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Methods

System model for a cell with organelles. The cylindrical cell system geometry (2D cross
section shown in Fig. 1A; system depth is dsys = 13.3µm such that the present cylindrical
cell volume is that of a spherical cell with 10µm radius) includes the PM (10µm radius), the
nuclear envelope (NM; 3 µm radius) with a nuclear outer (NOM) and a nuclear inner (NIM)
membrane, the membrane of the endoplasmic reticulum (ERM), and, in close proximity to
the ERM (1), five mitochondria (approximated each with a 1µm × 2µm cross sectional
area), each mitochondria (MM) with a mitochondrial outer (MOM) and a mitochondrial
inner (MIM) membrane, separated by 15 nm of intermembrane space. Invaginated chris-
tae of the mitochondria are taken into account by making the effective MIM area a factor
fA = 5 larger than the MOM (2). NOM and NIM are separated by 10 nm, and enclose the
cisterna. Further the ERM is continuous with the nucleus and has a irregular shape. Note
that the organelles are in general un–evenly distributed inside the cell model. Accordingly,
unlike many traditional cell models, there are no symmetries that could simplify the problem.

Modular, multiscale transport lattices (TL). The TL method maps the above cell
model (or any other biological system model (2–5)) onto an equivalent electrical circuit on
the basis of local models for charge transport, storage, sinks, and sources. It thus allows
for the assessment of the spatial distributions of fields, potentials, membrane conductances,
pores and pore size distributions on the cellular level (microdosimetry (3)). In particular,
nanometer-scale membrane models Mm (Fig. 1B) are constructed from modules that rep-
resent the local electrical capacitance of the membrane (Cm) and resting potential sources
(Vip, Rp) that give rise to membrane resting potentials of ∆ψrest of −90 mV, 90 mV, and
−200 mV for PM, ERM, and MIM, respectively, whereas ∆ψrest for MOM, NIM, and NON
are zero. (4). Passive resistances are also assigned to all membranes, lower values for the
NIM, NOM, and MOM account for their leaky nature (3). Further, a dynamic current (Im)
takes into account the combination of the above passive current due to the static membrane
resistance relevant to field exposures too small to cause EP and the dynamic pore current
due to transient pores in parallel. Specifically, the EP mechanism is included in Mm via an
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Figure 1: (A) Cross-sectional geometry of a cylindrical cell system model (radius 10µm,
depth 13.3µm) with organelles and their associated membranes: endoplasmic reticulum
(ERM), five mitochondria (MM) with outer (MOM) and inner (MIM) membranes separated
by 15 nm, and a nucleus (NM) with outer (NOM) and inner (NIM) membrane separated by
10 nm; the direction of applied electric field Eapp is indicated. (B) Local TL circuit models for
electrolyte (Mel; open rectangle, where “el” represents extracellular (e) and intracellular (i)
electrolytes, as well as the interstitial (b) electrolyte between the outer and inner membranes
of the nucleus and the mitochondria) and for the membrane (Mm; black-filled rectangle) are
assembled in different configurations to represent the electrolytes and electrolyte/membrane
interfaces (bottom two rows of the panel) (3). (C) Equivalent circuit representation of the
dynamic EP model, distinguishing the asymptotic EP model (pore formation and destruc-
tion; left gray box) (2) and its extension to the full SE (pore expansion and contraction; right
gray box). The current source IN in the left gray box is the pore formation and destruction
term in Eq. 1. The effective voltage on each capacitor CN is a representation for the pore
distribution n(rp, t) at different pore radii (not a physical voltage in the TL system model
(2, 3)). Pore drift and diffusion are related to the current source Id and the resistor RN,
respectively, as further explained in the Methods section. The local pore distribution in the
EP subcircuit (C) determines the local membrane conductance Gm and hence the membrane
current Im(t) as input to various membrane modules Mm (B).

EP-subcircuit (Fig. 1C) described below, which interacts locally at all respective membrane
sites (2). The specific properties of each membrane can be dynamically adapted in this way
(3).

Further, micrometer-scale electrolyte models (Mel) are constructed from modules for dis-
placement (Cel) and conduction (Rel) currents (4), specifically for the extracellular (e), in-
tracellular (i), and the space between (b) two organelle membranes. The membrane mod-
ules (Mm) are assigned to the specific local membrane, i.e. PM and organelle membrane,
and in combination with their nearest micrometer-scale electrolyte neighbors by Mel models
(Fig. 1B) form a Cartesian TL. These and other basic features of the TL method are de-
scribed elsewhere (2–4, 6); and all model parameters used here are given in (7). Voltages
applied at the top and bottom of the system boundary provide the magnitude and direction
of the uniform applied field (2). The TL used here has ∼ 2×104 interconnected local models
with a lattice spacing of l = 0.35µm and is solved by Kirchhoff’s laws in the time domain
using Berkeley SPICE version 3f5.
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Figure 2: Mechanical pore formation energies as function of pore radius rp (8, 9). The
curve for hydrophobic pores is steeply ascending and rising to about 100 kBT. The curves
for hydrophilic pores in bilayer membranes with line tension γ = 2 × 10−11 N and surface
tension Γ = 10−3Jm−2 (A and B) and in cell membranes Γ = 10−6Jm−2 (B) intersect with
the hydrophobic energy at the critical radius r∗ = 0.5 nm and have a local minimum at the
minimum pore radius of rp,min = 0.8 nm. While the surface tension in artificial planar bilayer
membranes leads to unlimited pore growth of pores larger than rp = 2γ/Γ and thus rupture,
the smaller surface tension in cell membranes prompts shrinkage of pores to the minumum
size.

Dynamic EP model. Cell membranes change their electrical resistance and their ionic
and molecular permeabilities dramatically at elevated transmembrane potentials due to EP
(10). This biophysical mechanism is hypothesized to involve transient aqueous pores. The
dynamic EP model used here takes into account acquired knowledge of EP in pure lipid
bilayer and cell systems, and also theoretical results obtained in previous model systems.

Specifically, it is hypothesized that the membrane poration process starts with hydrophobic
pores, which due to energetic considerations should transform into hydrophilic (inverted)
pores at a critical radius r∗ (8). The interplay of hydrophobic and hydrophilic pore energies
(Fig. 2A) gives rise to a stabilizing, local energy minimum at a minimal hydrophilic pore
radius rp,min of 0.8 nm (8, 9). The hydrophobic pores are considered to be too small to
significantly contribute to electrical current and as usual only the hydrophilic pores are
considered.
The formation of hydrophilic conducting pores is a kinetic process over the energetic bar-
rier at the critical radius r∗ in Fig. 2A and can plausibly be described by a rate equation,
where the number of minimum–size pores Np,min = n(rp,min) drp with rp,min = 0.8 nm that is
obtained from

∂Np,min(rp,min, t)

∂t
= AeB∆ψ2/kBT︸ ︷︷ ︸

formation

− Np,min(rp,min, t)

τp︸ ︷︷ ︸
destruction

. (1)
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Eq. 1 includes the spontaneous pore formation rate per unit membrane area A, the ca-
pacitance B in units of thermal energy, and the mean pore lifetime τp. In particular,
A = A0 exp(−W (r∗p)/kBT ) = 109 s−1m−2 (7) describes lipid fluctuations and an attempt
rate density within a local membrane volume, which give rise to a spontaneous crossing of
the energy barrier at critical radius r∗ (8), and thus formation of hydrophilic pores out of
hydrophobic pores. This transition is facilitated by elevated transmembrane voltages ∆ψ
as the capacitance B of the local membrane volume is decreased by the entry of water into
pores of critical radius, therefore the dependence B∆ψ2 as given in (8) with B = 20 kBTV−2

(7).

While the parameters of Eq. (1), in theory, depend on specific geometrical pore models and
parameters partially known only as order of magnitude estimates, all parameters of Eq. 1
can alternatively be determined from experimental data (7, 8). In Glaser et al. (8), for
example, a quantitative analysis of the membrane current–voltage characteristics was used,
whereas in Vasilkoski et al. (7), data from Melikov et al. (11) for the creation time of a
single pore were used to determine A,B, and τp. Therefore Eq. 1 does not have free param-
eters. It follows from Eq. 1 that the time scale of pore formation depends on the applied
field strength, the pulse duration, and the specific pulse waveform. Hence there is no abso-
lute transmembrane voltage threshold for EP as often erroneously suggested in the literature.

Reported pore lifetimes τp for the destruction of conducting pores vary from milliseconds in
lipid bilayers (11) to minutes in cells in suspension (10). Pore lifetime control the post–pulse
electrical behavior and, together with the ion channels, the molecular transport across the
membrane. At present, there is no satisfactory understanding of the basic mechanisms that
give rise to this wide range of pore lifetimes. Large pores need to relax to minimum-sized
pores before resealing of the membrane takes place, but this process occurs on a time scale
of microseconds according to the present value of Dp. The resealing problem is difficult
because of the dominance of molecular interactions between the lipids and the cell inte-
rior over externally imposed electrical interactions, viz. the small values of ∆ψ(t) after a
pulse. Given the diversity of biological membrane compositions it is therefore not surprising
that post-pulse recovery can vary greatly between cell (and presumably also organelle) types.

Especially long pore lifetimes appear plausible only if pore expansion, due to longer pulses,
leads to pore trapping (for example by interaction with membrane proteins) or by the
insertion of linear macromolecules into pores (”foot-in-the-door hypothesis”, see Fig. 1 in
Ref. (12)). We use here an illustrative value of τp = 3 ms for the mean lifetime, observed
experimentally in lipid bilayers (11).

The evolution of the conducting, hydrophilic pores, which are formed as determined by Eq. 1,
in terms of their expansion and contraction may be understood from the Smoluchowski
equation (SE). The SE for the time-dependent pore distribution n(rp, t) was first used for
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EP theory in 1979 (13) and is

∂n

∂t
= Dp

∂2n

∂r2
p︸ ︷︷ ︸

diffusion

+
Dp

kBT

[
∂n

∂rp

∂W

∂rp
+ n

∂2W

∂r2
p

]

︸ ︷︷ ︸
drift

. (2)

From n(rp, t) drp, the number of pores between pore radius rp and rp + drp at any point
in time t may be found. By integration over the pore radius space, an interval from the
minimum pore size rp,min to a maximum pore size rp,max, the total number of pores in any
local membrane area can be found. Further, the dynamic changes of pore sizes at thermal
energy kBT depends on both diffusion in this pore radius space, as determined by the diffu-
sion constant Dp, and on the drift of pores toward larger or smaller radii, depending on the
time–dependent values of the pore energy W (rp,∆ψ(t)) = Wm +Wel. Initial conditions for
Eqs. (2) and (1) are based on the equilibrium pore number N eq

p,min per local membrane area
Am, that is N eq

p,min = Aτp (7).

For the hydrophilic pores with rp ≤ rp,min we use the standard expression for the mechanical
pore energy Wm, that is Wm = 2πγrp − πΓr2

p (7, 8) with the edge energy γ and the surface
tension Γ. The mechanical pore energy for rp ≤ rp,min is dominated by steric repulsion (8, 9).
Any pore of such smaller size will therefore rapidly expand towards the minimum pore size
(Fig. 2B) motivating our approach to neglect pore sizes below rp,min in Eq. 2.

While Γ in artificial planar bilayer membranes is typically large (10−3 Jm−2 (14)), which
may lead to irreversible pore growth for pores with radius larger than rp = 2γ/Γ and hence
destruction of the bilayer, the surface tension Γ for cells, as discussed here, is typically small,
10−6 to 10−5 Jm−2 (15, 16). This case leads to Γ ¿ γ/dm, already discussed in Ref. (8)
in relation to reversible electrical breakdown (REB). In other words, infinite pore growth
for cell membranes is practically not possible based on the SE model, all pores eventually
return to the minimum radius rp,min and decay. Therefore, the breakdown is called reversible
electrical breakdown associated with a transient high-conductance state of the membrane.

Further, Wel is the electrical pore energy contribution, which depends on the transmembrane
potential ∆ψ(t) and thus changes with time. Early expressions for Wel recognize the capac-
itive energy concept (17) and the actual electric current through a cylindrical pore which is
altered by Born energies (18) and the spreading resistance (14). As those expressions may
actually be applied only to small pores with a radius rp ≤ dm (8), we use

Wel = −
∫ rp

0

Fmax

1 + rh/(r + rt)
∆ψ2dr (3)

with Fmax = 6.9×10−10 N/V2, rh = 0.95 nm, and rt = 0.23 nm. This interpolating expression
is given in Ref. (19) and results from Maxwell stress tensor based numerical simulations and
allows for the simultaneous treatment of small and large pores.

Asymptotic EP models (9) neglect pore expansion and shrinkage equivalent to Dp = 0 in
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Eq. 2. This is sufficient for nanosecond electric field pulses but not for longer conventional EP
pulses (7, 20). The asymptotic EP model, as given by Eq. 1, has been previously represented
by an equivalent electric circuit (2), and is shown in Fig. 1C in the left gray box (compare
with Fig. 5 in (2)). As previously explained, the unit capacitor at the pore node is CN = 1,
and the current source IN represents the rate of change of Np,min as given by the right hand
side of Eq. 1 (2).

In Fig. 1 C (right gray box) we introduce a generalized equivalent circuit that is used to
solve the full SE in Eq. 2 and takes into account pore size dynamics in terms of electri-
cal circuits. For this purpose we discretize the pore radius space, which ranges from the
minimum pore size rp,min to the maximum pore size rp,max, into bins of size drp = 0.05 nm
([rp,min, rp,min+drp, ..., rp,max]) and consider the pore distribution n(r) in each discretized bin.

The equivalence of the electric circuit in Fig. 1 C and the SE of Eq. 1 is as follows: The
first term of Eq. 2 describing diffusion in pore radius space is represented by a resistor
RN = (drp)

2/Dp between neighboring nodes of pore radius rp and rp +drp. The drift term in
Eq. 2 is taken into account by an active current element Id (Fig. 1C), which is given between
succeeding pore radii rp and rp + drp by

Irp,rp+drp =
Dp

2kBT (drp)2
[n(rp + drp) + n(rp)] [W (rp + drp)−W (rp)] . (4)

Eq. 4 accounts for the net rate of pores appearing and disappearing in each bin, as pores
expand or contract within a local membrane area in response to the pore energies, W (rp).
These depend on the instantaneous values of the local transmembrane voltage ∆ψ. Eq. 4
is a standard mathematical expression for the discretization of the drift term of Eq. 2 (see,
for example, Appendix 2 of Ref (21)). At each node rp in pore radius space there is an
Id–influx (from bin rp − drp) and an Id–efflux (to bin rp + drp), such that the expression
∂n(rp, t)/∂t|drift of Eq. 2 with both the linear and the quadratic derivatives of the pore energy
W is equivalent (in the limit drp → 0) to Irp−drp,rp − Irp,rp+drp at each pore radius bin rp. A
mathematical proof of this equivalence is provided in Ref. (22).

The maximum pore size rmax used in the present paper is 5 nm. The dynamic EP cir-
cuit is solved for every local membrane module (Mm), from which we obtain the time-
dependent membrane pore conductance Gm (Eq. 6 in (7)) and hence the local pore current
Im = Gm ∆ψ(t) at the PM and all organelle membranes (3, 7), respectively, as input into
the membrane modules Mm, see Fig. 1 B. The EP subcircuits in Fig. 1C thus interact locally
with the distributed TL of the cell system.

Appendix A

Dynamic EP in a planar membrane patch. Here we describe the EP behavior for a
small, planar membrane patch of area Am = 3µm×3µm. The results serve as a validation of
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Figure 3: 1D membrane patch (area Am =3µm × 3µm) response to (A–C) trapezoidal
pulse (E0

app = 1kV/cm, 100µs duration, 1µs rise and fall times and (D–F) exponential
pulse (E0

app = 1kV/cm, τpulse = 40µs, 1µs rise time): (A, D) ∆ψPM initially charges with
time constant τ = 0.1µs and reaches the peak at ∆ψ ≈ 1.4V . The membrane conductance
increases due to pore formation, and pore expansion then causes a rapid decay to ∆ψ ≈ 0.5 V.
Then, ∆ψ exhibits a voltage-regulating effect with a plateau-like behavior, notably in (D),
due to dynamic pore-size changes (23). The asymptotic EP model (blue) with no pore
expansion has distinct different behavior, with a much higher value of ∆ψPM during the
pulse since pores do not expand and the additional creation of pores is strongly suppressed.
(B, E) Time-dependent pore distributions: pores created at minimum size (rp,min = 0.8 nm,
dashed line) expand to larger radii and subsequently return to rp,min. The pore distribution
evolves during the entire pulse, and larger pores appear for the trapezoidal pulse (B). (C, E)
The membrane current - voltage (IPM−∆ψPM) characteristics shows conductance hysteresis
(arrow indicates time direction of the pulse). The strong increase in IPM above 0.8 – 1V
marks the EP onset. After the peak, IPM continues to increase despite a drop in ∆ψPM

due to pore expansion. In contrast, the lack of pore expansion in the asymptotic model
limits IPM, hence the SE model of EP (black) has a larger membrane conductance after the
peak during voltage regulation of ∆ψPM. For later times, IPM decreases as pores shrink and
subsequently decay.
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solving EP models (7, 23) by TLs and both confirm and extend our previous understanding
of the EP features. In particular, Fig. 3 shows the salient features of EP due to an exponen-
tial 1 kV/cm, τpulse = 40µs pulse with a 1µs rise time based on the planar membrane patch
model described in Ref. (7), but solved here by the TL method.

Fig. 3A shows that with the onset of the pulse, ∆ψPM increases with time constant τPM =
0.1µs. Even though EP sets in at ∆ψPM ≈ 0.8 − 1 V for this particular pulse, as indicated
by a strong increase in membrane current (Fig. 3C), the transmembrane potential continues
to rise and a burst of pore creation continues until a peak at ∆ψPM ≈ 1.4 V. The membrane
does not maintain this value for long, as it is well above normal physiological magnitudes.
Instead, a sudden drop in ∆ψPM that is associated with a reversible high conductance state
of the membrane (REB)) occurs (7, 23). Expansion of pores subsequently causes a further
increase in membrane conductivity.

Remarkably, ∆ψPM does not track the time–dependence of the external exponential pulse
(Fig. 3A) after the peak. Instead ∆ψPM reaches a plateau-like state around ∆ψPM ≈ 0.5 V.
What happens at this particular transmembrane voltage? As demonstrated in Fig. 2B of
our paper, the pore energy W has a maximum at a pore radius of about 2 nm such that
dynamic changes in the pore distribution results simultaneously in both pore shrinkage for
pores which have a radius below 2 nm and pore expansion for pores which have a radius
above 2 nm. This quasi-plateau therefore reflects a voltage regulating effect due to an agile
response of dynamic pores (23).

But then why does the plateau-like state occur? The applied field decreases during the ex-
ponential pulse, which tends to decrease ∆ψPM as well. However, most previously expanded
pores respond by shrinking, which increases the membrane resistance such that voltage divi-
sion with the electrolyte resistance inhibits a decrease of ∆ψPM. By the end of the plateau,
the formerly large pores have shrunk to near minimum size (0.8 nm) and further shrinkage
in response to a decreasing electric field is not possible. Consequently, ∆ψPM(t) then follows
Eapp(t) and exhibits the exponential time-dependence of the external pulse.

This voltage regulation effect fundamentally depends on a ∆ψPM(t) – sensitive pore distri-
bution (7, 23). Consequently, the voltage regulation effect would be absent if pore size
change was suppressed (Dp=0) such as in the asymptotic EP model. The above shape of the
time–dependent transmembrane voltage: rise, peak, sudden drop, plateau, decay, has been
observed in different systems. For example, a comprehensive experiment in BLM showed
that both REB and rupture (mechanical breakdown) can be caused in the same membrane
preparation by varying only the magnitude of a 400 ns pulse (24). The main features of these
experiments are consistent with an EP theory based on stochastic pore creation followed by
pore expansion and contraction described by the SE (25). Other studies with BLM systems
also demonstrate REB (26). REB was also demonstrated in the double membrane of a giant
algal cell (27). Finally, REB was demonstrated in a widely used epithelial tissue (viable frog
skin) and found to cause no measurable damage (28). Thus, although not presently a focus
of EP research, REB has been established as a feature of reversible EP in artificial planar
bilayers, membranes, cell membranes and tissue.
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Figure 4: (Left panel) Distributed electrical response of the cell model to a trapezoidal pulse
(E0

app =1kV/cm, 100µs duration, 1µs rise and fall times); colorbar shows the potential
scale. White dots are local membrane sites with ≥ 50 pore (corresponding to a pore density
of Np = 1013m−2). (Right panel) Pore histograms for the anodic and cathodic membrane
side give the total number of pores and their size within intervals of 0.1 nm. (A) EP starts
at t = 0.9µs on the anodic side, followed at t = 1.0µs on the cathodic side in (B). Pore
expansion also starts initially at the anodic side. (C) Significant pore expansion at t = 1.3µs
at both the anodic and cathodic side; intracellular equipotential lines reveal the emergence
of electric fields in the cell interior. (D) At t = 31µs, the pore histograms regain a maximum
at rp,min, but simultaneously show non-equilibrium tails toward larger pores. See FIG. 2 and
related text in the paper for comparison.

Dynamic changes in the ∆ψPM– dependent pore distribution n(rp, t) are shown in Fig. 3B.
Pore creation occurs at the minimum pore size rp,min = 0.8 nm that allows for electrical
conduction. Subsequent expansion and shrinkage of pores is evident as the pulse progresses.
The importance of creating larger pores has long been recognized, e.g., pores larger than
5 nm are required for DNA to enter a cell (19). However, DNA electrophoresis and partial
occlusion of pores may impose additional forces, and thus augment pore expansion (29) not
reflected in our model. After the end of the plateau and during the exponential decay of
∆ψPM(t), the pore distribution shrinks on a microsecond time scale and becomes dominated
by minimum–size pores. Hence long–lived pores are not expected to be larger than 1 nm,
underlying the observed behavior that larger molecules can only be forced into cells during
the EP pulse, not after (30, 31) for reversible EP conditions.

Fig. 3C illustrates the non-linear current-voltage (IPM–∆ψPM) characteristics of the mem-
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brane, demonstrating hysteretic electric behavior, viz. the possibility of having two different
IPM values at the same ∆ψPM. EP thus introduces a memory effect, and significant mem-
brane conductance increases occur at both (i) the onset of EP at ∆ψPM ≈ 0.8− 1 V and (ii)
pore expansion after the peak at ∆ψPM ≈ 1.4 V. Remarkably, the membrane current IPM

continues to grow after the peak despite a drop in ∆ψPM, which is only possible if pores
expand and thus cause an increase in membrane conductance. An important interpretation
of the model’s behavior is thus that the membrane conductance changes during the entire
pulse as pores dynamically change their size.

Appendix B

Trapezoidal Pulses. The comparison with the trapezoidal 1 kV/cm pulse with a 100µs
duration and 1µs rise and fall times (Fig. 3D–F) shows similar behavior for the ∆ψPM-
transients: ∆ψPM drops to a plateau after its peak that persists for the entire pulse, despite
dynamic changes in the pore distribution that continue during the duration of the pulse.
Thus, even if ∆ψPM does not change significantly, there is a continual force in pore radius
space to change pore radii. Elevated values of ∆ψPM persist for longer for the trapezoidal
pulse than for the exponential pulse. This allows for the creation of larger pores as can be
seen in the pore distribution (Fig. 3B). After the pulse, the pore distribution rapidly (∼ µs)
shrinks to a distribution of minimum–size pores; hence long–lived pores are not expected
to be larger than 1 nm (30). The hysteretic current-voltage (IPM-∆ψPM) characteristics in
(Fig. 3C) consistently shows higher membrane currents due to creation of larger pores.

Fig. 4 shows the distributed electric response to the trapezoidal 1 kV/cm with a 100µs pulse
duration. The results compare well with those obtained for the exponential pulse in Fig. 3
of our paper, demonstrating the robustness of the EP mechanism and suggesting that our
conclusions, with respect to emergence of intracellular electric fields, its strength, and its
influence on organelles as well as for the EP asymmetry, are also valid for other waveforms.
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