Web-based Supplementary Materials for Semiparametric Models of Time-dependent Predictive Values

of Prognostic Biomarkers

Y. Zheng, T. Cai, J. L. Stanford and Z. Feng

Appendix

Throughout we assume that the joint density of T, C and Y is twice continuously differentiable and $\mathbf{W} = (Y, \mathbf{Z}^T)^T$ belongs to a compact set $\Omega_{\mathbf{W}}$. We consider $v \in [p_l, p_u] \subset (0, 1)$ and $t \in [\tau_1, \tau_2]$, where τ_1 and τ_2 are pre-determined constants such that $P(X \le \tau_1) > 0$ and $P(X > \tau_2) > 0$. In addition, we assume that $F_{Y|Z}'(y) = \partial F_{Y|Z}(y)/\partial y$, is bounded away from 0 for $y \in [c_{\mathbf{z}}(p_l), c_{\mathbf{z}}(p_u)]$. For $\widehat{F}_{Y|\mathbf{z}}(y)$, without loss of generality, we assume that

$$
\sup_{y} \left| n^{1/2} \left\{ \widehat{F}_{Y|\mathbf{z}}(y) - F_{Y|\mathbf{z}}(y) \right\} - n^{-\frac{1}{2}} \sum_{i=1}^{n} \mathcal{P}_i(y, \mathbf{z}) \right| = o_p(1), \tag{A-1}
$$

where $\mathcal{P}_i(y, z) = \mathcal{P}(y, z, X_i, \Delta_i, Y_i, \mathbf{Z}_i)$ for some function \mathcal{P} that is bounded for $(y, z) \in \Omega_{\mathbf{W}}$ with total variation bounded by a constant. The regularity condition on P ensures the manageability (Pollard, 1990) of $\{\mathcal{P}_i(y, z), i = 1, ..., n\}$ which leads to the weak convergence of $n^{1/2}\{\hat{F}_{Y|\mathbf{z}}(y)-F_{Y|\mathbf{z}}(y)\}\)$ to a zero-mean Gaussian process. Under a semi-parametric location model,

$$
\mathcal{P}_i(y, \mathbf{z}) = I(Y_i - \gamma_0^{\mathsf{T}} \mathbf{Z}_i \leq y - \gamma_0^{\mathsf{T}} \mathbf{z}) - F_{Y|\mathbf{z}}(y) + F_{Y|\mathbf{z}}'(y) \{ E(\mathbf{Z}) - \mathbf{z} \}^{\mathsf{T}} E(\mathbf{Z}^{\otimes 2})^{-1} \mathbf{Z}_i (Y_i - \gamma_0^{\mathsf{T}} \mathbf{Z}_i)
$$
\nwhich satisfies (A-1).

A. Inference on covariate effects¹

Consider a general location-scale model for the marker Y:

$$
Y_i = \gamma_0^{\mathsf{T}} \mathbf{Z}_i + \exp(\kappa_0^{\mathsf{T}} \mathbf{Z}_i) \epsilon_i.
$$
 (A.2)

Claim:

A. Under the model

$$
\lambda_{Y_i, \mathbf{Z}_i}(t) = \lambda_0(t) \exp(\alpha_0 Y_i + \boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{Z}_i), \tag{A.3}
$$

¹The authors cordially thank Dr. David Zucker for kindly providing help with the proof in this section.

 $PPV_{\mathbf{z}_1}(t, v) = PPV_{\mathbf{z}_2}(t, v)$ for all t, v, \mathbf{z}_1 , and \mathbf{z}_2 if and only if $\alpha_0 \kappa_0 = \mathbf{0}$ and $\boldsymbol{\beta}_0 = -\alpha_0 \boldsymbol{\gamma}_0$. B. Assume the model

$$
\lambda_{Y_i, \mathbf{Z}_i}(t) = \lambda_0(t, Y_i) \exp(\boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{Z}_i).
$$
\n(A.4)

Write

$$
\Lambda_0(t, y) = \int_0^t \lambda_0(u, y) du,
$$

$$
\zeta(t, y) = \frac{\partial}{\partial y} \log \Lambda_0(t, y).
$$

Suppose the following condition:

Non-PH Condition: There exist values y^* , t_1^* , and t_2^* such that $\zeta(t_1^*, y^*) \neq 0$, $\zeta(t_2^*, y^*) \neq 0$, and $\zeta(t_1^*, y^*) \neq \zeta(t_2^*, y^*)$, i.e., $\Lambda_0(t, y)$ does not have the general proportional hazards form $\Lambda_0(t, y) = \Lambda_0(t) \Omega(y).$

Then $PPV_{\mathbf{z}_1}(t, v) = PPV_{\mathbf{z}_2}(t, v)$ for all t, v, \mathbf{z}_1 , and \mathbf{z}_2 if and only if $\boldsymbol{\beta}_0 = \boldsymbol{\gamma}_0 = \boldsymbol{\kappa}_0 = \mathbf{0}$.

Proof:

We note that $PPV_{\mathbf{z}_1}(t, v) = PPV_{\mathbf{z}_2}(t, v)$ for all t, v, \mathbf{z}_1 , and \mathbf{z}_2 if and only if

$$
\int_{c_{\mathbf{z}_1}(v)}^{\infty} S_{y,\mathbf{z}_1}(t) dF_{Y|\mathbf{z}_1}(y) = \int_{c_{\mathbf{z}_2}(v)}^{\infty} S_{y,\mathbf{z}_2}(t) dF_{Y|\mathbf{z}_2}(y).
$$

Taking the derivative with respect to v on both sides and noting that $\partial c_{\mathbf{z}}(v)/\partial v = [f_{Y|\mathbf{z}}(c_{\mathbf{z}}(v))]^{-1}$, we find that the above equality is equivalent to the equality

$$
S_{c_{\mathbf{z}_1}(v),\mathbf{z}_1}(t) = S_{c_{\mathbf{z}_2}(v),\mathbf{z}_2}(t)
$$
\n(A.5)

for all t, v, z_1 , and z_2 .

We first consider Claim A. Under Model $(A.3)$, the equality $(A.5)$ is equivalent to the equality

$$
\alpha_0 c_{\mathbf{z}_1}(v) + \boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{z}_1 = \alpha_0 c_{\mathbf{z}_2}(v) + \boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{z}_2.
$$
 (A.6)

Under Model (A.2), we have

$$
c_{\mathbf{z}}(v) = \boldsymbol{\gamma}_0^{\mathsf{T}} \mathbf{z} + \exp(\boldsymbol{\kappa}_0^{\mathsf{T}} \mathbf{z}) G^{-1}(v), \tag{A.7}
$$

where G is the distribution function of ϵ_i . It is obvious that the condition $\alpha_0 \kappa_0 = 0$ and $\beta_0 = -\alpha_0 \gamma_0$ implies (A.7).

We now prove the converse. The condition $(A.6)$ implies that the quantity

$$
\alpha_0 \{ \boldsymbol{\gamma}_0^{\mathsf{T}} \mathbf{z} + \exp(\boldsymbol{\kappa}_0^{\mathsf{T}} \mathbf{z}) G^{-1}(v) \} + \boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{z}
$$

is constant over z , for all t and v . Taking the derivative with respect to z yields the equality

$$
(\alpha_0 \boldsymbol{\gamma}_0 + \boldsymbol{\beta}_0) + \alpha_0 \boldsymbol{\kappa}_0 \exp(\boldsymbol{\kappa}_0^{\mathsf{T}} \mathbf{z}) G^{-1}(v) = \mathbf{0} \quad \forall v.
$$

The above equality implies that, for any given z , there multiple values of v such that $\alpha_0 \kappa_0 \exp(\kappa_0^T \mathbf{z}) G^{-1}(v) = -(\alpha_0 \gamma_0 + \beta_0)$. This, in turn, implies $\alpha_0 \kappa_0 = \mathbf{0}$ and $\beta_0 = -\alpha_0 \gamma_0$.

Now we consider Claim B. Under Model (A.4), the equality (A.5) is equivalent to

$$
\log \Lambda_0 \{t, c_{\mathbf{z}_1}(v)\} + \boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{z}_1 = \log \Lambda_0 \{t, c_{\mathbf{z}_2}(v)\} + \boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{z}_2 \quad \forall t, v, \mathbf{z}_1, \mathbf{z}_2,
$$
 (A.8)

which implies that the function

$$
\log \Lambda_0 \{t, c_{\mathbf{z}}(v)\} + \boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{z}
$$
 (A.9)

is constant in **z** for all t and v. Under Model (A.2), this obviously holds if $\beta_0 = \gamma_0 = \kappa_0 = 0$. We now show the converse. Taking the derivative of $(A.9)$ with respect to z yields

$$
\zeta\{t, c_{\mathbf{z}}(v)\}\nabla_{\mathbf{z}}c_{\mathbf{z}}(v) + \boldsymbol{\beta}_0 = \mathbf{0} \quad \forall t, v, \mathbf{z},
$$

where $\nabla_{\mathbf{z}}c_{\mathbf{z}}(v)$ denotes the gradient of $c_{\mathbf{z}}(v)$. From (A.7) we have

$$
\nabla_{\mathbf{z}}c_{\mathbf{z}}(v) = \boldsymbol{\gamma}_0 + \boldsymbol{\kappa}_0 \exp(\boldsymbol{\kappa}_0^{\mathsf{T}} \mathbf{z}) G^{-1}(v),
$$

so we get

$$
\zeta\{t, c_{\mathbf{z}}(v)\}\{\boldsymbol{\gamma}_0 + \boldsymbol{\kappa}_0 \exp(\boldsymbol{\kappa}_0^{\mathsf{T}}\mathbf{z})G^{-1}(v)\} + \boldsymbol{\beta}_0 = \mathbf{0} \quad \forall t, v, \mathbf{z}.
$$

Now for all (\mathbf{z}, v) in the set $A = \{(\mathbf{z}, v) : \boldsymbol{\gamma}_0^{\mathsf{T}} \mathbf{z} + \exp(\boldsymbol{\kappa}_0^{\mathsf{T}} \mathbf{z}) G^{-1}(v) = y^*\}$, we get

$$
\zeta(t, y^*)\{\boldsymbol{\gamma}_0 + \boldsymbol{\kappa}_0(y^* - \boldsymbol{\gamma}_0^{\mathsf{T}} \mathbf{z})\} = -\boldsymbol{\beta}_0 \quad \forall t, \text{ and all } \mathbf{z} \in A_p,
$$
\n(A.10)

where A_p is the projection of A onto the first p dimensions. We now argue componentwise. Suppose that $\beta_{0j} = 0$. We then have $\gamma_{0j} + \kappa_{0j} a = 0$ for at least two distinct values of a, which implies that $\gamma_{0j} = \kappa_{0j} = 0$. Next, suppose that $\beta_{0j} \neq 0$ and $\gamma_{0j} = 0$. Then (A.10) gives

$$
\kappa_{0j}(y^* - \gamma_0^{\mathsf{T}} \mathbf{z}) = -\beta_{0j}/\zeta(t, y^*) \quad \forall t, \text{ and all } \mathbf{z} \in A_p.
$$

In view of the Non-PH condition, this produces a contradiction. Finally, suppose that $\beta_{0j} \neq 0$ and $\gamma_{0j} \neq 0$. Differentiating (A.10) with respect to z_j leads to $\kappa_0 = 0$. This produces $\gamma_{0j} =$ $-\beta_{0j}/\zeta(t, y^*)$ for all t. Again, in view of the Non-PH condition, this produces a contradiction. We thus conclude that $\beta_{0j} = 0$, and hence $\gamma_{0j} = \kappa_{0j} = 0$.

B. Asymptotic Properties of $\widetilde{\mathbf{PPV}}_{\mathbf{z}}(t, v)$

We let $\tilde{\theta} = (\tilde{\alpha}, \tilde{\beta}^{\mathsf{T}})^{\mathsf{T}}, \theta_0 = (\alpha_0, \beta_0^{\mathsf{T}})^{\mathsf{T}},$ and assume that θ_0 is an interior point of a compact parameter space. We also assume the same regularity conditions as in Andersen & Gill (1982). Under such regularity conditions, it was shown in Andersen & Gill (1982) that $n^{\frac{1}{2}}(\tilde{\theta} - \theta_0)$ is a normal random variate, and $n^{\frac{1}{2}}\{\widetilde{\Lambda}_{0}(t)-\Lambda_{0}(t)\}$ converges to a Gaussian process. Furthermore, by a functional delta theorem that

$$
\sup_{t,y} \left| n^{\frac{1}{2}} \{ \widetilde{S}_{y,\mathbf{z}}(t) - S_{y,\mathbf{z}}(t) \} - n^{-\frac{1}{2}} \sum_{i=1}^{n} \zeta_{i1}(t,y,\mathbf{z}) \right| = o_p(1), \tag{A.11}
$$

which converges weakly to a zero-mean Gaussian process, where

$$
\zeta_{i1}(t, y, \mathbf{z}) = S_{y, \mathbf{z}}(t) \exp(\alpha_0 y + \boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{z}) \left[\int_0^t \frac{dM_i(u)}{s_0(u, \theta_0)} \right. \\
\left. + \left\{ \Lambda_0(t) \binom{y}{z} + \mathcal{H}(t, \theta_0) \right\}^{\mathsf{T}} \mathcal{I}^{-1}(\theta_0) \int_0^\infty \left\{ \mathbf{W}_i - \frac{\mathbb{R}_1(u)}{\mathbb{R}_0(u)} \right\} dM_i(u) \right], \\
\mathcal{H}(\theta_0, t) = - \int_0^t \frac{\mathbb{R}_1(u) dE\{N_i(u)\}}{\mathbb{R}_0(u)^2}, \ \mathcal{I}(\theta_0) = \int_0^\infty \frac{\{\mathbb{R}_2(u) \mathbb{R}_0(u) - \mathbb{R}_1(u)^2\} dE\{N_i(s)\}}{\mathbb{R}_0(u)^2}, \\
M_i(t) = N_i(t) - \int_0^t I(X_i \ge u) \exp(\theta_0^{\mathsf{T}} \mathbf{W}_i) d\Lambda_0(u) \text{ and } \mathbb{R}_b(t) = E\{I(X_i \ge t) \mathbf{W}_i^{\otimes b} \exp(\theta_0^{\mathsf{T}} \mathbf{W}_i)\},
$$

where for any vector $a, a^{\otimes 0} = 1, a^{\otimes 1} = a$ and $a^{\otimes 2} = aa^{\mathsf{T}}$.

To establish the uniform consistency of $\widetilde{\mathrm{PPV}}_{\mathbf{z}}(t, v)$, it suffices to show that (i) sup_v $|\widehat{c}_{\mathbf{z}}(v)$ $c_{\mathbf{z}}(v) = o_p(n^{-1/4})$; and (ii) $\sup_{c,t} |\int_c^{\infty} {\{\widetilde{S}_{y,\mathbf{z}}(t) d\widehat{F}_{Y|\mathbf{z}}(y) - S_{y,\mathbf{z}}(t) dF_{Y|\mathbf{z}}(y)\} | = o_p(n^{-1/4})$, where $c_{\mathbf{z}}(v) = F_{Y|\mathbf{z}}^{-1}$ $Y_{\mathbf{Z}}^{-1}(v)$. From $(A-1)$, we have $\sup_v |\widehat{F}_{Y|\mathbf{z}}(y) - F_{Y|\mathbf{z}}(y)| = O_p(n^{-1/2})$. This, together

with the fact that $F'_{Y|Z}(y)$ is bounded away from 0, we have $\sup_v |\hat{c}_Z(v) - c_Z(v)| = o_p(n^{-1/4})$. (ii) follows directly from $\sup_{t,y} |\tilde{S}_{y,\mathbf{z}}(t) - S_{y,\mathbf{z}}(t)| = O_p(n^{-1/2})$ and Lemma 1 of Bilias, Gu & Ying (1997). This concludes the uniform consistency of $\widetilde{\mathrm{PPV}}_{\mathbf{z}}(t, v)$.

To derive the large sample distribution for $\widetilde{\mathrm{PPV}}_{\mathbf{z}}(t, v)$, we write

$$
\widetilde{\mathcal{W}}_{\mathbf{z}}(t,v) = n^{\frac{1}{2}} \{ \widetilde{\mathrm{PPV}} \mathbf{z}(t,v) - \mathrm{PPV} \mathbf{z}(t,v) \} = \{ \widetilde{\mathcal{W}}_{\mathbf{z}1}(t,v) + \widetilde{\mathcal{W}}_{\mathbf{z}2}(t,v) \} / (1-v),
$$

where

$$
\widetilde{\mathcal{W}}_{\mathbf{z}1}(t,v) = n^{\frac{1}{2}} \int_{\widehat{c}_{v,\mathbf{z}}}^{\infty} \left\{ \widetilde{S}_{y,\mathbf{z}}(t) - S_{y,\mathbf{z}}(t) \right\} d\widehat{F}_{Y|\mathbf{z}}(y),
$$

$$
\widetilde{\mathcal{W}}_{\mathbf{z}2}(t,v) = n^{\frac{1}{2}} \left\{ \int_{\widehat{c}_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) d\widehat{F}_{Y|\mathbf{z}}(y) - \int_{c_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) dF_{Y|\mathbf{z}}(y) \right\}.
$$

To approximate the distribution of $\widetilde{\mathcal{W}}_{\mathbf{z}1}(t, v)$, we note that since

$$
\sup_{y} \left| \widehat{F}_{Y|\mathbf{z}}(y) - F_{Y|\mathbf{z}}(y) \right| + \sup_{t,y} \left| \widetilde{S}_{y,\mathbf{z}}(t) - S_{y,\mathbf{z}}(t) \right| + \sup_{v} \left| \widehat{c}_{\mathbf{z}}(v) - c_{\mathbf{z}}(v) \right| = o_p(n^{-\frac{1}{4}}).
$$

we have

$$
\widetilde{\mathcal{W}}_{\mathbf{z}1}(t,v) = n^{\frac{1}{2}} \int_{c_{\mathbf{z}}(v)}^{\infty} \left\{ \widetilde{S}_{y,\mathbf{z}}(t) - S_{y,\mathbf{z}}(t) \right\} dF_{Y|\mathbf{z}}(y).
$$

It then follows from (A.11) that

$$
\widetilde{\mathcal{W}}_{\mathbf{z}1}(t,v) \simeq n^{\frac{1}{2}} \int_{c_{\mathbf{z}}(v)}^{\infty} \zeta_{i1}(t,y,\mathbf{z}) dF_{Y|\mathbf{z}}(y). \tag{A.12}
$$

Now, for $\widetilde{\mathcal{W}}_{\mathbf{z}2}(t,v)$, we note that

$$
n^{\frac{1}{2}} \int_{\widehat{c}_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) d\widehat{F}_{Y|z}(y) - \int_{c_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) dF_{Y|\mathbf{z}}(y)
$$

\n
$$
\simeq n^{\frac{1}{2}} \int_{c_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) d\left\{ \widehat{F}_{Y|z}(y) - F_{Y|\mathbf{z}}(y) \right\} + n^{\frac{1}{2}} \left\{ \int_{\widehat{c}_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) dF_{Y|\mathbf{z}}(y) - \int_{c_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) dF_{Y|\mathbf{z}}(y) \right\}
$$

\n
$$
= n^{\frac{1}{2}} \int_{c_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) d\left\{ \widehat{F}_{Y|\mathbf{z}}(y) - F_{Y|\mathbf{z}}(y) \right\} - n^{\frac{1}{2}} \left\{ \widehat{F}_{Y|\mathbf{z}}(c_{\mathbf{z}}(v)) - v \right\} S_{c_{\mathbf{z}}(v),\mathbf{z}}(t)
$$

It then follows from $(A-1)$ that

$$
\widetilde{\mathcal{W}}_{\mathbf{z}2}(t,v) \simeq n^{-1/2} \sum_{i=1}^{n} \zeta_{i2}(t,v,\mathbf{z}), \tag{A.13}
$$

where

$$
\zeta_{i2}(t,v,\mathbf{z}) = \int_{c_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) d\mathcal{P}_i(y,\mathbf{z}) - S_{c_{\mathbf{z}}(v),\mathbf{z}}(t) \mathcal{P}_i(c_{\mathbf{z}}(v),\mathbf{z})
$$

In a special case when $F_{Y|Z}(\cdot)$ is estimated empirically,

$$
\zeta_{i2}(t,v,\mathbf{z})=\frac{I(\mathbf{Z}_{i}=\mathbf{z})}{a_{z}}\left[\left\{S_{Y_{i},\mathbf{z}}(t)-S_{c_{\mathbf{z}}(v)}(t)\right\}I\{Y_{i}>c_{\mathbf{z}}(v)\}+\int_{c_{\mathbf{z}}(v)}^{\infty}\left\{S_{c_{\mathbf{z}}(v)}(t)-S_{y,\mathbf{z}}(t)\right\}dF_{Y|\mathbf{z}}(y)\right],
$$

where $a_z = P(Z_i = z)$. Combining (A.12) and (A.13), we have $\widetilde{W}_{\mathbf{z}}(t, v) \simeq n^{-\frac{1}{2}} \sum_{i=1}^n \zeta_i(t, v, \mathbf{z})$, where

$$
\zeta_i(t, v, \mathbf{z}) = (1 - v)^{-1} \left\{ \int_{c_{\mathbf{z}}(v)}^{\infty} \zeta_{i1}(t, y, \mathbf{z}) dF_{Y|\mathbf{z}}(y) + \zeta_{i2}(t, y, \mathbf{z}) \right\}.
$$
 (A.14)

With a functional central limit theorem, $\widetilde{W}_{\mathbf{z}}(t, v)$ converges to a zero-mean Gaussian process.

c. Asymptotic Properties of $\widehat{\mathrm{PPV}}_{\mathbf{z}}(t, v)$

For the convergence of $\widehat{PPV}_{\mathbf{z}}(t, v)$, we require the same conditions as specified in Dabrowska (1997). Briefly, the kernel function $K(\cdot)$ is a symmetric probability density function with bounded support and continuous bounded second derivative. The bandwidth h is chosen such that $nh^2 \to \infty$ and $nh^4 \to 0$ as $n \to \infty$. It follows from Dabrowska (1997) that $\sup_{t,y} \left| \widehat{\Lambda}_{y,\mathbf{z}}(t) - \Lambda_{y,\mathbf{z}}(t) \right| = o_p(n^{-1/4})$ and

$$
n^{\frac{1}{2}}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \simeq n^{-\frac{1}{2}} \sum_{i=1}^n \mathcal{A}_i,
$$

where

$$
\mathcal{A}_i = \mathcal{I}(\boldsymbol{\beta}_0)^{-1} \int \left\{ \mathbf{Z}_i - \frac{\mathbb{R}_{Y_i}^{(1)}(u, \boldsymbol{\beta})}{\mathbb{R}_{Y_i}^{(0)}(u, \boldsymbol{\beta})} \right\} \left\{ dN_i(u) - I(X_i \geq u) \exp(\boldsymbol{\beta}_0^{\mathsf{T}} \mathbf{Z}_i) \lambda_{0Y_i}(u) du \right\},
$$

 $\mathcal{I}(\boldsymbol{\beta})$ is the limit of $\frac{\partial^2 C^*(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}}$ $\frac{\partial^2 C^*(\beta)}{\partial \beta \partial \beta^{\mathsf{T}}}$, and $\mathbb{R}^{(l)}_y(u,\boldsymbol{\beta})$ is the limit of $n^{-1}\sum_{i=1}^n K_h(Y_i - y)I(X_i \geq 0)$ $s) \exp(\boldsymbol{\beta}^\intercal \mathbf{Z}_i) \mathbf{Z}_i^{\otimes l}$ $\frac{\otimes l}{i}$.

The uniform convergence of $\widehat{\Lambda}_{y,\mathbf{z}}(t)$, together with the uniform consistency of $\widehat{F}_{Y|\mathbf{z}}(y)$ and $c_{\mathbf{z}}(v)$, and Lemma A.3 of Bilias et al. (1997), implies the uniform consistency of $\widehat{PPV}_{\mathbf{z}}(t, v)$.

Now, to derive the large sample distribution for $\widehat{\mathrm{PPV}}\mathbf{z}(t, v)$, we write

$$
\widehat{\mathcal{W}}_{\mathbf{z}}(t,v) = n^{\frac{1}{2}} \{ \widehat{\text{PPV}} \mathbf{z}(t,v) - \text{PPV} \mathbf{z}(t,v) \} = \{ \widehat{\mathcal{W}}_{\mathbf{z}1}(t,v) + \widehat{\mathcal{W}}_{\mathbf{z}2}(t,v) \} / (1-v),
$$

where

$$
\widehat{\mathcal{W}}_{\mathbf{z}1}(t,v) = n^{\frac{1}{2}} \int_{\widehat{c}_{\mathbf{z}}(v)}^{\infty} \left\{ e^{-\widehat{\Lambda}_{y,\mathbf{z}}(t)} - e^{-\Lambda_{y,\mathbf{z}}(t)} \right\} d\widehat{F}_{Y|z}(y),
$$

$$
\widehat{\mathcal{W}}_{\mathbf{z}2}(t,v) = n^{\frac{1}{2}} \left\{ \int_{\widehat{c}_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) d\widehat{F}_{Y|z}(y) - \int_{c_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) dF_{Y|\mathbf{z}}(y) \right\}.
$$

To approximate the distribution of $\widehat{W}_{z1}(t, v)$, we again invoke Lemma A.3 of Bilias et al.(1997) and use the fact that $\sup_{t,y} \left| \widehat{\Lambda}_{y,\mathbf{z}}(t) - \Lambda_{y,\mathbf{z}}(t) \right| + \sup_y \left| \widehat{F}_{Y|\mathbf{z}}(y) - F_{Y|\mathbf{z}}(y) \right| + \sup_v \left| \widehat{c}_{\mathbf{z}}(v) - f_{Y|\mathbf{z}}(y) \right|$ $c_{\mathbf{z}}(v)$ = $o_p(n^{-1/4})$ to obtain

$$
\widehat{\mathcal{W}}_{\mathbf{z}1}(t,v) = -n^{\frac{1}{2}} \int_{c_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) \left\{ \widehat{\Lambda}_{y,\mathbf{z}}(t) - \Lambda_{y,\mathbf{z}}(t) \right\} dF_{Y|\mathbf{z}}(y) + o_p(1).
$$

Now, it follows from the asymptotic expansions for $\widehat{\Lambda}_{y,z}(t)$ given in Dabrowska (1997) that

$$
\widehat{\Lambda}_{y,\mathbf{z}}(t) - \Lambda_{y,\mathbf{z}}(t) = \int_0^t \left\{ \frac{d\widehat{N}_y(s)}{\widehat{\pi}_y(s,\widehat{\beta})} e^{\widehat{\beta}\mathbf{z}} - \frac{d\widehat{N}_y(s)}{\widehat{\pi}_y(s,\beta_0)} e^{\beta_0\mathbf{z}} + \frac{d\widehat{N}_y(s)}{\widehat{\pi}_y(s,\beta_0)} e^{\beta_0\mathbf{z}} - \frac{dA_y(s)}{\pi_y(s,\beta_0)} e^{\beta_0\mathbf{z}} \right\}
$$
\n
$$
= \mathcal{B}_{\mathbf{z}}(t,y)(\widehat{\beta} - \beta_0) + e^{\beta_0\mathbf{z}} \int_0^t \left[\frac{d\left\{ \widehat{N}_y(s) - A_y(s) \right\}}{\pi_y(s)} - \frac{\left\{ \widehat{\pi}_y(s) - \pi_y(s) \right\} dA_y(s)}{\pi_y^2(s)} \right] + o_p(n^{-\frac{1}{2}})
$$
\n
$$
\approx n^{-1} \sum_{i=1}^n \left\{ \mathcal{B}_{\mathbf{z}}(t,y) \mathcal{A}_i + K_h(Y_i - y) M_{y,\mathbf{z}}(t, X_i, \Delta_i, \mathbf{Z}_i) \right\} + o_p(n^{-\frac{1}{2}})
$$

where $A_y(s) = E\{N_i(s) | Y_i = y\}dP(Y_i \leq y)/dy$ is the limit of $\widehat{N}_y(s)$, $\widehat{\pi}_y(u) = \widehat{\pi}_y(u, \beta_0)$, $\pi_y(u) = \pi_y(u, \beta_0), \, \mathcal{B}_{\mathbf{z}}(t, y)$ is $\frac{\partial}{\partial \beta} \int_0^t$ $e^{\beta \mathbf{z}} dA_y(s)$ $\frac{\partial^2 a_{A_y(s)}}{\partial x_{y(s,\beta)}}$ evaluated at $\boldsymbol{\beta} = \boldsymbol{\beta}_0$, and

$$
M_{y,\mathbf{z}}(t, X_i, \Delta_i, \mathbf{Z}_i) = e^{\beta_0 \mathbf{z}} \int_0^t \left\{ \frac{dN_i(s)}{\pi_y(s)} - \frac{I(X_i \ge s) e^{\beta_0 \mathbf{Z}_i} dA_y(s)}{\pi_y^2(s)} \right\}.
$$

It follows that

$$
\widehat{\mathcal{W}}_{\mathbf{z}1}(t,v) \simeq -n^{-\frac{1}{2}} \sum_{i=1}^{n} \int_{c_{\mathbf{z}}(v)}^{\infty} S_{y,\mathbf{z}}(t) \left[K_h(y-Y_i) M_{y,\mathbf{z}}(t;X_i,\Delta_i) + \mathcal{B}_{\mathbf{z}}(t,y) \mathcal{A}_i \right] F'_{Y|\mathbf{z}}(y) dy
$$

Now, by a change variable $\psi = \frac{y - Y_i}{h}$ $\frac{-Y_i}{h}$ and assuming that $nh^4 = o_p(1)$,

$$
n^{-\frac{1}{2}}h^{-1}\sum_{i=1}^{n}\int_{c_{\mathbf{z}}(v)}^{\infty} K\left(\frac{y-Y_i}{h}\right)S_{y,\mathbf{z}}(t)F'_{Y|\mathbf{z}}(y)M_{y,\mathbf{z}}(t; X_i, \Delta_i, \mathbf{Z}_i)dy
$$

\n
$$
= n^{-\frac{1}{2}}\sum_{i=1}^{n}\int_{-\infty}^{\infty} I\left(Y_i + h\psi \geq c_{\mathbf{z}}(v)\right)K(\psi)S_{Y_i + h\psi, \mathbf{z}}(t)F'_{Y|\mathbf{z}}(Y_i + h\psi)M_{Y_i + h\psi, \mathbf{z}}(t; X_i, \Delta_i, \mathbf{Z}_i)d\psi
$$

\n
$$
= n^{-\frac{1}{2}}\sum_{i=1}^{n}\int_{-\infty}^{\infty} I\left(Y_i \geq c_{\mathbf{z}}(v)\right)K(\psi)S_{Y_i, \mathbf{z}}(t)F'_{Y|\mathbf{z}}(Y_i)M_{Y_i, \mathbf{z}}(t; X_i, \Delta_i, \mathbf{Z}_i)d\psi + o_p(1)
$$

\n
$$
= n^{-\frac{1}{2}}\sum_{i=1}^{n} I\left(Y_i \geq c_{\mathbf{z}}(v)\right)S_{Y_i, \mathbf{z}}(t)F'_{Y|\mathbf{z}}(Y_i)M_{Y_i, \mathbf{z}}(t; X_i, \Delta_i, \mathbf{Z}_i) + o_p(1)
$$

\nherefore, $\widehat{W}_{\mathbf{z}1}(t, v) = -n^{-\frac{1}{2}}\sum_{i=1}^{n} \xi_{i1}(t, v, \mathbf{z}) + o_p(1)$, where

Therefore, $\mathcal{W}_{\mathbf{z}1}(t, v) = -n$ $i_{1}(t, v, \mathbf{z}) +$

 $\xi_{i1}(t, v, \mathbf{z}) = I(Y_i \geqslant c_{\mathbf{z}}(v)) S_{Y_i, \mathbf{z}}(t) F'_{Y | \mathbf{z}}(Y_i) M_{Y_i, \mathbf{z}}(t; X_i, \Delta_i, \mathbf{Z}_i) + \mathcal{A}_i$ \int^{∞} $c_{\mathbf{z}}(v)$ $S_{y,\mathbf{z}}(t)\mathcal{B}_{\mathbf{z}}(t,y)F'_{Y|\mathbf{z}}(y)dy.$

On the other hand, the process $\widehat{W}_{z2}(t, v)$ can be approximated by $n^{-\frac{1}{2}} \sum_{i=1}^{n} \zeta_{i2}(t, v, z)$ as for $\widetilde{\mathcal{W}}_{\mathbf{z}2}(t, v)$. Hence,

$$
\widehat{\mathcal{W}}_{\mathbf{z}1}(t,v) = n^{-\frac{1}{2}} \sum_{i=1}^{n} \xi_i(t,v,\mathbf{z}) + o_p(1)
$$

where $\xi_i(t, v, \mathbf{z}) = \xi_{i1}(t, v, \mathbf{z}) + \zeta_{i2}(t, v, \mathbf{z})$. This, together with a functional central limit theorem, implies that $\widehat{\mathcal{W}}_{\mathbf{z}}(t, v)$ converges weakly to a zero-mean Gaussian process.

References

Andersen, P.K. and Gill, R.D. (1982). cox's regression model for counting processes: A large sample study (Com: p1121-1124). The Annals of Statistics 10, 1100-1120.

Bilias, Y., Gu, M., and Ying, Z. (1997). Towards a general asymptotic theory for Cox model with staggered entry. The Annals of Statistics 25, 662-682.