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S1. Dependence of the model with ATP hydrolysis energy

The flashing ratchet model presented here is able to lead successfully in the case of
taking AGarp as an experimental variable. Recent experiments use AGarp as a
control parameter (8). Since the potential relaxed state must be independent of the
ATP hydrolysis, the rest state parameter Vj has to be fixed, but the parameter 1} of
excited potential has to depend on AG47rp. Here, we extend the previous calculation
to consider this important change,

The energy conservation constraint (Eqs. 8) reads now ,
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where the adimensional energy parameter ¢ = % has been used.

For this system the total mechanical time reads,

bech, = (21)2 b+ ( T 41— a) (Ll T20) g a) (S.3)

3 AGarp \14+ 2« €
which achieves a maximum value for different values of ¢,
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On the other hand, from the energy conservation relation (Eq. S.2) one gets another

relation between the different parameters,
c(a, AG/Vy) = (1 + %) (ATS . a)) (S.5)

From the conditions S.4 and S.5 it can be obtained the optimum value of «a;; that
corresponds to a certain ratio AGarp/Vy (Fig. S.1). Thus, once V} is fixed it can be
obtained a relation ay (AGarp) and the different torques and times related with it.

This analysis predicts that the substep sizes do depend on the energy hydrolysis in
a range not too far from the experimental observations. Furthermore, this more com-
plete description changes the original energetic parameters of the motor, being more
appropriate a height for the relaxed potential of V; = 70 pN nm. This prediction and
the associated torques could be tested if the experimental resolution of the substeps
angles is improved.
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Figure S.1. The corresponding value of aps can be found as the intersection
between the ays relation (Eq. S.4) (dashed line) and the energy conservation
relation (Eq. S.5) (solid lines). Vo = 70 pN nm.

S2. Coupling ratio estimation

The coupling ratio measures the average number of successful steps produced by an
ATP hydrolysis. Starting with the shaft in one minimum of the relaxed potential it
begins to advance when the potential is switched to the excited state. Once the time tg
is over, the fraction of the tail of the angular distribution probability of the shaft that
doesn’t reach the next relaxing dip will relax back to the same initial minimum rest
state. This fraction of the probability distribution indicates the probability of obtaining
a failed step (Fig. 9). Thus the problem of studying analytically the coupling ratio
is reduced to study the evolution of an initial distribution corresponding to the dip of
the rest state over the excited potential during a time tg. Since all the parameters
of the systems are determined, the probability density is the solution to the following
Fokker-Planck equation,
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Nevertheless the problem is still complex since the solution for such a non-linear

9, Py (0,1) =
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potential is not straightforward. Since the interest in the problem is at the left tail
of the distribution (Fig. 9), the potential can be replaced by a linear potential i.e. a
constant torque 71 is applied over the whole trajectory. This approximation ignores a
priori the effects of the reflecting part of the excited potential (this approximation will
be reviewed later). In addition, the angular distribution of the shaft will be approxi-
mated by a gaussian distribution function in order to simplify the calculations.

The initial angular probability distribution function in the relaxed state can be
obtained solving the Fokker-Planck equation in one of the minimums (centered at x = 0)



of the relaxed potential,
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The solution for these second order linear homogeneous equations are two
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exponentials. Imposing as a boundary conditions the continuity of the probability at
6 = 0 and its normalization, the final expression is,
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From it can be extracted the different statistics needed (average and variance) in
order to describe the approximated initial gaussian distribution,
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So the initial probability just before the flashing of the potential can be
approximated by,
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Since it is proposed a constant torque for the gaussian profile to advance, the time
evolution will still be gaussian and therefore we only need the evolution of the mean
value and the variance of the probability distribution function in order to find and
expression for Pg(z,t). This can be obtained directly from the formal solution for the
trajectory extracted from the Langevin equation of the shaft (Eq. 20)
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and the variance,
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Finally, the computation of the coupling ratio is the fraction of the gaussian that
is placed at the right of the next maximum of the excited potential . = /3 at a time
tg (figure 9).
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with,
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This expression for the coupling ratio results in a good approximation for values of

(S.16)

the load above 0.01 pNnm. It is worth to study carefully the dependence of the coupling
ratio with the friction of the load along the excitation time ¢g. Since the mechanical
time tpeqn1 is proportional to the effective friction coefficient (v + 1) (Eq. 14), the
evolution of the probability density function does not depend on the friction of the load
during this first evolution period. The difference comes in the waiting step of duration
to. Since ty is independent of the friction of the load and the dynamics of the system
with a lower friction are quicker to that of a system with a bigger load, the shrink of
the left tail of the probability distribution function will be greater the smaller is the
friction, increasing thus the coupling ratio of the motor.

Nevertheless, no matter the smaller the friction of the load is, the motor has a
saturating coupling ratio different from one (Fig. 10). This is so due to the fact that
the effects of the reflecting force of the minimum neglected in the former calculation are
significant. Altogether one can compute the limit coupling ratio imposed by this reflecting
force from the stationary distribution for the minimum of the excited potential, in such
a way that the intrinsic coupling ratio of this distribution will be an upper limit for
cr(y), i.e., the left queue will not advance more than its stationary value. Since it is
a stationary distribution this limit value will not depend on the friction of the system
but on its geometry. Solving the FP equation for this minimum in the same way as the
previous one, it is found the stationary solution:
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Being 73 the torque of the reflecting torque. The corresponding coupling ratio for
this probability profile is,
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That for the values of the parameter using in the simulation returns an upper limit for

the coupling ratio of cr® ~ 0.96 in agreement with the simulations of the system.

This result can be used in order to obtain a final approximation for the coupling
ratio it can be written in a compact analytical way by interpolating Eq. S.15 with the
maximum value c¢r® (Eq. S.18),
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CR(vL) =
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which gives a good prediction for the coupling ratio of the motor.

S3. Dependence of the velocitv of the motor with the stiffness «
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Figure S.2. Dependence of the mean angular velocity with the sitffness of the joint
shaft-load k. The dependence has been studied for different values od the load friction,
~vr. = 1 pN nm s (squares) and v;, = 0.0002 pN nm s (circles), and for different values
of [ATP], [ATP]=2 uM (open) and [ATP]=2 mM (solid). The dashed line corresponds
with simulations of the rigid coupling limit (Eq. 20). For values of the stiffness of 200
pN nm or greater the results fits well with the rigid coupling.



