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Supplementary Material 
 
The Stokes number and Reynolds number 
We investigate characteristics of the contraction-induced flow by revisiting the Navier-Stokes equation that 
governs incompressible flow of a Newtonian fluid. The equation with the body force term omitted is 
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where ρ is fluid density,  

u  is flow velocity, t is time, p is pressure and µ is fluid viscosity. The equation is 
nondimensionalized with characteristic length scale L, velocity scale U and time scale τ. Then the variables 
and operator of the equation become the following: ∇* = ∇/L,  

u * =  
u /U, t* = t/τ and p* = p/(µU/L), and 

the Navier-Stokes equation becomes 
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Being the coefficient of the time derivative term of the nondimensional Navier-Stokes equation, the Stokes 
number (St) is defined as 
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where ν is the kinematic viscosity of the fluid. The Reynolds number (Re) is defined as   
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In the case of contracting Vorticella, the diameter of the shrunken zooid is the characteristic length scale (L 
= 2R), the time to the peak contraction speed is the characteristic time scale (τ  = τu,max), and the moving 
speed of the zooid is the characteristic velocity scale (U = Uc ). 
 
Numerical integration of the history force 
In contrast to the quasi-steady force and added mass force, the history force of the unsteady Stokes drag 
formula requires numerical integration because of its kernel. As the drag formula shows, the history force 
has a singularity as s approaches t, so it requires a special treatment in numerical integration. This 
singularity was evaded in numerical integration by following Kim et al.’s remedy, which is 
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where N is the number of time intervals and Δt is the size of the interval [1]. 
 
Discussion about flow visualization 
Understanding the contraction-induced flow of Vorticella is indispensable to estimate its contraction force 
and to identify a biological reason of contraction. Vopel et al. measured the contraction-induced flow at 
several points around contracting Vorticella with a flow microsensor of which diameter was 50 µm and a 
response time was less than 1 sec [2]. However, the spatial and temporal resolution of their measurement 
does not seem high enough because the typical zooid size and contraction time of Vorticella are about 40 
µm and a few msec, respectively. 
  
The incredible speed of Vorticella contraction makes it difficult to study the contraction-induced flow 
experimentally. The micro-PIV/PTV technique is an ideal method to study the induced flow because it does 
not interfere with the flow and it has appropriate measurement resolution. The technique usually employs 
fluorescent tracers to remove unnecessary information from flow field, but the current study could not use 
such tracers. Exposure time less than 40 µsec is required to obtain clear images of contracting Vorticella, 
but a preliminary PIV experiment showed that this is not long enough to capture the motion of fluorescent 
beads. Another problem in using fluorescent beads is that Vorticella engulfs a significant number of beads. 
The zooid after consuming the beads appears too bright, like a huge agglomerate of fluorescent beads. 
 
Recognizing the aforementioned problems, we tried bright field PTV experiments of which the results are 
shown in the result section. This is a compromise between a low signal-to-noise ratio and high temporal 
resolution. In our case, the depth of field (δz) is calculated with 
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where n is the refractive index of the medium (1 for air), λo is the wavelength of light in a vacuum, e is the 
smallest resolvable distance of the camera sensor (0.5 µm), M is the magnification ratio (40×), and NA is 
the numerical aperture (0.6) [3]. Because the longest wavelength of intensity peaks of mercury arc lamps is 
579 nm, the estimated depth of field is approximately 2 µm. Although this depth of field is comparable to 
the stalk diameter, obtained images are not as clean as ones that can be obtained with fluorescence because 
beads out of focus still exist in those images. Although the low quality of images resulted in error in 
tracking beads, pre-processing of raw images and post-processing of identified particle trajectories enabled 
qualitative analysis of the flow field induced by contracting Vorticella. 
 
Calculation of total amount of energy available from calcium binding 
Using Zoothamnium, Routledge et al. measured that the dry mass concentration of the spasmoneme (Cs) is 
210 mg/mL and that the amount of calcium bound to 1 kg of dry mass of the spasmoneme (mCa) is 1.7 g 
[4]. The amount of calcium bound to 1 µm of the spasmoneme is given as 
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              (S7) 

 
where ds is the diameter of the spasmoneme (1.5 µm) and ACa is the atomic weight of calcium (40.1 
g/mole). With given values, NCa is calculated to be 1.57×10-17 mole/µm. With Eq. 9, the total amount of 
energy available from the calcium binding of a 116 µm-long spasmoneme is 20.4 pJ.  
 
 
 
 
 



Movie S1. Vorticella convallaria contracting in water. The zooid rotates after contraction is completed. 
 
Movie S2. Water flow induced by contracting Vorticella convallaria. The movie compares experimentally 
visualized flow field and simulated flow field. The unit of velocity arrows is arbitrary, and the unit of the 
color bar is Pa.  
 
Table S1. Comparison of total work and mechanical power output calculated by four methods: Stokes’ law 
(Eq. 1), the Stokes drag formula with the wall effect corrected (Eq. 5), the unsteady Stokes drag formula 
(Eq. 4) and the computational fluid dynamic simulation. 

Wtot (pJ) Pmax (nW) / time (msec) PVP 
w/w % Eq. 1 Eq. 6 Eq. 7 CFD Eq. 1 Eq. 6 Eq. 7 CFD 

0% 1.14 1.46 1.31 1.64 1.03/0.96 1.26/0.99 1.35/0.86 1.56/0.87 
1% 1.74 2.17 1.85 2.25 1.05/0.90 1.26/0.92 1.23/0.80 1.36/0.83 
2% 2.94 3.69 2.99 3.72 1.23/1.03 1.47/1.06 1.32/0.94 1.49/1.01 
3% 3.02 3.77 3.02 3.79 1.00/1.04 1.19/1.08 1.05/0.95 1.19/1.03 

 
1. Kim, I., S. Elghobashi, and W.A. Sirignano, On the equation for spherical-particle motion: effect 

of Reynolds and acceleration numbers. J. Fluid Mech., 1998. 367: p. 221-253. 
2. Vopel, K., et al., Flow microenvironment of two marine peritrich ciliates with ectobiotic 

chemoautotrophic bacteria. Aquat. Microb. Ecol., 2002. 29: p. 19-28. 
3. Inoué, S. and K.R. Spring, Video microscopy : The fundamentals 1997, New York: Plenum Press. 
4. Routledge, L.M., et al., Microprobe measurements of calcium binding in the contractile 

spasmoneme of a vorticellid. J. Cell Sci., 1975. 19: p. 195-201. 
 
 


	Supporting Material1
	SupplementaryMaterial



