Biophysical Journal, Volume 98

Supporting Material

IONIC MECHANISMS FOR ELECTRICAL HETEROGENEITY BETWEEN RABBIT PURKINJE AND VENTRICULAR CELLS

Oleg V. Aslanidi, Rakan N. Sleiman, Mark R. Boyett, Jules C. Hancox, and Henggui Zhang

Online Supplement

IONIC MECHANISMS FOR ELECTRICAL HETEROGENEITY BETWEEN RABBIT PURKINJE FIBER AND VENTRICULAR CELLS

Oleg V. Aslanidi, Rakan N. Sleiman, Mark R. Boyett,

Jules C. Hancox, Henggui Zhang

TABLE S1: AP CHARACTERISTICS (see Fig. 8)

Property	Cell	Source	Symbol
APD	PF	Lu et al. (2004)	Square
		Gluais <i>et al.</i> (2003)	Circle
		Gluais <i>et al.</i> (2002)	Inverted triangle
		Ducroq <i>et al.</i> (2007)	Hexagon
		Noguchi et al. (2001)	Triangle
	Endo	Verkerk <i>et al.</i> (2004)	Triangle
		McIntosh <i>et al.</i> (2000)	Hexagon
		Yan <i>et al.</i> (2001)	Inverted triangle
		Idriss & Wolf (2004)	Circle
		Biagetti et al. (2006)	Diamond
	м	MoIntosh at d (2000)	Havagan
	IVI	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$	diamand
		Lu el al. (2001)	diamond
	Epi	Verkerk <i>et al.</i> (2004)	Triangle
	1	McIntosh et al. (2000)	Hexagon
		Yan <i>et al.</i> (2001)	Inverted triangle
		Idriss & Wolf (2004)	Circle
		Biagetti et al. (2006)	diamond
dV/dt_{max}	PF	Lu <i>et al.</i> (2005)	Hexagon
		Gluais <i>et al.</i> (2003)	Diamond
		Gluais <i>et al.</i> (2002)	Inverted triangle
		Ducroq <i>et al.</i> (2007)	Square
		Lu <i>et al.</i> (2002)	Triangle
		Noguchi et al.01	Circle
			TT
	Endo	Lu <i>et al.</i> (2005)	Hexagon
		Gluais et al. (2002)	Inverted triangle
		Noguchi <i>et al.</i> (2001)	Circle
		Golod <i>et al.</i> (1998)	Square
		Gluais <i>et al.</i> (2003)	Diamond

	М	Lu <i>et al.</i> (2005)	Hexagon
		Gluais et al. (2002)	Inverted triangle
		Noguchi et al. (2001)	Circle
		Gold et al (1998)	Square
		Glusis at al (2003)	Diamond
			Diamona
	Epi	Lu <i>et al.</i> (2005)	Hexagon
		Gluais <i>et al.</i> (2002)	Inverted triangle
		Noguchi et al. (2001)	Circle
		Golod <i>et al.</i> (1998)	Square
		Gluais <i>et al.</i> (2003)	Diamond
APA	PF	Lu <i>et al.</i> (2005)	Square
		Lu <i>et al.</i> (2002)	Inverted triangle
		Gluais <i>et al.</i> (2002)	Triangle
		Noguchi et al. (2001)	Diamond
		Ducroq <i>et al.</i> (2007)	Hexagon
		Gluais et al. (2003)	Circle
	Endo	Lu <i>et al.</i> (2005)	Square
		Noguchi et al. (2001)	Diamond
		Gluais et al. (2003)	Circle
		Gluais et al. (2002)	Triangle
		McIntosh <i>et al.</i> (2002)	Inverted triangle
			inverted triangle
	М	Lu et al. (2005)	Square
		Noguchi et al. (2001)	Diamond
		Gluais $et al (2003)$	Circle
		Gluais et al. (2002)	Triangle
		McIntosh <i>et al.</i> (2002)	Inverted triangle
			inverted triangle
	Epi	Lu <i>et al.</i> (2005)	Square
	1	Noguchi et al. (2001)	Diamond
		Gluais et al. (2003)	Circle
		Gluais <i>et al.</i> (2002)	Triangle
		McIntosh <i>et al.</i> (2000)	Inverted triangle
			and offer a transfer
MDP	PF	Gluais <i>et al.</i> (2003)	Square
		Lu <i>et al.</i> (2002)	Diamond
		Ducroq <i>et al.</i> (2007)	Inverted triangle
		Noguchi et al. (2001)	Hexagon
	Endo	Gluais <i>et al.</i> (2003)	Square
		Noguchi et al. (2001)	Hexagon
		Fedida et al. (1991)	Triangle
		McIntosh et al. (2000)	Diamond
		Golod <i>et al.</i> (1998)	Circle
	Μ	Gluais et al. (2003)	Square

	Noguchi et al. (2001)	Hexagon
	McIntosh et al. (2000)	Diamond
	Golod <i>et al.</i> (1998)	Circle
Epi	Gluais <i>et al.</i> (2003)	Square
-	Noguchi et al. (2001)	Hexagon
	Fedida et al. (1991)	Triangle
	McIntosh et al. (2000)	Diamond
	Golod <i>et al.</i> (1998)	Circle

SUPPLEMENTAL REFERENCES (see Table S1)

M. O. Biagetti and R. A. Quinteiro. Gender differences in electrical re-modeling and susceptibility to ventricular arrhythmias in rabbits with left ventricular hypertrophy. *Heart Rhythm*, 3(7):832-9, 2006.

J. Ducroq, R. Printemps, S. Guilbot, J. Gardette, C. Salvetat, and M. Le Grand. Action potential experiments complete hERG assay and QT-interval measurements in cardiac preclinical studies. *J Pharmacol Toxicol Methods*, 56(2):159-70, 2007.

D. Fedida and W. R. Giles. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. *J Physiol*, 442:191-209, 1991.

P. Gluais, M. Bastide, J. Caron, and M. Adamantidis. Risperidone prolongs cardiac action potential through reduction of K+ currents in rabbit myocytes. *Eur J Pharmacol*, 444(3):123-32, 2002.

P. Gluais, M. Bastide, J. Caron, and M. Adamantidis. Comparative effects of clarithromycin on action potential and ionic currents from rabbit isolated atrial and ventricular myocytes. *J Cardiovasc Pharmacol*, 41(4):506-17, 2003.

D. A. Golod, R. Kumar, and R. W. Joyner. Determinants of action potential initiation in isolated rabbit atrial and ventricular myocytes. *Am J Physiol*, 274(6 Pt 2):H1902-13, 1998.

J. R. de Groot, T. Veenstra, A. O. Verkerk, R. Wilders, J. P. Smits, F. J. Wilms-Schopman, R. F. Wiegerinck, J. Bourier, C. N. Belterman, R. Coronel, E. E. Verheijck. Conduction slowing by the gap junctional uncoupler carbenoxolone. *Cardiovasc Res*, 60:288-97, 2003.

S. F. Idriss and P. D. Wolf. Transmural action potential repolarization heterogeneity develops postnatally in the rabbit. *J Cardiovasc Electrophysiol*, 15(7):795-801, 2004.

H. R. Lu, R. Marien, A. Saels, and F. De Clerck. Are there sex-specific differences in ventricular repolarization or in drug-induced early afterdepolarizations in isolated rabbit Purkinje fibers? *J Cardiovasc Pharmacol*, 36(1):132-9, 2000.

H. R. Lu, E. Vlaminckx, K. Van Ammel, and F. De Clerck. Drug-induced long QT in isolated rabbit Purkinje fibers: importance of action potential duration, triangulation and early afterdepolarizations. *Eur J Pharmacol*, 452(2):183-92, 2002.

H. R. Lu, E. Vlaminckx, A. Van De Water, and D. J. Gallacher. Both beta-adrenergic receptor stimulation and cardiac tissue type have important roles in elucidating the functional effects of I(Ks) channel blockers in vitro. *J Pharmacol Toxicol Methods*, 51(2):81-90, 2005.

Z. Lu, K. Kamiya, T. Opthof, K. Yasui, and I. Kodama. Density and kinetics of $I_{(Kr)}$ and $I_{(Ks)}$ in guinea pig and rabbit ventricular myocytes explain different efficacy of $I_{(Ks)}$ blockade at high heart rate in guinea pig and rabbit: implications for arrhythmogenesis in humans. *Circulation*, 104(8):951-6, 2001.

M. A. McIntosh, S. M. Cobbe, and G. L. Smith. Heterogeneous changes in action potential and intracellular Ca^{2+} in left ventricular myocyte sub-types from rabbits with heart failure. *Cardiovasc Res*, 45(2):397-409, 2000.

K. Noguchi, C. Ito, Y. Isobe, K. Fukushima, Y. Tanaka, H. Tanaka, and K. Shigenobu. Effects of 5-HT(4) receptor agonist prokinetic agents on the action potential parameters of isolated rabbit myocardium. *Pharmacology*, 62(2):73-9, 2001.

A. O. Verkerk, H. L. Tan, and J. H. Ravesloot. Ca²⁺-activated Cl⁻ current reduces transmural electrical heterogeneity within the rabbit left ventricle. *Acta Physiol Scand*, 180(3):239-47, 2004.

R. T. Wiedmann, R. C. Tan, R. W. Joyner. Discontinuous conduction at Purkinje-ventricular muscle junction. *Am J Physiol*, 271:H1507-16, 1996.

G. X. Yan, S. J. Rials, Y. Wu, T. Liu, X. Xu, R. A. Marinchak, and P. R. Kowey. Ventricular hypertrophy amplifies transmural repolarization dispersion and induces early afterdepolarization. *Am J Physiol Heart Circ Physiol*, 281(5):H1968-75, 2001.

APPENDIX S2: PF CELL MODEL

General equations

$$\begin{split} \frac{\mathrm{d}V}{\mathrm{d}t} &= -\frac{I_{\mathrm{ion}}}{C_m} \\ I_{\mathrm{ion}} &= I_{\mathrm{Na}} + I_{\mathrm{NaL}} + I_{\mathrm{Ca,L}} + I_{\mathrm{Ca,T}} + I_{\mathrm{to}} + I_{\mathrm{Kr}} + I_{\mathrm{Ks}} + I_{\mathrm{K1}} + I_{\mathrm{Kp}} + \\ &I_{\mathrm{NaCa}} + I_{\mathrm{Na}K} + I_{\mathrm{Na,b}} + I_{\mathrm{Ca,b}} + I_{\mathrm{K,b}} + I_{\mathrm{Cl,b}} + I_{\mathrm{SLCa,p}} \end{split}$$

Fast Na⁺ current

$$I_{Na} = g_{Na}m^{3}hj(V - E_{Na})$$

$$\frac{dm}{dt} = \frac{m_{\infty} - m}{\tau_{m}}$$

$$m_{\infty} = \frac{\alpha_{m}}{\alpha_{m} + \beta_{m}}, \quad \tau_{m} = \frac{1.0}{\alpha_{m} + \beta_{m}}$$

$$\alpha_{m} = \frac{0.32(V + 47.13)}{1 - e^{-0.1(V + 47.13)}}, \quad \beta_{m} = 0.08e^{-V/11.0}$$

$$\frac{dh}{dt} = \frac{h_{\infty} - h}{\tau_{h}}, \quad \frac{dj}{dt} = \frac{j_{\infty} - j}{\tau_{j}}$$

$$h_{\infty} = \frac{\alpha_{h}}{\alpha_{h} + \beta_{h}}, \quad \tau_{h} = \frac{1.0}{\alpha_{h} + \beta_{h}}$$

$$j_{\infty} = \frac{\alpha_j}{\alpha_j + \beta_j}, \quad \tau_j = \frac{1.0}{\alpha_j + \beta_j}$$

If $V \ge -40 \text{ mV}$

$$\alpha_{h} = 0, \quad \beta_{h} = \frac{1.0}{0.13(1.0 + e^{-(V+10.66)/11.1})}$$

$$\alpha_{j} = 0, \quad \beta_{j} = \frac{0.3e^{(-2.535\times10^{-7}V)}}{1.0 + e^{-0.1(V+320)}}$$

Else

$$\begin{split} \alpha_{h} &= 0.135e^{-(V+80)/6.8}, \quad \beta_{h} = 3.56e^{0.079V} + 3.1 \times 10^{5} e^{0.35V} \\ \alpha_{j} &= \frac{-1.2714 \times 10^{5} e^{0.2444V} - 3.474 \times 10^{-5} e^{-0.0439V} \left(V + 37.78\right)}{1.0 + e^{0.314(V+79.23)}} \\ \beta_{j} &= \frac{0.1212e^{-0.01052V}}{1.0 + e^{-0.1378(V+40.14)}} \end{split}$$

Late Na⁺ current

$$I_{\text{NaL}} = g_{\text{NaL}} m_L h_L (V - E_{Na})$$

$$\frac{dm_L}{dt} = \frac{m_{L_{\infty}} - m_L}{\tau_{mL}}$$

$$m_{L_{\infty}} = \frac{\alpha_{mL}}{\alpha_{mL} + \beta_{mL}}, \quad \tau_{mL} = \frac{1.0}{\alpha_{mL} + \beta_{mL}}$$

$$\alpha_{m_l} = \frac{0.32(V + 47.13)}{1 - e^{-0.1(V + 47.13)}}, \quad \beta_{m_l} = 0.08e^{-V/11.0}$$

$$\frac{dh_L}{dt} = \frac{h_{L_{\infty}} - h_L}{\tau_{hL}}$$

$$h_{L_{\infty}} = \frac{1.0}{1.0 + e^{((V + 69)/6.1)}}$$

$$\tau_{h_L} = 132.4 + 112.8e^{0.02325V}$$
L-type Ca²⁺ current

$$I_{CaL} = g_{CaL} df (1 - f_{Ca}) (V - 60.0)$$

$$\frac{dd}{dt} = \frac{d_{\infty} - d}{\tau_d}$$

$$d_{\infty} = \frac{1.0}{1 + e^{-(V - 4.0)/6.74}}, \quad \tau_d = \frac{0.59 + 0.8e^{0.52(V + 13.0)}}{1 + e^{0.132(V + 13.0)}}$$

$$\frac{df}{dt} = \frac{f_{\infty} - f}{\tau_f}$$

$$f_{\infty} = \frac{1.0}{1.0 + e^{(V+25.0)/10.0}}, \quad \tau_f = 0.005(V - 2.5)^{2.0} + 4.0$$
$$\frac{f_{\text{Ca}}}{\text{d}t} = 0.7[\text{Ca}^{2+}]_{\text{jct}}(1 - f_{\text{Ca}}) - 0.0119f_{\text{Ca}}$$

T-type Ca²⁺ current

$$I_{Ca,T} = g_{Ca,T}bg(V - 50.0)$$

$$\frac{db}{dt} = \frac{b_{\infty} - b}{\tau_b}$$

$$b_{\infty} = \frac{1.0}{1 + e^{-(V + 28.0)/6.1}}, \quad \tau_b = \frac{1.0}{\alpha_b + \beta_b}$$

$$\alpha_b = 1.068e^{(V + 16.3)/30.0}, \quad \beta_b = 1.068e^{-(V + 16.3)/30.0}$$

$$\frac{dg}{dt} = \frac{g_{\infty} - g}{\tau_g}$$

$$g_{\infty} = \frac{1.0}{1.0 + e^{(V + 60.0)/6.6}}, \quad \tau_{f_T} = \frac{1.0}{\alpha_g + \beta_g}$$

$$\alpha_g = 0.015e^{-(V + 71.7)/83.33}, \quad \beta_g = 0.015e^{(V + 71.7)/15.38}$$

Transient outward K⁺ current

$$I_{to} = g_{to} r (0.75q_1 + 0.25q_2) (V - E_K)$$

$$\frac{dr}{dt} = \frac{r_{\infty} - r}{\tau_r}$$

$$r_{\infty} = \frac{\alpha_r}{\alpha_r + \beta_r}, \ \tau_r = \frac{0.2}{\alpha_r + \beta_r}$$

$$\alpha_r = 0.0451e^{0.0304V}, \ \beta_r = 0.0989e^{-0.053V}$$

$$\begin{aligned} \frac{\mathrm{d}q_1}{\mathrm{d}t} &= \frac{q_\infty - q_1}{\tau_{q_1}}, \frac{\mathrm{d}q_2}{\mathrm{d}t} = \frac{q_\infty - q_2}{\tau_{q_3}} \\ q_\infty &= \frac{\alpha_q}{\alpha_q + \beta_q}, \tau_{q_1} = 0.7 \left(15 + \frac{20.0}{\alpha_q + \beta_q}\right), \tau_{q_x} = \frac{4.0}{\alpha_q + \beta_q} \\ \alpha_q &= \frac{0.05415e^{-(V+12.5)/15}}{1.0 + 0.0513e^{-(V+12.5)/15}}, \quad \beta_q = \frac{0.05415e^{(V+33.5)/15}}{1.0 + 0.0513e^{(V+33.5)/15}} \end{aligned}$$

Fast delayed rectifier K⁺ current

$$\begin{split} &I_{\rm Kr} = g_{\rm Kr} X_r R_{\infty} (V - E_{\rm K}) \\ &g_{\rm K,r} = 0.0156 \sqrt{[K^+]_0 / 5.4} \\ &X_{r\infty} = \frac{1.0}{1.0 + e^{-(V + 20.0) / 10.5}}, \quad \tau_{Xr} = \frac{1.0 \left(1 - e^{-0.123(V + 7)}\right)}{0.00138(V + 7.0)} + \frac{0.00061(V + 10.0)}{e^{0.145(V + 10.0)} - 1.0} \end{split}$$

$$\frac{\mathrm{d}X_r}{\mathrm{d}t} = \frac{X_{r\infty} - X_r}{\tau_{X_r}}$$
$$R_{\infty} = \frac{1.0}{1.0 + \mathrm{e}^{\mathrm{V}/50}}$$

Slow delayed rectifier K⁺ current

$$I_{\rm Ks} = g_{\rm Ks} X (V - E_{\rm Ks})$$

$$g_{\rm Ks} = 0.07 \left(0.057 + \frac{0.19}{1.0 + e^{(-7.2 + p_{\rm Ca})/0.6}} \right)$$

$$p_{\rm Ca} = -1.0 \log_{10} \left([{\rm Ca}^{2+}]_i \times 10^{-3} \right) + 3.0$$

$$\frac{dX}{dt} = \frac{X_{\infty} - X}{\tau_X}$$

$$X_{\infty} = \frac{1.0}{1.0 + e^{-(V - 1.5)/200}}, \quad \tau_X = \frac{600.0}{1 + e^{(V - 20)/15}} + 250.0$$

Inward rectifier K⁺ current

$$I_{K1} = g_{K1} (K1_{\infty} + 0.008) (V - E_K)$$

$$g_{K1} = 0.5 \sqrt{([K^+]_o / 5.4)}$$

$$K1_{\infty} = \frac{\alpha_{K1}}{\alpha_{K1} + \beta_{K1}}$$

$$\alpha_{K1} = \frac{0.3}{1 + e^{(0.2385(V - E_K - 59.215))}}$$

$$\beta_{K1} = \frac{0.49e^{(0.0803(V - E_K + 5.5))} + e^{(0.06175(V - E_K - 59431))}}{1.0 + e^{(-0.5143(V - E_K + 4.753))}}$$

Plateau K⁺ current

$$I_{\rm Kp} = g_{\rm Kp} I_{Kp_{\rm Kp}} \left(V - E_K \right)$$
$$I_{\rm Kp_{\rm Kp}} = \frac{1.0}{1.0 + e^{(7.488 - V)/5.98}}$$

Ca²⁺ activated Cl⁻ current

$$I_{\rm Cl} = \frac{0.3A_{\infty}I}{1.0 + 0.1/[{\rm Ca}^{2+}]_i} (V - E_{Cl})$$

$$A_{\infty} = \frac{1.0}{1.0 + e^{-(V+5.0)/10.0}}$$
$$\frac{dI}{dt} = \frac{I_{\infty} - I}{\tau_{I}}$$

$$I_{\infty} = \frac{1.0}{1.0 + e^{(V+75.0)/10.0}}, \ \tau_{I} = \frac{20.0}{(1.0 + e^{(V+33.5)/10.0})} + 20.0$$

Na⁺-Ca²⁺ exchanger current

$$I_{\text{NaCa}} = \frac{1.8[\text{Na}^{+}]_{i}^{3}[\text{Ca}^{2+}]_{o}e^{0.35VF/RT} - 1.5[\text{Na}^{+}]_{o}^{3}[\text{Ca}^{2+}]_{i}e^{(0.35-1)VF/RT}}{\left(1.0 + \left(0.125/1.5[\text{Ca}^{2+}]_{i}\right)^{2}\right)\left(1.0 + 0.27e^{(0.35-1)VF/RT}\right)\left(d_{\text{NaCa}_{1}} + d_{\text{NaCa}_{2}}\right)}\right)$$

$$d_{\text{NaCa}_{1}} = K_{mCa_{o}}[\text{Na}^{+}]_{i}^{3} + K_{mNa_{o}}^{3}1.5[\text{Ca}^{2+}]_{i} + K_{mNa_{i}}^{3}[\text{Ca}^{2+}]_{o}\left(1.0 + 1.5[\text{Ca}^{2+}]_{i}/K_{mCa_{i}}\right)$$

$$d_{\text{NaCa}_{2}} = K_{mCa_{i}}[\text{Na}^{+}]_{o}^{3}\left(1 + ([\text{Na}^{+}]_{i}/K_{mNa_{i}})^{3}\right) + [\text{Na}^{+}]_{i}^{3}[\text{Ca}^{2+}]_{o} + [\text{Na}^{+}]_{o}^{3}1.5[\text{Ca}^{2+}]_{i}$$

Na⁺-K⁺ pump current

$$I_{\text{NaK}} = 0.6187 f_{\text{NaK}} \frac{[\text{K}^+]_o}{1 + (10.0/[\text{Na}^+]_i)^2 ([\text{K}^+]_o + 1.5)}$$
$$f_{\text{NaK}} = \frac{1.0}{1.0 + 0.1245 e^{-0.1VF/RT}} + 0.0365\sigma e^{-0.1VF/RT}$$
$$\sigma = \frac{e^{[Na^+]o/67.3} - 1}{7.0}$$

Ca²⁺ pump current

$$I_{\text{SLCa,p}} = \frac{0.033625}{1.0 + (0.5/[\text{Ca}^{2+}]_i)^{1.6}}$$

Background currents

$$\begin{split} I_{\text{Na,b}} &= g_{\text{Na,b}}(V - E_{\text{Na}}), \quad I_{\text{Ca,b}} = g_{\text{Ca,b}}(V - E_{\text{Ca}}), \qquad I_{\text{K,b}} = g_{\text{K,b}}(V - E_{\text{K}}), \\ I_{\text{Cl,b}} &= g_{\text{Cl,b}}(V - E_{\text{Cl}}) \end{split}$$

TABLE S2. Model parameter values

C_{m}	66 pF
<i>g</i> _{Na}	$2 \times 10^{-2} \ \mu S/pF$
$g_{ m NaL}$	$1.62 \times 10^{-5} \ \mu S/pF$
$g_{ ext{Ca,L}}$	$2.7 \times 10^{-4} \ \mu S/pF$
$g_{\mathrm{Ca,T}}$	$2.0 \times 10^{-4} \ \mu S/pF$
<i>g</i> to	$1.12 \times 10^{-4} \ \mu S/pF$

gкр	1×10 ⁻⁶ µS/pF	
$g_{ m Na,b}$	$2.97 \times 10^{-8} \ \mu S/pF$	
<i>g</i> Ca,b	$3.52 \times 10^{-7} \ \mu S/pF$	
<i>8</i> К,b	$5 \times 10^{-8} \ \mu S/pF$	
<i>g</i> Cl,b	$2.7 \times 10^{-7} \ \mu S/pF$	
<i>K</i> _{mCao}	1.3 mM	
K _{mNao}	87.5 mM	
K _{mNai}	12.29 mM	
<i>K</i> _{mCai}	$3.59 \times 10^{-3} \ \mu M$	
$[Na^+]_o$	140.0 mM	
$[Ca^{2+}]_{o}$	1.800 mM	
$[\mathbf{K}^{+}]_{\mathbf{o}}$	5.400 mM	
$[Cl^{-}]_{o}$	150 mM	
$[Na^+]_i$	8.8 mM	
$[Ca^{2+}]_i$	0.100 μM	
$[\mathbf{K}^{+}]_{i}$	135 mM	
[Cl ⁻] _i	30 mM	
R	8314 mJ/mol °C	
F	96487 C/mol	
Т	35°C	

APPENDIX S3: VENTRICULAR CELL MODEL

General equations

$$\begin{aligned} \frac{\mathrm{d}V}{\mathrm{d}t} &= -\frac{I_{\mathrm{ion}}}{C_m} \\ I_{\mathrm{ion}} &= I_{\mathrm{Na}} + I_{\mathrm{Ca,L}} + I_{\mathrm{to}} + I_{\mathrm{Kr}} + I_{\mathrm{Ks}} + I_{\mathrm{K1}} + I_{\mathrm{Kp}} + I_{\mathrm{NaCa}} + I_{\mathrm{NaK}} + I_{\mathrm{Na,b}} + I_{\mathrm{Ca,b}} + I_{\mathrm{Cl,b}} + I_{\mathrm{K,b}} + I_{\mathrm{SLCa,p}} \end{aligned}$$

Fast Na⁺ current

$$I_{Na} = g_{Na}m^{3}hj(V - E_{Na})$$
$$\frac{dm}{dt} = \frac{m_{\infty} - m}{\tau_{m}}$$
$$m_{\infty} = \frac{\alpha_{m}}{\alpha_{m} + \beta_{m}}, \quad \tau_{m} = \frac{1.0}{\alpha_{m} + \beta_{m}}$$

$$\alpha_{m} = \frac{0.32(V + 47.13)}{1 - e^{-0.1(V + 47.13)}}, \quad \beta_{m} = 0.08e^{-V/11.0}$$
$$\frac{dh}{dt} = \frac{h_{\infty} - h}{\tau_{h}}, \quad \frac{dj}{dt} = \frac{j_{\infty} - j}{\tau_{j}}$$
$$h_{\infty} = \frac{\alpha_{h}}{\alpha_{h} + \beta_{h}}, \quad \tau_{h} = \frac{1.0}{\alpha_{h} + \beta_{h}}$$
$$j_{\infty} = \frac{\alpha_{j}}{\alpha_{j} + \beta_{j}}, \quad \tau_{j} = \frac{1.0}{\alpha_{j} + \beta_{j}}$$

If $V \ge -40 \text{ mV}$

$$\alpha_{h} = 0, \quad \beta_{h} = \frac{1.0}{0.13(1.0 + e^{-(V+10.66)/11.1})}$$

$$\alpha_{j} = 0, \quad \beta_{j} = \frac{0.3e^{(-2.535\times10^{-7}V)}}{1.0 + e^{-0.1(V+32.0)}}$$

Else

$$\begin{split} \alpha_{h} &= 0.135e^{-(V+80)/6.8}, \quad \beta_{h} = 3.56e^{0.079V} + 3.1 \times 10^{5} e^{0.35V} \\ \alpha_{j} &= \frac{-1.2714 \times 10^{5} e^{0.2444V} - 3.474 \times 10^{-5} e^{-0.0439V} \left(V + 37.78\right)}{1.0 + e^{0.314(V+79.23)}} \\ \beta_{j} &= \frac{0.1212e^{-0.01052V}}{1.0 + e^{-0.1378(V+40.14)}} \end{split}$$

Late Na⁺ current

$$I_{\text{NaL}} = g_{\text{NaL}} m_L h_L (V - E_{Na})$$

$$\frac{dm_L}{dt} = \frac{m_{L_{\infty}} - m_L}{\tau_{mL}}$$

$$m_{L_{\infty}} = \frac{\alpha_{mL}}{\alpha_{mL} + \beta_{mL}}, \quad \tau_{mL} = \frac{1.0}{\alpha_{mL} + \beta_{mL}}$$

$$\alpha_{m_l} = \frac{0.32(V + 47.13)}{1 - e^{-0.1(V + 47.13)}}, \quad \beta_{m_l} = 0.08e^{-V/11.0}$$

$$\frac{dh_L}{dt} = \frac{h_{L_{\infty}} - h_L}{\tau_{hL}}$$

$$h_{L_{\infty}} = \frac{1.0}{1.0 + e^{((V + 69)/6.1)}}$$

$$\tau_{h_L} = 132.4 + 112.8e^{0.02328V}$$

L-type Ca²⁺ current

$$I_{\rm Ca,L} = g_{\rm Ca,L} d (0.8f_1 + 0.2f_2) (1 - f_{\rm Ca}) (V - 60.0)$$

$$\begin{split} \frac{\mathrm{d}d}{\mathrm{d}t} &= \frac{d_{\infty} - d}{\tau_d} \\ d_{\infty} &= \frac{1.0}{1 + e^{-(V+8.5)/4.0}}, \quad \tau_d = 0.4 \left(\frac{1.0}{1.0 + e^{-(V+8.5)/4.0}}\right) \left(\frac{1 - e^{-(V+8.5)/4.0}}{0.035(V+8.5)}\right) \\ \frac{\mathrm{d}f_1}{\mathrm{d}t} &= \frac{f_{\infty} - f_1}{\tau_{f_1}}, \quad \frac{\mathrm{d}f_2}{\mathrm{d}t} = \frac{f_{\infty} - f_2}{\tau_{f_2}} \\ f_{\infty} &= \frac{1.0}{1.0 + e^{(V+28.06)/6.0}}, \\ \tau_{f_1} &= 8 + \frac{20.0}{1.0 + e^{-(V-20)/5}} - \frac{20.0}{1.0 + e^{-(V-40)/5}}, \\ \tau_{f_2} &= 5 + \frac{30.0}{1.0 + e^{-(V-30)/5}} + 55.0 \\ \frac{f_{\mathrm{Ca}}}{\mathrm{d}t} &= 0.275[\mathrm{Ca}^{2^+}]_{\mathrm{jct}}(1 - f_{\mathrm{Ca}}) - 0.0029 f_{\mathrm{Ca}} \end{split}$$

Transient outward K⁺ current

$$\begin{split} I_{\text{tos}} &= I_{tos} + I_{tos} \\ I_{\text{tos}} &= g_{\text{tos}} X_{tos} (Y_{tos} + 0.5R_{\text{sc}}) (V - E_K) \\ I_{\text{tof}} &= g_{\text{tof}} X_{tof} Y_{tof} (V - E_K) \\ \frac{dX_{tos}}{dt} &= \frac{X_{tos_{\infty}} - X_{tos}}{\tau_{x_{\text{ses}}}}, \quad \frac{dY_{tos}}{dt} = \frac{Y_{tos_{\infty}} - Y_{tos}}{\tau_{y_{\text{res}}}}, \\ \frac{dX_{tos}}{dt} &= \frac{X_{tos_{\infty}} - X_{tos}}{\tau_{x_{\text{ses}}}}, \quad \frac{dY_{tos}}{dt} = \frac{Y_{tos_{\infty}} - Y_{tos}}{\tau_{y_{\text{res}}}}, \\ \frac{dX_{tos_{\infty}}}{dt} &= \frac{1.0}{(1.0 + e^{-(V+3.0)/15})}, \quad \tau_{X_{tos}} = \frac{9.0}{1.0 + e^{(V+3.0)/15}} + 0.5 \\ Y_{tos_{\infty}} &= \frac{1.0}{(1.0 + e^{-(V+3.5)/10})}, \quad \tau_{Y_{tos}} = \frac{3000.0}{1.0 + e^{(V+60.0)/10}} + 30 \\ X_{tof_{\infty}} &= \frac{1.0}{(1.0 + e^{-(V+3.0)/15})}, \quad \tau_{X_{tof}} = 3.5e^{-(V/30)^2} + 1.5 \\ Y_{tof_{\infty}} &= \frac{1.0}{(1.0 + e^{(V+3.5)/10})}, \quad \tau_{Y_{tof}} = \frac{20.0}{1.0 + e^{(V+3.5)/10}} + 20 \\ R_{s_{\infty}} &= \frac{1.0}{(1.0 + e^{(V+3.5)/10})} \end{split}$$

Fast delayed rectifier $\mathbf{K}^{\!\!+}$ current

$$\begin{split} I_{\rm Kr} &= g_{\rm Kr} X_r R_{\infty} (V - E_{\rm K}) \\ g_{\rm Kr} &= 0.03 \sqrt{[{\rm K}^+]_0 / 5.4} \\ X_{r\infty} &= \frac{1.0}{1.0 + e^{-(V + 500 - 35) / 7.5}}, \quad \tau_{Xr} = \frac{1.0 \left(1 - e^{-0.123 (V + 7 - 35)}\right)}{0.00138 (V + 7.0 - 35)} + \frac{0.00061 (V + 10.0 - 35)}{e^{0.145 (V + 10.0 - 35)} - 1.0} \\ \frac{{\rm d}X_r}{{\rm d}t} &= \frac{X_{r\infty} - X_r}{\tau_{X_r}} \end{split}$$

$$R_{\infty} = \frac{1.0}{1.0 + 6.0 \,\mathrm{e}^{0.05 \,\mathrm{V}}}$$

Slow delayed rectifier K⁺ current

$$I_{\rm Ks} = g_{\rm ks} g_{\rm Ks,SL} X^2 (V - E_{\rm K})$$

$$g_{\rm Ks,SL} = 0.14 \left(0.057 + \frac{0.19}{1.0 + e^{(-7.2 + p_{Ca})/0.6}} \right)$$

$$p_{Ca} = -1.0 \log_{10} \left([{\rm Ca}^{2+}]_i \times 10^{-3} \right) + 3.0$$

$$\frac{dX}{dt} = \frac{X_{\infty} - X}{\tau_X}$$

$$X_{\infty} = \frac{1.0}{1.0 + e^{-(V - 1.5)/13.0}}, \quad \tau_X = \frac{300.0}{1.0 + e^{(V - 20)/15.0}} + 125.0$$

Inward rectifier K⁺ current

$$I_{K1} = g_{K1}K1_{\infty}(V - E_K)$$

$$K1_{\infty} = \frac{\alpha_{K1}}{\alpha_{K1} + \beta_{K1}}$$

$$\alpha_{K1} = \frac{1.02}{1 + e^{(0.2385(V - E_K - 59.215 - 5))}}$$

$$\beta_{K1} = \frac{0.49e^{(0.0803(V - E_K + 5.5 - 5))} + e^{(0.06175(V - E_K - 59431 - 5))}}{1.0 + e^{(-0.5145(V - E_K + 4.753 - 5))}}$$

Plateau K⁺ current

$$I_{\rm Kp} = g_{\rm Kp} I_{Kp_{\rm Kp}} \left(V - E_K \right)$$
$$I_{\rm Kp_{\rm Kp}} = \frac{1.0}{1.0 + e^{(7.488 - V)/5.98}}$$

Ca²⁺ actvation Cl⁻ Current

$$I_{\rm Cl} = \frac{g_{Cl} A_{\infty} I}{1.0 + 0.1/[{\rm Ca}^{2+}]_i} (V - E_{\rm Cl})$$

$$A_{\infty} = \frac{1.0}{1.0 + e^{-(V+5.0)/10.0}}$$

$$\frac{dI}{dt} = \frac{I_{\infty} - I}{\tau_I}$$

$$I_{\infty} = \frac{1.0}{1.0 + e^{(V+75.0)/10.0}}, \ \tau_I = \frac{10.0}{(1.0 + e^{(V+33.5)/10.0})} + 10.0$$

Na⁺-Ca²⁺ exchanger current

$$I_{\text{NaCa}} = \frac{A - [\text{Na}^{+}]_{o}^{3} [\text{Ca}^{2+}]_{i} e^{(0.35-1)VF/RT}}{(1.0 + 0.27e^{(0.35-1)VF/RT})(d_{\text{NaCa}_{1}} + d_{\text{NaCa}_{2}})}$$

$$A = 9.0 \left(\left[[\text{Na}^{+}]_{i}^{3} [\text{Ca}^{2+}]_{o} e^{0.35VF/RT} \right] \right) \frac{1.0}{1.0 + (0.256/[\text{Ca}^{2+}]_{i})^{3}}$$

$$d_{\text{NaCa}_{1}} = K_{mCa_{0}} [\text{Na}^{+}]_{i}^{3} + K_{mNa_{o}}^{3} [\text{Ca}^{2+}]_{i} + K_{mNa_{i}}^{3} [\text{Ca}^{2+}]_{o} \left(1.0 + [\text{Ca}^{2+}]_{i} / K_{mCa_{i}} \right)$$

$$d_{\text{NaCa}_{2}} = K_{mCa_{i}} [\text{Na}^{+}]_{o}^{3} \left(1 + ([\text{Na}^{+}]_{i} / K_{mNa_{i}})^{3} \right) + [\text{Na}^{+}]_{i}^{3} [\text{Ca}^{2+}]_{o} + [\text{Na}^{+}]_{o}^{3} [\text{Ca}^{2+}]_{i}$$

Na⁺-K⁺ pump current

$$I_{\text{NaK}} = 1.907 f_{Nak} \frac{[\text{K}^+]_o}{1 + (11.0/[\text{Na}^+]_i)^4} ([\text{K}^+]_o + 1.5)$$

$$f_{NaK} = \frac{1.0}{1.0 + 0.1245 e^{-0.1VF/RT}} + 0.0365 \sigma e^{-0.1VF/RT}$$

$$\sigma = \frac{e^{[\text{Na}^+]_o/67.3} - 1}{7.0}$$

Ca²⁺ pump current $I_{\text{SLCa,p}} = \frac{0.067}{1.0 + (0.5/[\text{Ca}^{2+}]_i)^{1.6}}$

Background currents

$$I_{\rm Na,b} = g_{\rm Na,b}(V - E_{\rm Na}), \quad I_{\rm Ca,b} = g_{\rm Ca,b}(V - E_{\rm Ca}), \quad I_{\rm Cl,b} = g_{\rm Cl,b}(V - E_{\rm Cl})$$

	Endo	Μ	Epi
$C_{ m m}$	88 pF	88 pF	88 pF
<i>g</i> _{Na}	$8.0 \times 10^{-3} \ \mu S/pF$	$8.0 \times 10^{-3} \ \mu S/pF$	$8.0 \times 10^{-3} \ \mu S/pF$
$g_{ m NaL}$	$1.62 \times 10^{-6} \ \mu\text{S/pF}$	$1.62 \times 10^{-6} \ \mu S/pF$	$1.62 \times 10^{-6} \ \mu S/pF$
g _{Ks}	1.0	0.7	1.5
$g_{ m tos}$	$1.7 \times 10^{-5} \ \mu S/pF$	$8.5 \times 10^{-6} \ \mu S/pF$	3.12×10 ⁻⁵ µS/pF
$g_{ m tof}$	9×10 ⁻⁵ μS/pF	$5.1 \times 10^{-5} \ \mu S/pF$	$1.17 \times 10^{-4} \ \mu S/pF$
<i>B</i> Ca,L	$4.0{\times}10^{4}\ \mu\text{S/pF}$	$4.4{\times}10^{\text{-4}}\;\mu\text{S/pF}$	$4.0{\times}10^{-4}~\mu S/pF$
<i>g</i> _{K1}	$4.5{\times}10^{-4}~\mu\text{S/pF}$	$4.2 \times 10^{-4} \ \mu S/pF$	$5.4 \times 10^{-4} \ \mu S/pF$

TABLE S3. Model parameter values

gкp	$1 \times 10^{-6} \ \mu S/pF$	1×10 ⁻⁶ µS/pF	1×10 ⁻⁶ µS/pF
<i>g</i> _{Cl}	$1 \times 10^{-4} \ \mu S/pF$	$1 \times 10^{-4} \ \mu S/pF$	$1 \times 10^{-4} \ \mu S/pF$
g _{Na,b}	$1.49 \times 10^{-6} \ \mu S/pF$	1.49×10 ⁻⁶ µS/pF	1.49×10 ⁻⁶ µS/pF
<i>g</i> Ca,b	$2.513 \times 10^{-7} \ \mu S/pF$	2.513×10 ⁻⁷ μS/pF	2.513×10 ⁻⁷ µS/pF
<i>g</i> K,b	$0.0 \times 10^{-3} \ \mu S/pF$	$0.0 \times 10^{-3} \ \mu S/pF$	$0.0 \times 10^{-3} \ \mu S/pF$
<i>B</i> Cl,b	$6.75 \times 10^{-6} \ \mu S/pF$	2.25×10 ⁻⁶ μS/pF	$7.2 \times 10^{-6} \ \mu S/pF$
K _{mCao}	1.3 mM	1.3 mM	1.3 mM
K _{mNao}	87.5 mM	87.5 mM	87.5 mM
K _{mNai}	12.29 mM	12.29 mM	12.29 mM
K _{mCai}	$3.59 \times 10^{-3} \ \mu M$	3.59×10 ⁻³ μM	$3.59 \times 10^{-3} \ \mu M$
[Na ⁺] _o	140.0 mM	140.0 mM	140.0 mM
$[Ca^{2+}]_o$	1.800 mM	1.800 mM	1.800 mM
$[K^+]_o$	5.400 mM	5.400 mM	5.400 mM
[Cl ⁻] _o	150 mM	150 mM	150 mM
$[Na^+]_i$	8.8 mM	8.8 mM	8.8 mM
$[Ca^{2+}]_i$	0.100 μM	0.100 µM	0.100 μM
$[K^+]_i$	135 mM	135 mM	135 mM
[Cl ⁻] _i	30 mM	30 mM	30 mM
R	8314 mJ/mol °C	8314 mJ/mol °C	8314 mJ/mol °C
F	96487 C/mol	96487 C/mol	96487 C/mol
Т	35°C	35°C	35°C

APPENDIX S4: Ca²⁺ HANDLING

Intracellular Ca²⁺ handling

$$\frac{d[Ca^{2+}]_{i}}{dt} = -\frac{Vol_{SR}}{Vol_{cyt}}J_{pump,SR} + \frac{J_{Ca,SL-cyt}}{Vol_{cyt}} - dCa_{cytbound}$$

In PF cells

$$\frac{d[Ca^{2+}]_{SL}}{dt} = -0.5 \frac{I_{Ca,b} + I_{Ca,p} - 2I_{NaCa}}{2Vol_{SL}F} + \frac{J_{Ca,jct-SL} - J_{Ca,SL-cyt}}{Vol_{SL}} - dCa_{SL,bound}$$
$$\frac{d[Ca^{2+}]_{jct}}{dt} = -0.5 \frac{I_{Ca,L} + I_{Ca,T}}{2Vol_{jct}F} + \frac{Vol_{SL}}{Vol_{jct}}J_{rel,SR} + \frac{Vol_{cyt}}{Vol_{jct}}J_{leak,SR} - \frac{J_{Ca,jct-SL}}{Vol_{jct}} - dCa_{jct,bound}$$

In ventricular cells

$$\frac{d[Ca^{2+}]_{SL}}{dt} = -0.65 \frac{I_{Ca,b} + I_{Ca,p} - 2I_{NaCa}}{2Vol_{SL}F} + \frac{J_{Ca,jct-SL} - J_{Ca,SL-cyt}}{Vol_{SL}} - dCa_{SL,bound}$$

$$\frac{d[Ca^{2+}]_{jct}}{dt} = -0.65 \frac{I_{Ca,L} + I_{Ca,T}}{2Vol_{jct}F} + \frac{Vol_{SL}}{Vol_{jct}}J_{rel,SR} + \frac{Vol_{cyt}}{Vol_{jct}}J_{leak,SR} - \frac{J_{Ca,jct-SL}}{Vol_{jct}} - dCa_{jct,bound}$$

$$\frac{d[Ca^{2+}]_{SR}}{dt} = J_{pump,SR} - \left(J_{rel,SR} + \frac{Vol_{cyt}}{Vol_{SR}}J_{leak,SR}\right) - dCa_{CQSN}$$

$$J_{Ca,jct-SL} = 0.8241 \left([Ca^{2+}]_{jct} - [Ca^{2+}]_{SL}\right), \quad J_{Ca,SL-cyt} = 3.7243 \left([Ca^{2+}]_{SL} - [Ca^{2+}]_{i}\right)$$

In PF cells

$$J_{\text{pumpSR}} = 2.0V_{\text{max}} \frac{\text{Vol}_{\text{cyt}}}{\text{Vol}_{\text{SR}}} \frac{\left([\text{Ca}^{2+}]_{i}/K_{\text{m,f}}\right)^{\text{H}} - \left([\text{Ca}^{2+}]_{\text{SR}}/K_{\text{m,r}}\right)^{\text{H}}}{1.0 + \left([\text{Ca}^{2+}]_{i}/K_{\text{m,f}}\right)^{\text{H}} + \left([\text{Ca}^{2+}]_{\text{SR}}/K_{\text{m,r}}\right)^{\text{H}}} J_{\text{rel,SR}} = 2.0k_{s}O\left([\text{Ca}^{2+}]_{\text{SR}} - [\text{Ca}^{2+}]_{\text{jct}}\right), \quad J_{\text{leak,SR}} = 0.5k_{\text{leak,SR}}\left([\text{Ca}^{2+}]_{\text{SR}} - [\text{Ca}^{2+}]_{\text{jct}}\right)$$

In ventricular cells

$$J_{\text{pump,SR}} = V_{\text{max}} \frac{\text{Vol}_{\text{cyt}}}{\text{Vol}_{\text{SR}}} \frac{\left([\text{Ca}^{2+}]_{i} / K_{\text{m,f}} \right)^{\text{H}} - \left([\text{Ca}^{2+}]_{\text{SR}} / K_{\text{m,r}} \right)^{\text{H}}}{1.0 + \left([\text{Ca}^{2+}]_{i} / K_{\text{m,f}} \right)^{\text{H}} + \left([\text{Ca}^{2+}]_{\text{SR}} / K_{\text{m,r}} \right)^{\text{H}}}$$
$$J_{\text{rel,SR}} = k_{\text{s}} O\left([\text{Ca}^{2+}]_{\text{SR}} - [\text{Ca}^{2+}]_{\text{jct}} \right), \quad J_{\text{leak,SR}} = k_{\text{leak,SR}} \left([\text{Ca}^{2+}]_{\text{SR}} - [\text{Ca}^{2+}]_{\text{jct}} \right)$$

$$k_{\text{Ca-SR}} = Max_{\text{SR}} - \frac{Max_{\text{SR}} - Min_{\text{SR}}}{1.0 + (EC_{50-\text{SR}} / [Ca^{2+}]_{\text{SR}})^{2.5}}, \quad k_{o,\text{Ca-SR}} = \frac{k_{o,\text{Ca}}}{k_{\text{Ca-SR}}}, \quad k_{i,\text{Ca-SR}} = k_{i,\text{Ca}}k_{\text{Ca-SR}}$$

$$\frac{dR}{dt} = \left(k_{i,\text{m}}RI - k_{i,\text{Ca-SR}}[Ca^{2+}]_{j\text{ct}}R\right) - \left(k_{o,\text{Ca-SR}}[Ca^{2+}]_{j\text{ct}}^{2}R - k_{o,\text{m}}O\right)$$

$$\frac{dO}{dt} = \left(k_{o,\text{Ca-SR}}[Ca^{2+}]_{j\text{ct}}^{2}R - k_{o,\text{m}}O\right) - \left(k_{i,\text{Ca-SR}}[Ca^{2+}]_{j\text{ct}}O - k_{i,\text{m}}I\right)$$

$$\frac{dI}{dt} = \left(k_{i,\text{Ca-SR}}[Ca^{2+}]_{j\text{ct}}O - k_{i,\text{m}}I\right) - \left(k_{o,\text{m}}I - k_{o,\text{Ca-SR}}[Ca^{2+}]_{j\text{ct}}^{2}RI\right)$$

$$\frac{dRI}{dt} = \left(k_{o,\text{m}}I - k_{o,\text{Ca-SR}}[Ca^{2+}]_{j\text{ct}}^{2}RI\right) - \left(k_{i,\text{m}}RI - k_{i,\text{Ca-SR}}[Ca^{2+}]_{j\text{ct}}RI\right)$$

Intracellular Ca^{2+} buffering

$$dCa_{cytbound} = dCa_{TRPN} + dCa_{TRPN,Ca-Mg} + dMg_{TRPN,Ca-Mg} + dCa_{CMDN} + dCa_{MSN} + dCa_{SR-B} dCa_{jct,bound} = dCa_{jct,SL-B} + dCa_{jct,SL-H}, \quad dCa_{SL,bound} = dCa_{SL,SL-B} + dCa_{SL,SL-H} dCa_{TRPN} = 32,700.0[Ca^{2+}]_i (0.07 - [Ca^{2+}]_{TRPN}) - 19.6[Ca^{2+}]_{TRPN} dCa_{TRPN,Ca-Mg} = 2,3700.0[Ca^{2+}]_i (0.14 - S_{TRPN,Ca-Mg}) - 0.032[Ca^{2+}]_{TRPN,Ca-Mg}$$

$$\begin{split} dMg_{TRPN,Ca-Mg} &= 3.0[Mg^{2^+}]_i \Big(0.14 - S_{TRPN,Ca-Mg} \Big) - 3.33[Mg^{2^+}]_{TRPN,Ca-Mg} \\ S_{TRPN,Ca-Mg} &= [Ca^{2^+}]_{TRPN,Ca-Mg} + [Mg^{2^+}]_{TRPN,Ca-Mg} \\ dCa_{CMDN} &= 34,000.0[Ca^{2^+}]_i \Big(0.024 - [Ca^{2^+}]_{CMDN} \Big) - 238.0[Ca^{2^+}]_{CMDN} \\ dCa_{MSN} &= 13,800.0[Ca^{2^+}]_i \Big(0.14 - [Ca^{2^+}]_{MSN} \Big) - 0.46[Ca^{2^+}]_{MSN} \\ dCa_{SR-B} &= 100,000.0[Ca^{2^+}]_i \Big(0.0171 - [Ca^{2^+}]_{SR-B} \Big) - 60.0[Ca^{2^+}]_{SR-B} \\ dCa_{jctSL-B} &= 100,000.0[Ca^{2^+}]_{jct} \left(\frac{Vol_{cyt}}{Vol_{jct}} 0.0046 - [Ca^{2^+}]_{jctSL-B} \right) - 1,300.0[Ca^{2^+}]_{jctSL-B} \\ dCa_{jctSL-H} &= 100,000.0[Ca^{2^+}]_{jct} \left(\frac{Vol_{cyt}}{Vol_{jct}} 0.00165 - [Ca^{2^+}]_{jctSL-B} \right) - 30,000.0[Ca^{2^+}]_{jctSL-B} \\ dCa_{sL,SL-B} &= 100,000.0[Ca^{2^+}]_{SL} \left(\frac{Vol_{cyt}}{Vol_{sL}} 0.0374 - [Ca^{2^+}]_{SL,SL-B} \right) - 1,300.0[Ca^{2^+}]_{SL,SL-B} \\ dCa_{jctSL-H} &= 100,000.0[Ca^{2^+}]_{SL} \left(\frac{Vol_{cyt}}{Vol_{SL}} 0.00165 - [Ca^{2^+}]_{SL,SL-B} \right) - 1,300.0[Ca^{2^+}]_{SL,SL-B} \\ dCa_{jctSL-H} &= 100,000.0[Ca^{2^+}]_{SL} \left(\frac{Vol_{cyt}}{Vol_{SL}} 0.0074 - [Ca^{2^+}]_{SL,SL-B} \right) - 1,300.0[Ca^{2^+}]_{SL,SL-B} \\ dCa_{jctSL-H} &= 100,000.0[Ca^{2^+}]_{SL} \left(\frac{Vol_{cyt}}{Vol_{SL}} 0.00165 - [Ca^{2^+}]_{SL,SL-B} \right) - 30,000.0[Ca^{2^+}]_{SL,SL-B} \\ dCa_{cQSN} &= 100,000.0[Ca^{2^+}]_{SL} \left(\frac{Vol_{cyt}}{Vol_{SR}} 0.14 - [Ca^{2^+}]_{SL,SL-H} \right) - 30,000.0[Ca^{2^+}]_{SL,SL-H} \\ dCa_{cQSN} &= 100,000.0[Ca^{2^+}]_{SR} \left(\frac{Vol_{cyt}}{Vol_{SR}} 0.14 - [Ca^{2^+}]_{CQSN} \right) - 65,000.0[Ca^{2^+}]_{CQSN} \\ \frac{d[Ca^{2^+}]_X}{dt} = dCa_X, \quad \frac{d[Mg^{2^+}]_{TPRN,Ca-Mg}}{dt} = dMg_{TPRN,Ca-Mg} \end{aligned}$$

TABLE S4: Model parameter values

Vol _{cell}	33 pL
Vol _{cyt}	21.45 pL
Vol _{SR}	1.155 pL
Vol _{SL}	0.66 pL
Vol _{jct}	0.016 pL
$[Mg^{2+}]_i$	1.000 mM
$V_{ m max}$	2.860 mM s ⁻¹
$K_{ m m,f}$	0.000246 mM
$K_{ m m,r}$	1.700 mM
Н	1.787
k _s	125,000.0 s ⁻¹
$k_{\text{leak},\text{SR}}$	0.005348 s ⁻¹
Max _{SR}	15.00
<i>Min</i> _{SR}	1.000

EC_{50-SR}	0.450 mM
$k_{ m o,Ca}$	10,000.0 mM ⁻² s ⁻¹
k _{i,Ca}	500.0 mM s ⁻¹
$k_{ m o,m}$	60.00 s ⁻¹
$k_{ m i,m}$	5.000 s ⁻¹

SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Simulated effects of 50% (light grey bars) and 100% (dark grey bars) block of $I_{Ca,L}$ on the APD in PF, Endo, M and Epi cell models. Black bars indicate control values. A: APD at (i) 500 ms, (ii) 1000 ms, (iii) 2000 ms basic cycle length. B: absolute changes in APD from control due to the block. C: percentage changes in APD from control.

Figure S2. Simulated effects of 50% (light grey) and 100% (dark grey) block of I_{NaL} on APD in PF, Endo, M and Epi cell models. Black bars indicate control values. A: APD at (i) 500 ms, (ii) 1000 ms, (iii) 2000 ms basic cycle length. B: absolute changes in APD from control due to the block. C: percentage changes in APD from control.

Figure S3. Simulated effects of 50% (light grey) and 100% (dark grey) block of I_{to} on APD in PF, Endo, M and Epi cell models. Black bars indicate control values. A: APD at (i) 500 ms, (ii) 1000 ms, (iii) 2000 ms basic cycle length. B: absolute changes in APD from control due to the block. C: percentage changes in APD from control.

Figure S4. Simulated effects of 50% (light grey) and 100% (dark grey) block of I_{Kr} on APD in PF, Endo, M and Epi cell models. Black bars indicate control values. A: APD at (i) 500 ms, (ii) 1000 ms, (iii) 2000 ms basic cycle length. B: absolute changes in APD from control due to the block. C: percentage changes in APD from control. Symbols represent experimental values.

Figure S5. Simulated effects of 50% (light grey) and 100% (dark grey) block of I_{Ks} on APD in PF, Endo, M and Epi cell models. Black bars indicate control values. A: APD at (i) 500 ms, (ii) 1000 ms, (iii) 2000 ms basic cycle length. B: absolute changes in APD from control due to the block. C: percentage changes in APD from control. Symbols represent experimental values.

Figure S6. Simulated effects of 50% (light grey) and 100% (dark grey) block of I_{K1} on APD in PF, Endo, M and Epi cell models. Black bars indicate control values. A: APD at (i) 500 ms, (ii) 1000 ms, (iii) 2000 ms basic cycle length. B: absolute changes in APD from control due to the block. C: percentage changes in APD from control. Note that there is no data for 100% block in PF cells, as such a block results in sustained depolarisation.

Figure S7. Simulations of Class III drug effects on PF and ventricular cells. A: effects of 100% block of I_{Kr} ; B: effects of 100% block of I_{Ks} . Simulation results for PF (i), Endo (ii), M (iii) and Epi (iv) cell models are in good agreement with experimental data [33].

Figure S8. Simulations of α 1-adrenergic agonist effects on PF and ventricular cell models. APs in all three ventricular cell types became shorter (primarily, in the M cell), but are substantially prolonged the PF cell, as seen in experiments [43].

Figure S1

Figure S2

Figure S3

Figure S5

B (iii)

Figure S7

Figure S8