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Appendix

Throughout we assume that the joint density of T , C and Y is twice continuously differ-

entiable and W = (Y,ZT)T belongs to a compact set ΩW. We consider v ∈ [pl, pu] ⊂ (0, 1)

and t ∈ [τ1, τ2], where τ1 and τ2 are pre-determined constants such that P (X < τ1) > 0 and

P (X > τ2) > 0. In addition, we assume that F ′Y |z(y) = ∂FY |z(y)/∂y, is bounded away from

0 for y ∈ [cz(pl), cz(pu)]. For F̂Y |z(y), without loss of generality, we assume that

sup
y

∣∣∣∣∣n1/2
{
F̂Y |z(y)− FY |z(y)

}
− n−

1
2

n∑
i=1

Pi(y, z)

∣∣∣∣∣ = op(1), (A·1)

where Pi(y, z) = P(y, z, Xi,∆i, Yi,Zi) for some function P that is bounded for (y, z) ∈ ΩW

with total variation bounded by a constant. The regularity condition on P ensures the

manageability (Pollard, 1990) of {Pi(y, z), i = 1, ..., n} which leads to the weak convergence

of n1/2{F̂Y |z(y)−FY |z(y)} to a zero-mean Gaussian process. Under a semi-parametric location

model,

Pi(y, z) = I(Yi − γT

0Zi 6 y − γT

0z)− FY |z(y) + F
′

Y |z(y){E(Z)− z}TE(Z⊗2)−1Zi(Yi − γT

0Zi)

which satisfies (A·1).

A. Inference on covariate effects1

Consider a general location-scale model for the marker Y :

Yi = γT
0 Zi + exp(κT

0 Zi)εi. (A.2)

Claim:

A. Under the model

λYi,Zi(t) = λ0(t) exp(α0Yi + βT
0 Zi), (A.3)

1The authors cordially thank Dr. David Zucker for kindly providing help with the proof in this section.
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PPVz1(t, v) = PPVz2(t, v) for all t, v, z1, and z2 if and only if α0κ0 = 0 and β0 = −α0γ0.

B. Assume the model

λYi,Zi(t) = λ0(t, Yi) exp(βT
0 Zi). (A.4)

Write

Λ0(t, y) =

∫ t

0

λ0(u, y)du,

ζ(t, y) =
∂

∂y
log Λ0(t, y).

Suppose the following condition:

Non-PH Condition: There exist values y∗, t∗1, and t∗2 such that ζ(t∗1, y
∗) 6= 0, ζ(t∗2, y

∗) 6= 0,

and ζ(t∗1, y
∗) 6= ζ(t∗2, y

∗), i.e., Λ0(t, y) does not have the general proportional hazards form

Λ0(t, y) = Λ0(t)Ω(y).

Then PPVz1(t, v) = PPVz2(t, v) for all t, v, z1, and z2 if and only if β0 = γ0 = κ0 = 0.

Proof:

We note that PPVz1(t, v) = PPVz2(t, v) for all t, v, z1, and z2 if and only if∫ ∞
cz1 (v)

Sy,z1(t)dFY |z1(y) =

∫ ∞
cz2 (v)

Sy,z2(t)dFY |z2(y).

Taking the derivative with respect to v on both sides and noting that ∂cz(v)/∂v = [fY |z(cz(v))]−1,

we find that the above equality is equivalent to the equality

Scz1 (v),z1(t) = Scz2 (v),z2(t) (A.5)

for all t, v, z1, and z2.

We first consider Claim A. Under Model (A.3), the equality (A.5) is equivalent to the

equality

α0cz1(v) + βT
0 z1 = α0cz2(v) + βT

0 z2. (A.6)

Under Model (A.2), we have

cz(v) = γT
0 z + exp(κT

0 z)G−1(v), (A.7)
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where G is the distribution function of εi. It is obvious that the condition α0κ0 = 0 and

β0 = −α0γ0 implies (A.7).

We now prove the converse. The condition (A.6) implies that the quantity

α0{γT
0 z + exp(κT

0 z)G−1(v)}+ βT
0 z

is constant over z, for all t and v. Taking the derivative with respect to z yields the equality

(α0γ0 + β0) + α0κ0 exp(κT
0 z)G−1(v) = 0 ∀v.

The above equality implies that, for any given z, there multiple values of v such that

α0κ0 exp(κT
0 z)G−1(v) = −(α0γ0 + β0). This, in turn, implies α0κ0 = 0 and β0 = −α0γ0.

Now we consider Claim B. Under Model (A.4), the equality (A.5) is equivalent to

log Λ0{t, cz1(v)}+ βT
0 z1 = log Λ0{t, cz2(v)}+ βT

0 z2 ∀t, v, z1, z2, (A.8)

which implies that the function

log Λ0{t, cz(v)}+ βT
0 z (A.9)

is constant in z for all t and v. Under Model (A.2), this obviously holds if β0 = γ0 = κ0 = 0.

We now show the converse. Taking the derivative of (A.9) with respect to z yields

ζ{t, cz(v)}∇zcz(v) + β0 = 0 ∀t, v, z,

where ∇zcz(v) denotes the gradient of cz(v). From (A.7) we have

∇zcz(v) = γ0 + κ0 exp(κT
0 z)G−1(v),

so we get

ζ{t, cz(v)}{γ0 + κ0 exp(κT
0 z)G−1(v)}+ β0 = 0 ∀t, v, z.

Now for all (z, v) in the set A = {(z, v) : γT
0z + exp(κT

0 z)G−1(v) = y∗}, we get

ζ(t, y∗){γ0 + κ0(y∗ − γT
0 z)} = −β0 ∀t, and all z ∈ Ap, (A.10)

where Ap is the projection of A onto the first p dimensions. We now argue componentwise.

Suppose that β0j = 0. We then have γ0j +κ0ja = 0 for at least two distinct values of a, which
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implies that γ0j = κ0j = 0. Next, suppose that β0j 6= 0 and γ0j = 0. Then (A.10) gives

κ0j(y
∗ − γT

0 z) = −β0j/ζ(t, y∗) ∀t, and all z ∈ Ap.

In view of the Non-PH condition, this produces a contradiction. Finally, suppose that β0j 6= 0

and γ0j 6= 0. Differentiating (A.10) with respect to zj leads to κ0 = 0. This produces γ0j =

−β0j/ζ(t, y∗) for all t. Again, in view of the Non-PH condition, this produces a contradiction.

We thus conclude that β0j = 0, and hence γ0j = κ0j = 0.

B. Asymptotic Properties of P̃PVz(t, v)

We let θ̃θθ = (α̃, β̃
T

)T, θθθ0 = (α0,β
T

0)T, and assume that θθθ0 is an interior point of a compact

parameter space. We also assume the same regularity conditions as in Andersen & Gill (1982).

Under such regularity conditions, it was shown in Andersen & Gill (1982) that n
1
2 (θ̃θθ−θθθ0) is a

normal random variate, and n
1
2{Λ̃0(t)−Λ0(t)} converges to a Gaussian process. Furthermore,

by a functional delta theorem that

sup
t,y

∣∣∣∣∣n 1
2{S̃y,z(t)− Sy,z(t)} − n−

1
2

n∑
i=1

ζi1(t, y, z)

∣∣∣∣∣ = op(1), (A.11)

which converges weakly to a zero-mean Gaussian process, where

ζi1(t, y, z) = Sy,z(t) exp(α0y + βT

0z)

[∫ t

0

dMi(u)

s0(u, θθθ0)

+

{
Λ0(t)

(
y

z

)
+H(t, θθθ0)

}T

I−1(θθθ0)

∫ ∞
0

{
Wi −

R1(u)

R0(u)

}
dMi(u)

]
,

H(θθθ0, t) = −
∫ t

0

R1(u)dE{Ni(u)}
R0(u)2

, I(θθθ0) =

∫ ∞
0

{R2(u)R0(u)− R1(u)2} dE{Ni(s)}
R0(u)2

,

Mi(t) = Ni(t)−
∫ t

0
I(Xi > u) exp(θθθT

0Wi)dΛ0(u) and Rb(t) = E{I(Xi > t)W⊗b
i exp(θθθT

0Wi)},

where for any vector a, a⊗0 = 1, a⊗1 = a and a⊗2 = aaT.

To establish the uniform consistency of P̃PVz(t, v), it suffices to show that (i) supv |ĉz(v)−

cz(v)| = op(n
−1/4); and (ii) supc,t |

∫∞
c
{S̃y,z(t)dF̂Y |z(y)−Sy,z(t)dFY |z(y)}| = op(n

−1/4), where

cz(v) = F−1
Y |z(v). From (A·1), we have supv |F̂Y |z(y) − FY |z(y)| = Op(n

−1/2). This, together
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with the fact that F ′Y |z(y) is bounded away from 0, we have supv |ĉz(v)− cz(v)| = op(n
−1/4).

(ii) follows directly from supt,y |S̃y,z(t)− Sy,z(t)| = Op(n
−1/2) and Lemma 1 of Bilias, Gu &

Ying (1997). This concludes the uniform consistency of P̃PVz(t, v).

To derive the large sample distribution for P̃PVz(t, v), we write

W̃z(t, v) = n
1
2{P̃PVz(t, v)− PPVz(t, v)} = {W̃z1(t, v) + W̃z2(t, v)}/(1− v),

where

W̃z1(t, v) = n
1
2

∫ ∞
bcv,z
{
S̃y,z(t)− Sy,z(t)

}
dF̂Y |z(y),

W̃z2(t, v) = n
1
2

{∫ ∞
bcz(v)

Sy,z(t)dF̂Y |z(y)−
∫ ∞
cz(v)

Sy,z(t)dFY |z(y)

}
.

To approximate the distribution of W̃z1(t, v), we note that since

sup
y

∣∣∣F̂Y |z(y)− FY |z(y)
∣∣∣+ sup

t,y

∣∣∣S̃y,z(t)− Sy,z(t)∣∣∣+ sup
v
|ĉz(v)− cz(v)| = op(n

− 1
4 ).

we have

W̃z1(t, v) = n
1
2

∫ ∞
cz(v)

{
S̃y,z(t)− Sy,z(t)

}
dFY |z(y).

It then follows from (A.11) that

W̃z1(t, v) ' n
1
2

∫ ∞
cz(v)

ζi1(t, y, z)dFY |z(y). (A.12)

Now, for W̃z2(t, v), we note that

n
1
2

∫ ∞
bcz(v)

Sy,z(t)dF̂Y |z(y)−
∫ ∞
cz(v)

Sy,z(t)dFY |z(y)

' n
1
2

∫ ∞
cz(v)

Sy,z(t)d
{
F̂Y |z(y)− FY |z(y)

}
+ n

1
2

{∫ ∞
bcz(v)

Sy,z(t)dFY |z(y)−
∫ ∞
cz(v)

Sy,z(t)dFY |z(y)

}
= n

1
2

∫ ∞
cz(v)

Sy,z(t)d{F̂Y |z(y)− FY |z(y)} − n
1
2

{
F̂Y |z(cz(v))− v

}
Scz(v),z(t)

It then follows from (A·1) that

W̃z2(t, v) ' n−1/2

n∑
i=1

ζi2(t, v, z), (A.13)
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where

ζi2(t, v, z) =

∫ ∞
cz(v)

Sy,z(t)dPi(y, z)− Scz(v),z(t)Pi(cz(v), z)

In a special case when FY |z(·) is estimated empirically,

ζi2(t, v, z) =
I(Zi = z)

az

"˘
SYi,z(t)− Scz(v)(t)

¯
I{Yi > cz(v)}+

Z ∞
cz(v)

˘
Scz(v)(t)− Sy,z(t)

¯
dFY |z(y)

#
,

where az = P (Zi = z). Combining (A.12) and (A.13), we have W̃z(t, v) ' n−
1
2

∑n
i=1 ζi(t, v, z),

where

ζi(t, v, z) = (1− v)−1

{∫ ∞
cz(v)

ζi1(t, y, z)dFY |z(y) + ζi2(t, y, z)

}
. (A.14)

With a functional central limit theorem, W̃z(t, v) converges to a zero-mean Gaussian process.

c. Asymptotic Properties of P̂PVz(t, v)

For the convergence of P̂PVz(t, v), we require the same conditions as specified in Dabrowska

(1997). Briefly, the kernel function K(·) is a symmetric probability density function with

bounded support and continuous bounded second derivative. The bandwidth h is chosen

such that nh2 → ∞ and nh4 → 0 as n → ∞. It follows from Dabrowska (1997) that

supt,y

∣∣∣Λ̂y,z(t)− Λy,z(t)
∣∣∣ = op(n

−1/4) and

n
1
2 (β̂ − β0) ' n−

1
2

n∑
i=1

Ai,

where

Ai = I(β0)−1

∫ {
Zi −

R(1)
Yi

(u,β)

R(0)
Yi

(u,β)

}
{dNi(u)− I(Xi > u) exp(βT

0Zi)λ0Yi(u)du} ,

I(β) is the limit of ∂2C∗(β)

∂β∂βT , and R(l)
y (u,β) is the limit of n−1

∑n
i=1 Kh(Yi − y)I(Xi >

s) exp(βTZi)Z
⊗l
i .

The uniform convergence of Λ̂y,z(t), together with the uniform consistency of F̂Y |z(y) and

cz(v), and Lemma A.3 of Bilias et al. (1997), implies the uniform consistency of P̂PVz(t, v).
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Now, to derive the large sample distribution for P̂PVz(t, v), we write

Ŵz(t, v) = n
1
2{P̂PVz(t, v)− PPVz(t, v)} = {Ŵz1(t, v) + Ŵz2(t, v)}/(1− v),

where

Ŵz1(t, v) = n
1
2

∫ ∞
bcz(v)

{
e−

bΛy,z(t) − e−Λy,z(t)
}
dF̂Y |z(y),

Ŵz2(t, v) = n
1
2

{∫ ∞
bcz(v)

Sy,z(t)dF̂Y |z(y)−
∫ ∞
cz(v)

Sy,z(t)dFY |z(y)

}
.

To approximate the distribution of Ŵz1(t, v), we again invoke Lemma A.3 of Bilias et

al.(1997) and use the fact that supt,y

∣∣∣Λ̂y,z(t)− Λy,z(t)
∣∣∣+supy |F̂Y |z(y)−FY |z(y)|+supv |ĉz(v)−

cz(v)| = op(n
−1/4) to obtain

Ŵz1(t, v) = −n
1
2

∫ ∞
cz(v)

Sy,z(t)
{

Λ̂y,z(t)− Λy,z(t)
}
dFY |z(y) + op(1).

Now, it follows from the asymptotic expansions for Λ̂y,z(t) given in Dabrowska (1997) that

Λ̂y,z(t)− Λy,z(t) =

∫ t

0

{
dN̂y(s)

π̂y(s, β̂)
e

bβz − dN̂y(s)

π̂y(s,β0)
eβ0z +

dN̂y(s)

π̂y(s,β0)
eβ0z − dAy(s)

πy(s,β0)
eβ0z

}

= Bz(t, y)(β̂ − β0) + eβ0z

∫ t

0

d
{
N̂y(s)− Ay(s)

}
πy(s)

− {π̂y(s)− πy(s)} dAy(s)
π2
y(s)

+ op(n
− 1

2 )

' n−1

n∑
i=1

{Bz(t, y)Ai +Kh(Yi − y)My,z(t,Xi,∆i,Zi)}+ op(n
− 1

2 )

where Ay(s) = E{Ni(s) | Yi = y}dP (Yi 6 y)/dy is the limit of N̂y(s), π̂y(u) = π̂y(u,β0),

πy(u) = πy(u,β0), Bz(t, y) is ∂
∂β

∫ t
0

eβzdAy(s)

πy(s,β)
evaluated at β = β0, and

My,z(t,Xi,∆i,Zi) = eβ0z

∫ t

0

{
dNi(s)

πy(s)
− I(Xi > s)eβ0ZidAy(s)

π2
y(s)

}
.

It follows that

Ŵz1(t, v) ' −n−
1
2

n∑
i=1

∫ ∞
cz(v)

Sy,z(t) [Kh(y − Yi)My,z(t;Xi,∆i) + Bz(t, y)Ai]F ′Y |z(y)dy
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Now, by a change variable ψ = y−Yi
h

and assuming that nh4 = op(1),

n−
1
2h−1

n∑
i=1

∫ ∞
cz(v)

K

(
y − Yi
h

)
Sy,z(t)F

′
Y |z(y)My,z(t;Xi,∆i,Zi)dy

= n−
1
2

n∑
i=1

∫ ∞
−∞

I (Yi + hψ > cz(v))K(ψ)SYi+hψ,z(t)F
′
Y |z(Yi + hψ)MYi+hψ,z(t;Xi,∆i,Zi)dψ

= n−
1
2

n∑
i=1

∫ ∞
−∞

I (Yi > cz(v))K(ψ)SYi,z(t)F
′
Y |z(Yi)MYi,z(t;Xi,∆i,Zi)dψ + op(1)

= n−
1
2

n∑
i=1

I (Yi > cz(v))SYi,z(t)F
′
Y |z(Yi)MYi,z(t;Xi,∆i,Zi) + op(1)

Therefore, Ŵz1(t, v) = −n− 1
2

∑n
i=1 ξi1(t, v, z) + op(1), where

ξi1(t, v, z) = I(Yi > cz(v))SYi,z(t)F
′
Y |z(Yi)MYi,z(t;Xi,∆i,Zi)+Ai

∫ ∞
cz(v)

Sy,z(t)Bz(t, y)F ′Y |z(y)dy.

On the other hand, the process Ŵz2(t, v) can be approximated by n−
1
2

∑n
i=1 ζi2(t, v, z) as for

W̃z2(t, v). Hence,

Ŵz1(t, v) = n−
1
2

n∑
i=1

ξi(t, v, z) + op(1)

where ξi(t, v, z) = ξi1(t, v, z) + ζi2(t, v, z). This, together with a functional central limit

theorem, implies that Ŵz(t, v) converges weakly to a zero-mean Gaussian process.
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