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1MS ID: BIOPHYSJ/2009/172502MS TITLE: Theoretial analysis of the F1-ATPase experimental dataSupporting MaterialS1. Dependene of the model with ATP hydrolysis energyThe �ashing rathet model presented here is able to lead suessfully in the ase oftaking ∆GATP as an experimental variable. Reent experiments use ∆GATP as aontrol parameter (8). Sine the potential relaxed state must be independent of theATP hydrolysis, the rest state parameter V0 has to be �xed, but the parameter V1 ofexited potential has to depend on ∆GATP . Here, we extend the previous alulationto onsider this important hange,The energy onservation onstraint (Eqs. 8) reads now ,
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has been used.For this system the total mehanial time reads,
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) (S.3)whih ahieves a maximum value for di�erent values of ε,
ε = −5 + 6αM +

−6 + 12αM

−1 + 2αM(1 + αM)
. (S.4)On the other hand, from the energy onservation relation (Eq. S.2) one gets anotherrelation between the di�erent parameters,
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) (S.5)From the onditions S.4 and S.5 it an be obtained the optimum value of αM thatorresponds to a ertain ratio ∆GATP /V0 (Fig. S.1). Thus, one V0 is �xed it an beobtained a relation αM(∆GATP ) and the di�erent torques and times related with it.This analysis predits that the substep sizes do depend on the energy hydrolysis ina range not too far from the experimental observations. Furthermore, this more om-plete desription hanges the original energeti parameters of the motor, being moreappropriate a height for the relaxed potential of V0 = 70 pN nm. This predition andthe assoiated torques ould be tested if the experimental resolution of the substepsangles is improved.



2

0,5 0,6 0,7 0,8 0,9 1
α

0

0,5

1

1,5

ε

α
M

∆GATP=90 pN nm

∆GATP=75 pN nm

∆GATP=60 pN nm

Figure S.1. The orresponding value of αM an be found as the intersetionbetween the αM relation (Eq. S.4) (dashed line) and the energy onservationrelation (Eq. S.5) (solid lines). V0 = 70 pN nm.S2. Coupling ratio estimationThe oupling ratio measures the average number of suessful steps produed by anATP hydrolysis. Starting with the shaft in one minimum of the relaxed potential itbegins to advane when the potential is swithed to the exited state. One the time tEis over, the fration of the tail of the angular distribution probability of the shaft thatdoesn't reah the next relaxing dip will relax bak to the same initial minimum reststate. This fration of the probability distribution indiates the probability of obtaininga failed step (Fig. 9). Thus the problem of studying analytially the oupling ratiois redued to study the evolution of an initial distribution orresponding to the dip ofthe rest state over the exited potential during a time tE . Sine all the parametersof the systems are determined, the probability density is the solution to the followingFokker-Plank equation,
∂tPE(θ, t) =

1

γ + γL

∂θ [V ′

E(θ) + kBT∂θ] PE(θ, t) (S.6)Nevertheless the problem is still omplex sine the solution for suh a non-linearpotential is not straightforward. Sine the interest in the problem is at the left tailof the distribution (Fig. 9), the potential an be replaed by a linear potential i.e. aonstant torque τ1 is applied over the whole trajetory. This approximation ignores apriori the e�ets of the re�eting part of the exited potential (this approximation willbe reviewed later). In addition, the angular distribution of the shaft will be approxi-mated by a gaussian distribution funtion in order to simplify the alulations.The initial angular probability distribution funtion in the relaxed state an beobtained solving the Fokker-Plank equation in one of the minimums (entered at x = 0)



3of the relaxed potential,
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} (S.7)The solution for these seond order linear homogeneous equations are twoexponentials. Imposing as a boundary onditions the ontinuity of the probability at
θ = 0 and its normalization, the �nal expression is,
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(S.8)From it an be extrated the di�erent statistis needed (average and variane) inorder to desribe the approximated initial gaussian distribution,

〈θ〉0 = 0 (S.9)
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)2 (S.10)So the initial probability just before the �ashing of the potential an beapproximated by,
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”2 (S.11)Sine it is proposed a onstant torque for the gaussian pro�le to advane, the timeevolution will still be gaussian and therefore we only need the evolution of the meanvalue and the variane of the probability distribution funtion in order to �nd andexpression for PE(x, t). This an be obtained diretly from the formal solution for thetrajetory extrated from the Langevin equation of the shaft (Eq. 20)
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, (S.13)and the variane,
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t (S.14)Finally, the omputation of the oupling ratio is the fration of the gaussian thatis plaed at the right of the next maximum of the exited potential θc = π/3 at a time
tE (�gure 9).
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. (S.16)This expression for the oupling ratio results in a good approximation for values ofthe load above 0.01 pNnm. It is worth to study arefully the dependene of the ouplingratio with the frition of the load along the exitation time tE . Sine the mehanialtime tmech 1 is proportional to the e�etive frition oe�ient (γ + γL) (Eq. 14), theevolution of the probability density funtion does not depend on the frition of the loadduring this �rst evolution period. The di�erene omes in the waiting step of duration
t0. Sine t0 is independent of the frition of the load and the dynamis of the systemwith a lower frition are quiker to that of a system with a bigger load, the shrink ofthe left tail of the probability distribution funtion will be greater the smaller is thefrition, inreasing thus the oupling ratio of the motor.Nevertheless, no matter the smaller the frition of the load is, the motor has asaturating oupling ratio di�erent from one (Fig. 10). This is so due to the fat thatthe e�ets of the re�eting fore of the minimum negleted in the former alulation aresigni�ant.Altogether one an ompute the limit oupling ratio imposed by this re�etingfore from the stationary distribution for the minimum of the exited potential, in suha way that the intrinsi oupling ratio of this distribution will be an upper limit for
cr(γL), i.e., the left queue will not advane more than its stationary value. Sine it isa stationary distribution this limit value will not depend on the frition of the systembut on its geometry. Solving the FP equation for this minimum in the same way as theprevious one, it is found the stationary solution:
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(S.17)Being τ3 the torque of the re�eting torque. The orresponding oupling ratio forthis probability pro�le is,
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θc , (S.18)That for the values of the parameter using in the simulation returns an upper limit forthe oupling ratio of cr0 ≃ 0.96 in agreement with the simulations of the system.This result an be used in order to obtain a �nal approximation for the ouplingratio it an be written in a ompat analytial way by interpolating Eq. S.15 with themaximum value cr0 (Eq. S.18),
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5whih gives a good predition for the oupling ratio of the motor.S3. Dependene of the veloity of the motor with the sti�ness κ
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Figure S.2. Dependene of the mean angular veloity with the sit�ness of the jointshaft-load κ. The dependene has been studied for di�erent values od the load frition,
γL = 1 pN nm s (squares) and γL = 0.0002 pN nm s (irles), and for di�erent valuesof [ATP℄, [ATP℄=2 µM (open) and [ATP℄=2 mM (solid). The dashed line orrespondswith simulations of the rigid oupling limit (Eq. 20). For values of the sti�ness of 200pN nm or greater the results �ts well with the rigid oupling.


