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Appendix

Throughout we assume that the joint density of 7', C' and Y is twice continuously differ-
entiable and W = (Y, Z")" belongs to a compact set Qw. We consider v € [p;, p,] C (0,1)
and t € |1y, 72|, where 7, and 7, are pre-determined constants such that P(X < ;) > 0 and
P(X > 1) > 0. In addition, we assume that Fy,,(y) = 0Fy|,(y)/9y, is bounded away from

0 for y € [c.(p1), cz(pu)]. For ﬁy‘z(y), without loss of generality, we assume that
sup

|1 {Fraly) = o)} 7t 3P )

where Pi(y,z) = Py, z, X;, A, Y;, Z;) for some function P that is bounded for (y,z) € Qw

— 0,(1), (A1)

with total variation bounded by a constant. The regularity condition on P ensures the
manageability (Pollard, 1990) of {P;(y,z),i = 1,...,n} which leads to the weak convergence
of nl/Q{ﬁnz(y) —Fy2(y)} to a zero-mean Gaussian process. Under a semi-parametric location

model,
Pily,z) = 1(Yi = %2 <y —%2) = Fya(y) + Fy,(0{E(Z) — 2} E(Z%) ' Z(Y; — 1§ Z:)

which satisfies (A-1).

A. Inference on covariate effects’

Consider a general location-scale model for the marker Y:
Claim:

A. Under the model

vz, (t) = Xo(t) exp(anY; + By Z:), (A-3)

1The authors cordially thank Dr. David Zucker for kindly providing help with the proof in this section.
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PPV, (t,v) = PPV,,(t,v) for all t,v,z;, and z, if and only if agpkg = 0 and B, = —ap7,-
B. Assume the model
Az () = Nolt, Y2) xp(B1Z,). (A.4)

Write
t
AO(t7 y) = / )\0(11,, y)dua
0

)
C(ty) = oy log Ao(t,y).

Suppose the following condition:
Non-PH Condition: There exist values y*, ¢}, and ¢ such that (¢}, y*) # 0, ((¢3,y*) # 0,
and ((t],y*) # ((t3,y%), i.e., Ao(t,y) does not have the general proportional hazards form
Ao(t,y) = No(H)Qy).
Then PPV,, (t,v) = PPV,,(t,v) for all t,v, 2, and 2z, if and only if B, = v, = ko = 0.
Proof:

We note that PPV, (t,v) = PPV,,(t,v) for all t,v,2z;, and z, if and only if

/ S (A (y) = / S (OdFym(y).

z] (v) Czy (v)

Taking the derivative with respect to v on both sides and noting that dc,(v)/0v = [ fy|,(c4(v))] 7,

we find that the above equality is equivalent to the equality

SCzl(v),m(t) = ScZQ (v),22 <t> (A-5)

for all t,v,z;, and zs.
We first consider Claim A. Under Model (A.3), the equality (A.5) is equivalent to the

equality
0z, (0) + B) 21 = QoCa, (V) + By 22 (A.6)
Under Model (A.2), we have

ca(v) = Yo% + exp (kg 2) G (v), (A7)



where (G is the distribution function of ¢;. It is obvious that the condition agkg = 0 and
By = —apy, implies (A.7).
We now prove the converse. The condition (A.6) implies that the quantity
ao{¥oz +exp(kgz)G ™ (v)} + By z
is constant over z, for all ¢ and v. Taking the derivative with respect to z yields the equality
(0o + Bo) + apkoexp(rgz)GH(v) =0 Yo.

The above equality implies that, for any given z, there multiple values of v such that
ok exp(kiz)GH(v) = —(agyy + Bp)- This, in turn, implies agrg = 0 and B, = —ag,.

Now we consider Claim B. Under Model (A.4), the equality (A.5) is equivalent to
log Ao{t, ¢z, ()} + Bizy = log Ao{t, ¢,y (V)} + Boza Vi, v, 21,29, (A.8)
which implies that the function
log Ao{t, c,(v)} + BOTZ (A.9)

is constant in z for all ¢t and v. Under Model (A.2), this obviously holds if B, = v, = kg = 0.

We now show the converse. Taking the derivative of (A.9) with respect to z yields
C{t, c2(0)}Vaca(v) + By = 0 Vi, 0,2,
where V,c,(v) denotes the gradient of ¢,(v). From (A.7) we have
Vaca(v) = 7o + o exp(sl2) G~ (1),
so we get
C{t, (V) Hvo + koexp(kgz)GH(v)} + B, =0 Vit v,z
Now for all (z,v) in the set A = {(z,v) : vz + exp(kiz)G ' (v) = y*}, we get
Ct, v ) o + oy —v52)} = —B, Vt, and all z € A,, (A.10)

where A, is the projection of A onto the first p dimensions. We now argue componentwise.

Suppose that Fy; = 0. We then have ~yy; +roja = 0 for at least two distinct values of a, which
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implies that 7o; = ko; = 0. Next, suppose that Gy; # 0 and 7y; = 0. Then (A.10) gives

koj (Y —v0z) = —Bo;/C(t,y") Yt and all z € A,
In view of the Non-PH condition, this produces a contradiction. Finally, suppose that 3y; # 0
and 7p; # 0. Differentiating (A.10) with respect to z; leads to kg = 0. This produces 7y, =
—B0;/¢(t, y*) for all t. Again, in view of the Non-PH condition, this produces a contradiction.

We thus conclude that fy; = 0, and hence ~y; = ko; = 0.

B. Asymptotic Properties of ?f\’vz(t, v)

We let § = (v, BT)T, 0o = (ap, By)", and assume that 6 is an interior point of a compact
parameter space. We also assume the same regularity conditions as in Andersen & Gill (1982).
Under such regularity conditions, it was shown in Andersen & Gill (1982) that n2 (6 —8,) is a
normal random variate, and n2 {Ao(t) —Ag(t)} converges to a Gaussian process. Furthermore,

by a functional delta theorem that

0 {8yalt) = Sya(t)} =172 Y Culty2)| = 0p(1), (A1)

sup
t

which converges weakly to a zero-mean Gaussian process, where

Ca(t,y,z) = Sy,z(t) exp(aoy + I@gz) {/0 %

i > ~ Ry(u)
+{A0()()+H(t00)}1 (ao>/ {w R()()}dM()]
'Ry (u)dE{N;(u {Ra(u)Ro(u) — Ry(u)*} dE{Ni(s)}
H<007t) = _/0 RO( ) / RO( )2 )
M;(t) = Nyi(t) — fg I1(X; > u) exp(03W;)dAo(u) and Ry(t) = E{I(X; = t)W2 exp(03W;)},

where for any vector a, a®® = 1, a®! = a and a®? = aa’.

To establish the uniform consistency of P/’P\’\//z(t, v), it suffices to show that (i) sup, [¢,(v) —
ca(v)] = 0p(nY1); and (i) sup,,, | [{Sy2(t)dFy1a(y) — Sy(t)dFyia(y)}] = 0,(n~ /1), where
¢5(v) = Fy,(v). From (A-1), we have sup, |Fyia(y) — Fyia(y)| = Op(n~"/2). This, together
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with the fact that FY,,(y) is bounded away from 0, we have sup, [&,(v) — ¢,(v)| = 0,(n~"/*).
(ii) follows directly from sup, 15,.2(t) = S, 2(t)] = Op(n~'/2) and Lemma 1 of Bilias, Gu &
Ying (1997). This concludes the uniform consistency of ﬁﬁ/z(t, v).

To derive the large sample distribution for ﬁﬁ\/fz(t, v), we write
Wi(t,v) = nz{PPVz(t,v) — PPVa(t,v)} = {W(t,v) + Waa(t,v)}/(1 — v),

where

W (t,v) =n

N|=

/6 OO {§y,z(t) — Sy,z(t)} dFy (1),

{

To approximate the distribution of Wzl(t, v), we note that since

Waa(t,v) =n

[N

[ h Sya(t)dFypu(y) — / N Sw(t)dpy,z(y)},

¢z (v) cz(v)

1

Syalt) = Sya(0)] +5up [E2(0) — ex(0)] = 0, (n 7).

sup | Fria(y) = Fralv)| + sup
Y Y

we have
Wi (t,0) = n’ / :;) [8,a(t)  ,a(t)} dFy(y).
It then follows from (A.11) that
Wat0) =0t [ Gt )Ry (A12)

Now, for Wzg(t, v), we note that

n% [OO Sy,z(t)dFY\z(y) - /OO Sy’z(t)dFY‘z(y)

cz(v) cz(v
~ i / ( )sy,z(t)d{ﬁw(y) ~ Frig(y) } +n? { [ o SoeF) = | )S%z(t)dsz(y)}
= b /  Sal{Fra(v) = Fra(y)} = {Brialca(v) = v} Sesalt)
It then follows from (A-1) that
Waa(t,v) = n~ /2 Z Cio(t,v,2), (A.13)
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where

Gia(t,v,2) = / . Sy=(t)dP;i(y,z) — Scz(v),Z(t)Pi(CZ(U)a z)

In a special case when Fy,(-) is estimated empirically,

[ee]

i2 (¢, v, =
Gz (t,v,2) a.

“ {Scow) () = Sy=(t)} dFYIz(y):| ,

|:{SY,i,z(t) = Seo(y(O) } I{Yi > ca(v)} +/

where a, = P(Z; = z). Combining (A.12) and (A.13), we have Wz(t, v) ~nz S Gt v, z),

where

Ci(t, v, Z) = (1 — U)_l {/O:) Cil(t, y,z)dFy|z(y) + Cig(t,y, Z)} . (A14)

With a functional central limit theorem, Wz(t, v) converges to a zero-mean Gaussian process.

c. Asymptotic Properties of P/P\Vz(t, v)

For the convergence of P/P?/z(t, v), we require the same conditions as specified in Dabrowska
(1997). Briefly, the kernel function K(-) is a symmetric probability density function with
bounded support and continuous bounded second derivative. The bandwidth A is chosen
such that nh? — oo and nh* — 0 as n — oo. It follows from Dabrowska (1997) that

~

5Dy, [Rya(t) = Ayalt)]| = 0y (n~1/%) and

n:(B-By) ~n7Ty A,

i=1
where
R (u,
A =T(B,) " / {Zi — ﬁ} {dN;(u) — I[(X; > u) exp(B4Z;) \oy; (u)du},

. . 2O* . .. n
Z(B) is the limit of %é@, and R:(yl)(u,,@) is the limit of n™ 'Y " | Kp(Yi — y)I(X; >
s) exp(B7Z;)ZE".
The uniform convergence of /A\w(t), together with the uniform consistency of ﬁy|z(y) and

¢z(v), and Lemma A.3 of Bilias et al. (1997), implies the uniform consistency of ?ﬁ/z(t, v).



Now, to derive the large sample distribution for P/ﬁ/z(t, v), we write
Wi (t,v) = n2{PPVz(t,v) — PPVaz(t,v)} = (W, (¢, v) + Waa(t,0)}/ (1 —v),

where

Wzl <t7 U) = n% / : {eixy’z(t) - eiAyyz(t)} dﬁ‘y‘Z(Z])u

(v

ﬂ SR - / | )sw(t)dFyZ(y)} |

To approximate the distribution of W\zl(t,v), we again invoke Lemma A.3 of Bilias et

Aya(t) = Aya(t)

—~

Waa(t,v) = n3 {

al.(1997) and use the fact that sup, , +sup, | Fy12(y)— Fy 1o (y) | +sup, [&(v) —

ca(v)| = 0,(n"1/*) to obtain

—~

W (t,v) = —n

N|=

/c:,) Sya(t) { Ky,z(t) — ijz(t)} dFy 1 (y) + 0,(1).

Now, it follows from the asymptotic expansions for /Aijz(t) given in Dabrowska (1997) that

Aya(t) = Ay () :/ { dN,(s) P _ dN,(s) oon . AdNy(S) oz _ M(S))eﬁoz}

y(s B) 7y (s, Bo) 7y(s, Bo) (s, Bo
2 Ay(s) Z(s) — 7. (s s )
- Bt [ L m,<s> H o S enh

nt Z {Ba(t, y)As + En(Y; — y) My o(t, Xi, Ai, )} + 0,(n”7)

i=1

12

where A,(s) = E{N;(s) | Y; = y}dP(Y; < y)/dy is the limit of N,(s), T,(u) = 7,(u, By),
s)

7y (u) = my(u, By), Bu(t,y) is % Ote z(i’:ﬁ evaluated at 3 = 3, and

{dNi(s) (X > s)eP%dA, (s) } .

my(s) 5 (s)

My,z<t7 Xi? Ai) Zz) - eBOZ /
0

It follows that

n 00

Wa(t,v) =~ —n"2y / ( )sy,z@) [Kn(y — Yi)Mya(t: X5, ) + Byt y) Ai] Fy,(y)dy
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Now, by a change variable i) = = 0,(1),

e [
i=1 ca(v)

= n’: Z/ L(Y; + M 2 ¢5(v)) K () Svitnua(t) Y, (Yi + hd) My, onp (8 Xi, A, Zy)dyp

l) SZ/7Z (t) }//|z<y)My,Z(t7 Xla A’L? Zl)dy

. Z/_ I(Y; 2 ,(v)) K(¥)Sy, 2 (t)Fy,(Ys) My, o (t; Xi, Ay, Zi)dip + 0,(1)

= n 221 )) Sva () By (Yi) My, o (85 Xi; Aiy Zi) + 0p(1)

Therefore, Wy (t,v) = —n "2 S &n(t,v,2) + 0p(1), where
§ia(t,0,2) = 1(Y: 2 (0))Sy,a(t) Fy 1o (Yi) My, o (8 Xi, A, Zi) +A; / Sya(t)Ba(t, y) Fy 1, (y)dy.

On the other hand, the process Wzg(t, v) can be approximated by n-: Yo Gt v,2) as for
Wia(t, v). Hence,

Wai(t,v) =n"2 > &(t,v,2) + 0p(1)
i=1
where &;(t,v,z) = &1(t,v,2) + (i2(t,v,2z). This, together with a functional central limit

theorem, implies that Wz(t, v) converges weakly to a zero-mean Gaussian process.
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