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“Semiparametric regression in size-biased sampling” by Chen

1. An illustrative example of invariance property

To better understand the invariance property, consider the example when ξ are standard Exponen-

tial, β = − log 2, and Z = 0/1 in the model

− log X = βZ + ε. (1)

In Figure 1, we plot f(x |Z) and F (x |Z), and their respective size-biased f(x |Z, S = 1) and

F (x |Z, S = 1).

As shown in the figures, the size-biased f(x |Z, S = 1) appears very different from f(x |Z).

But the shapes of F (x |Z) and F (x |Z, S = 1) remain similar, except for an apparent scale-change

along the horizontal axis. This reflects the fact that the size-biased sampling can alter individual

distribution functions, but not the relative comparison measured by the regression parameter β in

model (1).

2. A variance calculation algorithm

In actual numerical studies, a less computer-intensive sample-based method can be used to directly

estimate the variance of n1/2(β̂n−β0), as recommended in Kalbfleisch and Prentice (2002, p. 238).

That is, first use a recursive bisection algorithm to solve for bj in

n1/2Un(bj) = vj,

j = 1, 2, . . . , p, where vj are the p-vectors such that v = (v1, v2, . . . , vp)
T and v⊗2 = V̂ . Then

a consistent variance estimator of n1/2(β̂n − β0) is given by (b1 − β̂n, b2 − β̂n, . . . , bp − β̂n)
⊗2.

Our finite-sample simulation shows that this method generally performs well. Details on more

justification of this method can be found in Chen and Jewell (2000).

1



Figure 1: Plots of density and distribution functions under model (1) of logX = −βTZ + ε, where

β = − log 2, Z = 0/1 and ξ = exp(ε) ∼ Exponential(1): (a) density functions f(x |Z); (b) size-biased

density functions f(x |Z, S = 1); (c) distribution functions F (x |Z); (d) size-biased distribution functions

F (x |Z, S = 1).
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3. Proof of Theorem 2

We assume the following regularity conditions similar to those in Ying (1993):

1. The covariates are uniformly bounded.

2. The parameter space B of β is compact.

3. The density function of fη(·) and its derivative f ′
η(·) are bounded, and satisfying that

∫ y

0

{
f ′

η(y)

fη(y)

}2

fη(y)dy < ∞.
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Denote Rn(y) = E (2)(y) − E (1)(y)⊗2/E (0)(y). Let Dn =
∫ ∞

0
λ′

η(y)/λη(y)Rn(y)fη(y)dy, and

Vn =
∫ ∞

0
Rn(y)fη(y)dy. Since

Rn(y) = n−1

n∑

i=1

{
Zi −

∑
j ZjF j(ye−βTZj)

∑
j ZjF j(ye−βTZj)

}⊗2

F i(ye−βTZi) ≥ 0,

where F i(y) = 1−Fi(y) = 1−F (y |Zi), we know that Rn(y) is nonnegative-definite. In addition,

for y1 ≤ y2,

Rn(y1) ≥ n−1

n∑

i=1

{
Zi −

∑
j ZjF j(y1e

−βTZj )
∑

j ZjF j(y1e−βTZj )

}⊗2

F i(y2e
−βTZi)

≥ n−1
n∑

i=1

{
Zi −

∑
j ZjF j(y2e

−βTZj )
∑

j ZjF j(y2e−βTZj )

}⊗2

F i(y2e
−βTZi) = Rn(y2).

We hence know that Rn(y) is non-increasing. Since

Dn =

∫ ∞

0

Rn(y)

{
f ′

η(y)) +
f2

η (y)

F η(y)

}
dy =

∫ ∞

0

Rn(y)
f2(y)

F η(y)
dy +

∫ ∞

0

f(y)d {−Rn(y)} ,

Dn are also nonnegative-definite. By Theorem 1 in Ying (1993), Un(β) is thus asymptotically

linear such that

sup
‖β−β0‖≤dn

{
‖Un(β)− Un(β0) −Dnn(β − β0)‖

n1/2 + n‖β − β0‖

}
= op(1),

as dn > 0 and dn →p 0.

Assume that all the eigenvalues of Dn are bounded away from zero for sufficiently large n.

Then the eigenvalues of Vn would be eventually bounded away from zero as well. According to

Corollary 1 in Ying (1993), there exists a closed neighborhood containing β0 as an interior point

such that β̂n is strongly consistent, and n1/2V
−1/2
n Dn(β̂n − β0) →D N(0, Ip×p). In addition, since

limn→∞ E (2)(y; β) = e(k)(y; β), k = 0, 1, 2, we further have Dn →p D and Vn →p V . As a result,

we have

n1/2(β̂n − β0) →D N {0, D−1V (D−1)T}

as the asymptotic properties stated in Theorem 2.
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For the weighted estimating equations Uw
n (β), in addition to the regularity conditions for Theo-

rem 2, we further assume that wn(y; β) are left-continuous in y and σ{Ni(ue−βT
0
Zi), Zi, u ≤ y, i =

1, 2, . . . , n}−measurable, as well as

1. lim supn sup‖β‖≤b{|wn(0; β)| +
∫ ∞

0
|dwn(y; β)|} < ∞ a.s., for any b > 0.

2. supy≤y0 ,‖β−β0‖≤n−1/3 |wn(y; β)− wn(y; β0) − δw(y; β0)
T(β − β0)| = o(n−1/2) a.s., for some

y0 > 0, δ0 > 0 and δw(y; β) such that
∫ y0

0
|dδw(y)| = o(n1/3−δ0).

Thus, the weighted estimating functions are also asymptotically linear such that

sup
‖β−β0‖≤dn

{
‖Uw

n (β) − Uw
n (β0) − Dw,nn(β − β0)‖

n1/2 + n‖β − β0‖

}
= op(1)

as dn →p 0, where Dw,n =
∫ ∞

0
w(y; β)dDn(y; β) → Dw. Assume that all the eigenvalues of Dw,n

are bounded away from 0. Then according to Corollary 2 in Ying (1993), β̂w
n is strongly consistent,

and

n1/2(β̂w
n − β̂0) →D N {0, D−1

w Vw(D−1
w )T}.

It is straightforward to verify that the Gehan-type of weight functions satisfy the above-mentioned

regularity conditions.
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