upstream 5' T7 Actin	TAATAGACTCACTATAGGGACTCAAAGTCCAAAGCGAC	cRACE RT primer
HCN1 RT 1	CCAATCCTTCTTCAC	cRACE RT, 1 st PCR primer
HCN1 RT 2	CTTTTCAGGCGATAAAC	cRACE 2 nd PCR primer
HCN1 PCR 1	CTTCAATGCATCCTTCCC	cRACE RT, 1 st PCR primer
HCN1 PCR 2	GGTGGAGCCGCTCAATCATAG	cRACE 2 nd PCR primer
Urg1 RT 2	CGGCAACAGCTAAAGC	cRACE 2 nd PCR primer
Urg1 RT 1	GGTGGGACGAACGTCG	cRACE 1 st PCR primer; Northern blot probe primer
Urg1 PCR 1	CA AATACCTTGT TTACAAC	cRACE 1 st PCR primer
Urg1 PCR 2	GAAGAGTTGGCCGGTGTTCG	cRACE 2 nd PCR primer
Actin cRACE Upstream	GAGGGGAATACAGCTCTAG	Upstream cRACE primer
Sc Act1 RT1	CGTTGTAGAAGGTATGATGCCAGATC	cRACE RT, 1 st PCR primer
Sc Act1 RT2	CCAGTTGGTGACAATACCGTGTTC	cRACE 2 nd PCR primer
Sc Act1 PCR1	GTGATGTCGATGTCCGTAAGG	cRACE 1 st PCR primer
Sc Act1 PCR2	GGTGGTACCACCATGTTCCCAGG	cRACE 2 nd PCR primer
adh1 RT 2	GGTCACCAATCTTAAGACG	cRACE 2 nd PCR primer
adh1 RT 1	CAGTACTCGCAGTTACCGC	cRACE 1 st PCR primer
adh1 PCR 1	GATCCACTTTTAATTCCTAATG	cRACE 1 st PCR primer
adh1 PCR 2	CTTTTACCATTTCACCACAC	cRACE 2 nd PCR primer

Supplementary Table 3. Oligonucleotides used in this study.

gar2 RT 2	GATTTCTTTGAAGGTTCGGG	cRACE 2 nd PCR primer
gar2 RT 1	CTTCCTTCTTAGATTTC	cRACE 1 st PCR primer
gar2 PCR 1	CACTTTTGACTAAGTATACTGGC	cRACE 1 st PCR primer
gar2 PCR 2	GAGTTTGGGTTTTTGGG	cRACE 2 nd PCR primer
pof9 RT 2	CATAACCTCCAACTTGAACC	cRACE 2 nd PCR primer
pof9 RT 1	CAACATTGTTTGGTACCCC	cRACE 1 st PCR primer
pof9 PCR 1	CTTTGGAAAGGGACGGC	cRACE 1 st PCR primer
pof9 PCR 2	GGTAAGCTAATTTCCGCG	cRACE 2 nd PCR primer
Urg1 Real Time	CCCCTGATCATCGTCCC	Northern blot probe primer
Pik1 5' N Blot	GCTGGTAAAAATGTTGTTAC	Northern blot probe primer
Pik1 3' N Blot	TAGTAAATTCCGTTCG	Northern blot probe primer
5' Lsm1 Del	GCGTTTATAAAAGAAATAGAAAGTTAAATCTAAATTAAATTAT TAGTTTATGCTACATCCAAATAATAGCTGAAAATCCCACTGG CTATATGT	<i>lsm1</i> deletion primer
3' Lsm1 Del	CGAGATAGCTTTCTATCGTGACTGTAAACAAACGGTATAGCA ATATTGTGATAAATTTGTTCAACCGTTGTAATTCTAAATGCCT TCTGAC	<i>lsm1</i> deletion primer
5' Lsm1 Check	CACTCAAATAAAGTCATC	Checking Ism1 deletion
3' Lsm1 Check	CATTTAAAAGGGGAATAAAC	Checking Ism1 deletion
5' Pan3 Del	CCTTAAAGTTGTCGAAAACCTCAATTTCAAGTGCTTCCAATA AAGAGTCCGTACCCCTCACTAGGCCAAAAAATCCCACTGGC TATATGT	<i>pan3</i> deletion primer
3' Pan3 Del	CTAAGATTATTTGAACATCGCCGTTCTAACTCCATGAACGCA GTATTAATTGTGGTTTTCACCTAGATAGTTTAATTCTAAATGC CTTCTGAC	<i>pan3</i> deletion primer
5' Pan3 Check	CAGTATAAATTCGCCATC	Checking <i>pan3</i> deletion
3' Pan3 Check	GTTCGCCTCAAATCGTCAG	Checking <i>pan3</i> deletion

Strain	Genotype	Source
Wild-type	h- leu1-32	Lab stock
ccr4∆	h- ccr4::kanMX leu1-32	This study
cid1∆	h- cid1∷ura4⁺ leu1-32 ura4-D18	8
<i>cid1∆</i> (for <i>urg1</i> half-life analysis)	h- cid1::LEU2 leu1-32	This study
$cid1\Delta ccr4\Delta$	h? cid1::LEU2 ccr4::kanMX ade6-? leu1-32	This study
cid1∆pan2∆	h? cid1::LEU2 pan2::kanMX ade6-? leu1-32	This study
cid1∆parn∆	h? cid1::LEU2 parn::hygB ^R ade6-? leu1-32	This study
dcp1-ts	h- dcp1::hygB ^R leu1::kanr-Padh1-FLAG-dcp1- L69S ura4-D18 ade6	21
lsm1∆	h- lsm1∷ura4⁺ ade6-M210 leu1-32 ura4-D18	This study
pan2∆	h- pan2::kanMX ade6-? leu1-32	This study
pan3∆	h- pan3∷ura4⁺ ade6-? leu1-32 ura4-D18	This study
parn∆	h- parn∷hygB ^R ade6-? leu1-32	This study
ski2∆	h- ski2::ura4⁺ ade6-? leu1-32 ura4-D18	A. Stevenson
YSP002	h- ccr4::kanMX ade6-M216 leu1-32 ura4-D18	33
YSP003	h- pan2::kanMX ade6-M216 leu1-32 ura4-D18	33
YSP004	h+ parn::hygB ^R ade6-M216 leu1-32 ura4-D18	33
W303-1A	MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15	N. Proudfoot

Supplementary Table 4. Yeast strains used in this study.