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S1 Tug-of-war model

In this section we review the details of our theoretical description introduced in Refs. (1, 2), and
discuss our choices for the force-dependence of the motor rates.

S1.1 Single motor properties

Our theory is based on single motor properties as briefly summarized in Section 2 of the main
text, and described in more detail here. Each motor binds to the filament, walks along it, and
unbinds from it stochastically with force-dependent rates derived from single molecule exper-
iments. In these experiments, the motor moves against a load force F exerted by an optical
trap.

Unbinding rate. The motor unbinding rate has been measured to increase approximately
exponentially for kinesin-1 (3),

ε(F ) = ε0 exp [F/Fd] , (S1)

where the force scale is given by the detachment force Fd. Such an exponential increase is also
expected on theoretical grounds from Kramers theory (4), or its application by Bell (5).

Velocity. The motor velocity decreases with the load force and crosses zero at the stall force
Fs. The exact functional form of the force-velocity curve depends on the precise experimental
conditions, notably the ATP concentration (3, 6–9). For simplicity, we use a piecewise linear
force-dependence for the average motor velocity as given by

v(F )=
{

vF (1− F/Fs) for 0 ≤ F ≤ Fs (forward)
vB (1− F/Fs) for F > Fs (backward)

, (S2)

see the blue curve in Fig. S1(a). For substall forces, F < Fs, the linear decrease is often a good
approximation under high ATP concentrations (6, 7), although deviations from linearity have
also been reported (3, 8, 9). For superstall load forces F > Fs, the motor walks backwards,
but only slowly, as has been shown for kinesin 1 (9, 10) and cytoplasmic dynein (11, 12).
The precise form of the force-velocity curve in the superstall regime is unclear (9), although
theoretical considerations indicate that it might exhibit a shallow minimum (13, 14). The only
important feature of the superstall velocity for our model is its small magnitude. In this range,
our linear force-velocity relation (S2) can be considered as a Taylor expansion to first order
in F − Fs, where the small backward motion is taken into account by using a small backward
velocity parameter, vB ¿ vF .
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Figure S1: (a) Comparison of two different force-velocity-relations: Relation (S2) (blue solid
line) and nonlinear relation (S14) (red dashed line), using the kinesin-1 parameters of Table S1
and Fv = 0.5 pN. (b) Motility diagram for the symmetric tug-of-war of N+ = N− = 5 motors
with the piecewise linear force-velocity curve (blue lines) and the nonlinear force velocity curve
(red lines). Parameters are as in (a), except for the variable parameters stall force Fs and
unbinding rate ε0.

Apart from being a good approximation for the experimental force-velocity curve, the piecewise-
linear force-velocity curve (S2) allows to derive explicit expression for the cargo force and velocity,
see Section S1.2 below. Furthermore, while nonlinearities in the force-velocity curve can provide
insight into the underlying motor mechanism (13–16), our results do not depend crucially on
the precise form of the force-velocity relation, as long as it decreases monotonically and has a
small superstall backward velocity, as we show below in Section S1.4.

In order to simplify our notation, we rewrite the force-velocity-relationship (S2) as

v(F ) = vo (1− F/Fs) , (S3)

where we have defined the convenient velocity parameter

vo ≡ vF for 0 ≤ F ≤ Fs, and vo ≡ vB for F > Fs. (S4)

Binding rate. The force-dependence of the binding rate is difficult to access experimentally.
However, it should depend only weakly on the load force, since an unbound motor relaxes and
then binds from its relaxed state, see also the discussion in Ref. (17). We therefore assume the
binding rate to be independent of the load force,

π(F ) = π0. (S5)

Vectorial character of the force. In the single motor experiments used to determine the
single motor rates (S1-S3), the stepping motor is attached to a bead to which a force Ftrap is
applied using an optical trap. Although perpendicular trapping forces have also been used (18),
in the standard trapping experiments relevant here the direction of Ftrap is chosen to be parallel
to the filament, as explained in Ref. (6). The motor velocities or run lengths are recorded as
functions of Ftrap. Therefore, the force F that enters in our relations (S1-S3) as well as in
Equation (1) of the main text is identical with the force Ftrap parallel to the filament.

In general, the bead experiences both the longitudinal force Ftrap and a force F⊥ perpen-
dicular to the filament, the latter arising from the interactions of the bead with the filament
and/or with the surface, on which this filament has been immobilized (6). The two forces Ftrap
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and F⊥ are transduced to the stalk of the motor and are then balanced by opposing forces
that are generated by the motor. In principle, the perpendicular force F⊥ could be determined
experimentally by measuring the angle, say θ, between the motor stalk and the filament, since
F⊥ = Ftrap tan(θ). In practice, this angle is not accessible using the available experimental
techniques, and the magnitude of the perpendicular force component F⊥ has not been measured
in the optical trap experiments addressed here. From the theoretical point of view, the per-
pendicular component F⊥, has been proposed to play an important role for the force-dependent
motor movements and the chemomechanical cycle of molecular motors (19, 20). It has also
been emphasized in Ref. (21) that the motor does not expend work against the perpendicular
force component F⊥ even though this parameter enters the transition rates between the different
motor states.

For bidirectional transport as studied here, two motor teams, denoted as plus and minus
motors, pull on the cargo. As in the single motor experiments, the plus and the minus motors
generate both longitudinal and perpendicular force components. The latter force components
are again balanced by interactions between the cargo and the filament. Therefore, the force
balance between these two motor teams as described in the next subsection depends only on the
longitudinal force components generated by the two types of motors. Furthermore, since the
perpendicular force between cargo and filament is shared by all motors, the perpendicular force
acting on each motor individually is expected to be relatively small.

S1.2 Cargo forces and velocities

We consider a cargo transported by a fixed number of N+ plus and N− minus motors. As the
motors stochastically bind to and unbind from the filament, only n+ plus and n− minus motors
are bound to the filament at a given time, with 0 ≤ n+ ≤ N+ and 0 ≤ n− ≤ N−. These numbers
(n+, n−) change when a motor binds or unbinds.

Rates for motor binding and unbinding. The rates for these events are determined by
the single motor rates described in Section S1.1 and by the load forces F+ and −F− on each
plus and on each minus motor, respectively, where the sign of the force is chosen positive if it
points into the minus direction. This implies that the effective rate for the unbinding of one
plus motor in the cargo state (n+, n−) is

ε+(n+, n−) = n+ ε0+ exp [F+/Fd+] . (S6)

The prefactor n+ in Equation (S6) describes that there are n+ bound plus motors available for
unbinding. Similarly, the effective rate for the binding of one plus motor in the state (n+, n−),
where there are (N+ − n+) unbound plus motors, is

π+(n+, n−) = (N+ − n+) π0+. (S7)

Analogous expressions hold for the unbinding and binding rates of a single minus motor, with
the ‘+’ indices replaced by ‘−’ indices. The load forces F+ and −F− on the plus and minus
motors are determined by assumption (1) of Section 2, which in mathematical terms becomes
the force balance

n+F+ = −n−F− (S8)

for a cargo pulled by n+ plus and n− minus motors. Furthermore, assumption (2) states that
the plus and minus motors must move with the same velocity, which is identical to the velocity
vc of their common cargo:

vc(n+, n−) ≡ v+(F+) = −v−(−F−). (S9)



Bidirectional motor transport 4

Here, the sign of the velocity is taken to be positive in the plus direction. The force and velocity
balances as given by equations (S8) and (S9) lead to the cargo velocity

vc(n+, n−) =
Fs+n+ − Fs+n−

n+Fs+/vo+ + n−Fs−/vo−
(S10)

and to the motor forces

n+F+ = −n−F− =
(1/vo+ + 1/vo−) n+n−Fs+Fs−

n+Fs+/vo+ + n−Fs−/vo−
. (S11)

Here, the velocity parameters vo+ and vo− have to be replaced by the corresponding forward or
backward velocities according to Equation (S4) and the ‘majority rule’

vc > 0 if Fs+n+ > Fs−n− (plus motors ‘win’)
vc < 0 if Fs+n+ < Fs−n− (minus motors ‘win’)
vc = 0 if Fs+n+ = Fs−n− (‘tie’),

(S12)

in agreement with Equation (S10). Equation (S11) defines a ‘cargo force’

Fc(n+, n−) ≡ n+F+ = −n−F−. (S13)

In our tug-of-war model, the motors interact with each other only because of the mechanical
coupling via their common cargo. There is no ‘coordination complex’ which coordinates their
motion. This means that cellular regulation can affect the cargo motion only by influencing the
motor properties such as the filament affinity or the stall force. In the absence of such regulation,
the cargo will exhibit fast bidirectional motion on its own.

Simulation. With the motor forces given in Equation (S11), the rates (S6-S7) and the
analogous equations for the minus motors determine a Markov process on the two-dimensional
state space (n+, n−) of bound plus and minus motors, corresponding to a Master equation for
the probability p(n+, n−, t) to have n+ active plus and n− active minus motors at time t. The
explicit Master equation is given in Ref. (2). Since experiments usually monitor only cargos
which are bound to the filament, and which have been walking along this filament for some
(unknown) time, we are interested in the stationary state solution p(n+, n−) of this Master
equation, see Refs. (1, 2) for details. We solve the Master equation for the steady state by
determining the eigenvector of the associated transition matrix with eigenvalue zero (4). In
addition, we simulate individual cargo trajectories by using the Gillespie algorithm (22) for the
binding/unbinding dynamics given by Equations (S6-S7) and the analogous equation for the
minus motors, and let the cargo move with velocity vc from Equation (S10) in the intervals
between (un-)binding events.

Parameter estimation. In our tug-of-war model, a single motor is described by the six
parameters Fs, Fd, ε0, π0, vF and vB, which are all accessible to single molecule experiments
in principle. We have used results from such experiments when available. For kinesin-1, all
parameters have been measured. From single molecule optical trapping, the stall force has been
directly measured as Fs ≈ 6 pN (3, 6). The detachment force Fd ≈ 3 pN can be estimated from
the dependence of the run length on the trapping force (3). The unbinding rate has been reported
of the order of ε0 ≈ 1/s (3, 23) , while the binding rate π0 ≈ 5/s was obtained from fitting of
experimental data (24, 25). Kinesin forward velocities were found in the range of vF ≈ 1µm/s
(9, 26). The backward velocity vB characterizes the slope vB/Fs of the force-velocity relation
for superstall forces F > Fs, see Equation (S2), and was estimated from the superstall part of
the force-velocity-curve of Ref. (9) as vB ≈ 6 nm/s.
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Parameter Symbol Kinesin Dynein
Stall force Fs 6 pN 7 pN
Detachment force Fd 3 pN 3 pN
Unbinding rate ε0 1/s 0.25/s
Binding rate π0 5/s 1.5/s
Forward velocity vF 1 µm/s 1 µm/s
Backward velocity vB 6 nm/s 6 nm/s

Table S1: Single motor parameters of our model, and values for kinesin-1 (kinesin) and cyto-
plasmic dynein (dynein), see text for references.

For cytoplasmic dynein, we chose to work with a stall force of Fs ≈ 7 pN as reported in
Ref. (27), although much smaller values Fs ≈ 1 pN have also been found (28). We obtained the
dynein unbinding rate ε0 ≈ 0.25/s from Ref. (23, 29) and the forward velocity vF ≈ 1µm/s from
Ref. (23, 27). The binding rate was estimated as described in Ref. (30) as π0 ≈ 1.5/s, using the
equilibrium desorption constant KMT ≈ 0.5µM (23, 29), and the unbinding rate ε0 ≈ 0.25/s.
No estimate for the slope of the force-velocity relation in the superstall regime was available.
Therefore we used the same value as for kinesin-1, vF = 6nm/s. We note that some observations
suggest that the backward velocity of dynein is higher than that of kinesin (28, 31). In our model,
however, the precise value of the backward velocity parameter does not change the cargo motion
significantly as long as vB is well below 10% of the forward velocity vF , see Fig. 2(b). Even if
dynein motors move backward ten times faster that kinesins, this condition is still satisfied.

The parameters for kinesin and dynein are summarized in Table S1.

S1.3 Motility states of the cargo

As described in our earlier publications (1, 2), cargo transport described by the above stochastic
tug-of-war model can exhibit up to 7 different motility patterns, depending on the parameters
of the involved motors. These ‘motility states’ are characterized by distinct patterns of maxima
in the probability distribution p(n+, n−) for the numbers of bound plus and minus motors.

For a symmetric tug-of-war of N = N+ = N− plus and minus motors which differ only in
their forward direction, the number of motility states is reduced from seven to three.

Strong motors with a high stall to detachment force ratio can produce a larger force than
they can sustain, and can thus pull each other off the filament. This leads to an unbinding
cascade of one team of motors as described in the main text and Refs. (1, 2), and thus to a low
probability of states with both types of motors bound. The probability distribution p(n+, n−)
to have n+ plus and n− minus motors bound exhibits two probability peaks at (n+, n−) = (n, 0)
and (n+, n−) = (0, n), corresponding to fast plus and fast minus motion, respectively. Switching
between these two high-probability states leads to fast bidirectional motion, the (−+) motility
state.

Weak motors with a small stall to detachment force ratio can produce only a small force
compared to the force that they can sustain. In consequence, the motors do not significantly
feel each other, so that they randomly bind to and unbind from the filament. This leads to a
high probability for a state (n+, n−) = (n, n), where n is determined by the binding affinity of
the motors. The motors thus block each other, and the cargo exhibits only slow motility, which
defines the no-motion motility state (0).

In the intermediate case of motors with comparable stall and detachment forces, all three
types of maxima appear, and the cargo is in the (−0+) motility state of fast bidirectional motion
interrupted by pauses.
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For an asymmetric tug-of-war with different numbers and/or parameters of plus and minus
motors, all combinations of fast plus motion, fast minus motion and pauses are possible, leading
to the 7 motility states (+), (−), (0), (−+), (0+), (−0), and (−0+).

In this article, we focus on the motility state (−+) of fast bidirectional motion, as exhibited
by a cargo transported by two teams of strong motors.

S1.4 The shape of the single motor force-velocity relation

In this section we investigate the effect of the shape of the force-velocity curve on our results.
Thus, we consider the same tug-of-war model as before, but use a force-velocity relationship
that differs from Equation (S2). We chose the relationship

v(F ) = vF
e−F/Fv − e−Fs/Fv

1− e−Fs/Fv
(S14)

as proposed in Ref. (32), where Fv = kBT/l is the characteristic force associated with the
step size l. For microtubule motors at room temperature, one has l = 8 nm and Fv = 0.5 pN.
Equation (S14) provides a simple example for a strongly nonlinear force-velocity curve which
exhibits the major characteristics of experimental force-velocity curves, namely a monotonic
decrease with force in the substall regime and small negative velocities in the superstall regime,
see Fig. S1(a). For kinesin parameters, this nonlinear force-velocity curve (S14) looks quite
different from our piecewise linear force-velocity curve (S2). With the nonlinear force-velocity
relation (S14), the equations for the motor forces, Equations (S8) and (S9), are transcendental
and cannot be solved analytically. We therefore determined the forces numerically using Ridder’s
method (33).

Fig. S1(b) shows the motility diagrams of the symmetric tug-of-war of N+ = N− = 5 plus
and minus kinesin-like motors, both with the piecewise linear force-velocity curve (S2) (blue
lines) and the nonlinear force-velocity curve (S14) (red lines). The two motility diagrams look
very similar; the main difference is that the transition lines for the diagram with the nonlinear
force-velocity relation are shifted a bit to higher motor forces f . The reason is that the nonlinear
force-velocity relation (S14) decreases very fast to low velocities, see Fig. S1(a), which has the
same effect as a lower stall force Fs or a lower motor strength f .

Analogous effects can be observed in the case of the asymmetric tug-of-war of plus and minus
motors with different parameters (not shown). In a motility diagram similar to Fig. S1(b), the
same seven motility states (+), (−), (0), (−+), (0+), (−0) and (−0+) appear in comparable
regions of the parameter space for both force-velocity relations. Only the locations of the
transition lines between the motility states are shifted somewhat. As for the symmetric tug-
of-war, the effectively lower stall force of the force-velocity-relation (S14) suppresses motor
unbinding cascades. Therefore, parameter regions of the ‘uncooperative’ motility states (0),
(+), (−), (0+) and (−0) are increased compared to the piecewise linear force-velocity relation
(S2), at the expense of the ‘cooperative’ motility states (−+) and (−0+).

In summary, the two different force-velocity relations (S2) and (S14) lead to qualitatively
similar motility diagrams and, in particular, to the same types of motility states. Our model
results therefore do not depend strongly on the exact form of the force-velocity relation, as
long as it decreases monotonically with the external force and exhibits slow superstall backward
motion.
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S2 Run, switch and binding time

In this section we describe how we obtain the run and switch times, length and velocities
discussed in Section 3.

Calculation of run and switch times. The most straightforward way is to measure these
quantities for each trajectory of our tug-of-war simulation, just as in experiments. However, it is
more convenient (faster) to calculate these quantities from the steady state probability p(n+, n−)
of the Master equation to have n+ active plus and n− active minus motors. For example, the
average plus run time tR,+ is the sojourn time of the random walk in the plus motion states
(n+, n−) with Fs+n+ > Fs−n−, compare Equation (S12). To calculate this time tR,+, consider
the number of visits to the plus motion states in time T , which equals T J+, where

J+ =
∑

(n+−1)Fs+≤n−Fs−<n+Fs+
p(n+, n−) ε+(n+, n−)

+
∑

n−Fs−<n+Fs+≤(n−+1)Fs− p(n+, n−)π−(n+, n−)

is the total current out of the plus motion states. The total time spent in the plus motion states
during time T is τ+ = T P+ with the probability

P+ =
∑

n+Fs+>n−Fs−

p(n+, n−) (S15)

to be in a plus motion state. The sojourn time of the random walk in the plus motion states is
obtained from the last two equations as

tR,+ = P+/J+, (S16)

The plus run length xR,+ is obtained from Equations (S15-S16) by substituting

ε+(n+, n−) → ε+(n+, n−)/vc(n+, n−), and
π−(n+, n−) → π−(n+, n−)/vc(n+, n−).

(S17)

The plus run velocity is then given by vR,+ = xR,+/tR,+. The minus run times, lengths and
velocities can be calculated analogously.

Approximation for large motor forces. Here we focus on cargo transport by motors
with high stall to detachment force ratio f = Fs/Fd. As discussed in Section S1.3, a cargo
pulled by such strong motors has a high probability to have only one motor species active at a
given time. In an approximation we therefore neglect states with both motor types active, which
reduces the possible cargo states to the ‘plus motor states’ (n+, 0), 1 ≤ n+ ≤ N+, with only
plus motors bound and cargo velocity vF+, the ‘minus motor states’ (0, n−), 1 ≤ n− ≤ N− with
only minus motors bound and cargo velocity vF−, and the ‘unbound state’ (0, 0) with no motors
bound and cargo velocity zero. Although directional switching in this approximation can occur
only via the unbound state (0, 0), we neglect cargo unbinding when calculating run, pause and
switch times. This is justified because the switching via (0, 0) in this approximation represents
all switching events via states (n+, n−) with n+ > 0, n− > 0 of the full model, and because a
cargo in the state (0, 0) does not necessarily unbind, compare the discussion in Section 3.2.

After this reduction of the state space, a plus run must start in the state (n+, n−) = (1, 0)
with only one plus motor bound, then spend some time on the plus motion states (n+, 0) with
n+ > 0, and finally end upon reaching the state (0, 0). The average run time tR,+ of this one-
dimensional walk is equivalent to the binding time of a cargo transported by N+ plus and no
minus motors, and has been calculated in (17) as

tR,+(N+) =
[(

1 + π0+

ε0+

)N+ − 1
]/

[N+π0+] . (S18)
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Analogously, the minus run time is

tR,−(N−) =
[(

1 + π0−
ε0−

)N− − 1
]/

[N−π0−] . (S19)

The approximation (S18) significantly overestimates the run times (not shown) because it ne-
glects directional switches via cargo states (n+, n−) with both motors bound, n+ > 0 and
n− > 0. However, it gives the correct exponential scaling with the motor numbers N+, N−, see
below.

Binding time. The binding time is the time from cargo binding to the filament with the
first motor until unbinding of the cargo from the filament. It can be determined from simulation
trajectories in the same way as from experimental trajectories. We now derive an approximate
analytical expression for the binding time. Cargo binding happens with a plus motor with
probability

q+ ≡ (N+π0+) / (N+π0+ + N−π0−) (S20)

and with a minus motor with probability q− ≡ 1−q+. Cargo unbinding can occur only from the
state (0, 0) with no motors bound. Here we assume that a cargo always unbinds upon reaching
this state. This is a good approximation for in vitro experiments, but possibly not for some in
vivo cargos, see Section 3.2 for a discussion of this point. When having bound with a plus motor,
in the one-dimensional approximation introduced above, the cargo spends its bound time on the
plus motor states (n+, 0) and unbinds upon reaching the state (0, 0). In this case the average
binding time is equal to the average plus run time tR,+ of Equation (S18). In the case of cargo
binding with a minus motor, the binding time analogously equals the minus run time tR,−. The
total average binding time is therefore given by the weighted average of the run times tR,+ and
tR,−, i.e. by

∆tb(N+, N−) = q+ tR,+(N+) + q− tR,−(N−). (S21)

When inserting the expressions for q+, q−, tR,+ and tR,− from Equations (S18-S20), one obtains
Equation (3) in the main text.

Equation (S21) resp. Equation (3) are very good approximations for the binding time of a
cargo transported by two teams of strong molecular motors, as can be seen in Fig. 2(a) and
(c) as well as in Fig. 3(a). In the case of a symmetric tug-of-war, the plus and minus run
times are identical, tR,+ = tR,− = tR, and the plus and minus runs occur with equal frequency,
q+ = q− = 1/2. Therefore, the approximations for the binding time as given by Equation (S21)
resp. Equation (3), and for the run times as in Equations (S18) and (S19) lead to identical
results, ∆tb = tR. In contrast, the stochastic simulations show that the binding time ∆tb is
always larger than the run time tR, see Fig. 2(a) and (c). Therefore, the approximation (S18) for
the run time overestimates the actual run time. The reason for this overestimation is as follows:
As explained above, a cargo transported by two teams of strong motors spends most of its time
in the plus motion states (n+, 0) and the minus motion states (0, n−). Thus, excursions into the
pausing states (n+, n−) with n+ > 0 and n− > 0 are very short. Since such excursions are both
short and do not lead to cargo unbinding, their effect on the cargo binding time is negligible, so
that Equation (S21) resp. Equation (3) approximate the binding time very well. However, even
a short excursion into the pausing states can lead to a pause or a change of direction if a state
(n+, n−) with velocity of zero or different sign is reached. Neglecting these possible pathways
for ending a run therefore leads to Eqs. (S18,S19) being overestimates of the run times.
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Figure S2: Influence of experimental reso-
lution on run time tR and run velocity vR

for the symmetric tug-of-war of 4 plus and
4 minus motors with kinesin parameters of
Table S1. The run time increases with the
measurement time interval ∆t, while the
run velocity decreases with ∆t. Increasing
the velocity cutoff vcut from zero (red solid
lines) to 0.05 µm/s (blue dotted lines) has
the opposite effects.

S3 Experimental resolution

In this section we show that the measured values of the run times and velocities depend strongly
on the experimental resolution. Since the spatial resolution of modern experiments has ap-
proached nanometer precision, the time resolution is often more critical for our purposes. A
typical time resolution ∆t for experiments on bidirectional cargo transport is the video frame rate
of 30 frames per second, i.e. ∆t = 0.03 s (34, 35), but it can vary as much as from ∆t = 0.001 s
(36) to ∆t = 2.2 s (37). Because of the finite time resolution and of fluctuations of the cargo
inside of the cell, it is often hard to decide whether the cargo is moving slowly or pausing. In
experiments, a pause is therefore often operationally defined to be a period of time where the
cargo moves with a velocity smaller than some cutoff velocity vcut. Choices for vcut are in the
range of 0.05µm/s (34, 35) or 0.1µm/s (37). Fig. S2 shows the effect of the time measure-
ment interval ∆t and the velocity cutoff vcut on the run times and velocities for the symmetric
tug-of-war.

An increase in the velocity cutoff vcut defines more periods of motion as a ‘pause’, which
decreases the measured run time tR, see Fig. S2, because a run ends whenever a pause starts. It
also increases the run velocity slightly because some slow motion periods are no longer included
in the runs.

The main effect of a finite time resolution is that short runs or pauses of duration smaller
than the measurement time interval ∆t cannot be detected. This leads to longer run times for
higher ∆t, see Fig. S2, as e.g. a short pause ending a run, or a short minus run interrupting a
plus run, remain unnoticed. In consequence the velocity decreases with the time interval ∆t.

Fig. S2 shows that the time resolution of the measurement strongly affects the values of
the run time, which increases by a factor of 2 already when the measurement time interval is
increased to ∆t = 0.04 s. The run velocities are only marginally affected. Thus caution is neces-
sary when comparing the results from theory and experiment, and from different experiments.
However, the order of magnitude and the qualitative variation of the run times and velocities
with the motor parameters remain the same for all relevant resolutions. In the main text, we
have used ‘infinite’ resolution, i.e. zero ∆t and zero vcut. Note that ‘infinite’ time resolution is
possible also in our computer simulations because we use the Gillespie algorithm (22).

S4 Possible extensions of our theory

Our theory for cargo transport by motor teams is based on single motor properties as deduced
from single molecule experiments. In order to obtain a relatively small number of parameters,
we have focused on the most important single motor properties provided by the force-dependent
unbinding rate and the force-velocity relationship as in Equations (S1) and (S2). In addition,
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Figure S3: Binding time ∆tb according to
Equation (S25) for the stochastic tug-of-war
of N plus and N minus motors with kinesin
parameters of Table S1 without interference
force, i.e. Fint = 0 (blue solid line), and
with interference force Fint = 3pN (red dot-
ted line). Even though the binding time is
strongly reduced for Fint = 3 pN, i.e., by the
presence of the interference force, it still in-
creases exponentially with motor number N
as for Fint = 0.

the explicit tug-of-war model described in Section S1 above includes two types of interactions:
(i) each motor team can generate load forces on the other motor team; and (ii) same-directional
motors share their load equally.

S4.1 Additional motor motor interactions

In general, the motors may experience other types of interactions. In the following, we will briefly
describe four such interactions: (i) The chemomechanical cycles of the different motors together
with their elastic coupling may lead to effective load forces. Indeed, the motor cycles of two
different motors pulling on a cargo are not expected to be synchronized. Consider, e.g., two active
motors of the same species. If one of these motors wants to make a relatively fast mechanical
step while the other motor undergoes a relatively slow chemical transition, the stepping motor
experiences a resisting force arising from the coupling to the other motor. The size of this
force depends on the elastic compliance of this coupling. A harmonically coupled pair of motors
has been recently studied theoretically in Ref. (38), and the velocity of its center-of-mass was
found to be strongly reduced with increasing spring constant; (ii) The motors may experience
repulsive interactions from motor crowding and mutual exclusion. For biologically relevant,
small motor numbers, these exclusion effects are expected to be relatively small, however, as
shown explicitly for cargo transport by one motor team (17); (iii) Another type of interactions
arises from hydrodynamics. Such hydrodynamic interactions have been recently studied, to some
extent, in Ref. (39), and were also found to have a relatively small effect on cargo transport; and
(iv) Effective interactions between the motors may also be mediated via elastic deformations
of the filaments as deduced from decoration experiments (40–42) and theoretically considered
in Ref. (43). In principle, all of these interactions (i) - (iv) can be included in our theoretical
description for a stochastic tug-of-war but will then introduce additional parameters that may
be difficult to determine experimentally.

S4.2 Negative motor interference

In a recent in vitro experiment, Rogers et al. investigated two kinesins connected by a DNA
strand of about 50 nm (44). The run length of this complex was found to be larger than the run
length of a single motor, but shorter than the run length of a complex with two independently
moving motors (44). Rogers et al. interpreted these observations as evidence for negative
motor interference and postulated an effective interference force Fint. This latter force, which
was estimated to be of the order of 3 pN (44), acts as an additional load force on the motors,
enhances their unbinding, and thus shortens the run length of the cargo. Although Ref. (44) thus
indicates negative interference of same-directional motors linked together by a DNA construct,
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other experimental observations on transport of beads by several same-directional motors are
consistent with a theoretical description, in which the motors transport the cargo independently
(25, 45, 46). On the other hand, it is also not difficult to include interference forces within our
theoretical description.

First, consider a single team of one type of motors, say plus motors. In the presence of the
interference force Fint+ acting on each plus motor as proposed in Ref. (44), the unbinding rates
ε+(n+, 0) as in Equation (S6) for n− = 0 are now given by

ε′+(n+, 0) = n+ ε0+ exp [Fint+/Fd+] > n+ ε0+ = ε+(n+, 0). (S22)

which implies increased unbinding and, thus, shorter run lengths.
Second, consider a stochastic tug-of-war between N+ plus and N− minus motors. Negative

interference of same-directional motors is expected to lead to larger average forces F+ and F−
on each plus and minus motor, or equivalently to a larger ‘cargo force’

F ′
c(n+, n−) > Fc(n+, n−) (S23)

than given in Equations (S11) and (S13). The precise value and functional form of F ′
c(n+, n−)

will depend on the underlying mechanism for motor interference. If the cargo is transported
by both plus and minus motors, n+ > 0 and n− > 0, the larger force F ′

c(n+, n−) enhances the
unbinding cascade of the motors, leading even more quickly to a state in which only one motor
type is bound to the filament. However, since opposing motors move into opposite directions
and therefore always pull strongly on the other motor type, we expect the forces arising from
the interference of same-directional motors to be small compared to the forces of the opposing
motors that are taken into account in our model via Equation (S8).

Let us now assume that the interference force between same-directional motors is inde-
pendent of the number of actively pulling motors. With this assumption, motor interference
effectively reduces the motor processivity because the motor unbinding rate is increased from
ε0+ to ε0+ exp[Fint+/Fd+] as soon as there is more than one motor bound, n+ > 1, see Equa-
tion (S22). A calculation similar to the one described in Section S2 leads to an estimate for the
plus run time as given by

t′R,+(N+) = exp[Fint+/Fd+]
N+π0+

[(
1 + π0+

ε0+ exp[Fint+/Fd+]

)N+ − 1
]

, (S24)

to an analogous expression for the minus run time t′R,−(N−), and to the binding time

∆t′b(N+, N−) = q+ t′R,+(N+) + q− t′R,−(N−). (S25)

Using an interference force of Fint+ = 3 pN as deduced by Rogers et al. for the interference of
two kinesin motors, the unbinding rate of the motors is increased by a factor of exp[Fint/Fd] ' 3
as soon as more than two motors are bound. As a consequence, the run and binding times
of the cargo are drastically reduced, see Fig. S3 for the binding times. Nevertheless, the run
and binding times still increase exponentially with the numbers N+ and N− of plus and minus
motors on the cargo, see Equations (S24) and (S25) and Fig. S3.

In summary, negative motor interference modifies the quantitative, but not the qualitative
predictions of our model. The quantitative changes strongly depend on the underlying molecular
mechanism.
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S5 External forces

In this appendix we consider a generalization of the tug-of-war model presented in Section S1,
which described cargo motion in the presence of non-motor forces such as frictional forces FSt =
γsvc or constant external forces Fext. In this case, the force balance (S8) becomes

n+F+ = −n−F− + γsvc + Fext. (S26)

Remember that the sign of the forces is taken positive in the minus direction, while the sign of
the velocity is taken positive in the plus direction.

S5.1 Frictional forces

Validity of Stokes’ law. In equation (S26), we have assumed that the frictional force can
be described by Stokes’ law, FSt = γsvc, with the friction coefficient γs = 6πηR given by the
viscosity η of the surrounding medium and the cargo radius R. Stokes’ law is valid for the motion
of a body in a stationary Newtonian fluid with low Reynolds numbers (47). Since the Reynolds
number Re = ρvR/η for a 1µm-sized cargo moving at velocity v = 1 µm/s in water with density
ρ = 1 g/cm3 and viscosity η = 1 mPa · s equals 10−6, the low Reynolds number limit is clearly
fulfilled. Stationarity of the fluid motion is attained on the time scale Tfl = ρR2/η, as follows
from dimensional analysis of the Navier-Stokes equation or by explicitly solving the Navier
Stokes equation for an oscillating body (47). For water, Tfl = 10−6 s, which means that the
surrounding fluid can be considered stationary on the time scales of bidirectional motion, which
are the run and switch times and which are of the order of seconds. Thus, on the time scales
of our model and for transport in aqueous solution, Stokes’ law is valid. In vivo, the cytoplasm
might cause complications because of obstacles and its non-Newtonian character (48, 49).

Motor forces and velocities. In the presence of friction but no other external forces, the
force balance (S26) with Fext = 0 and the velocity balance (S9) lead to the motor forces

±F±(n+, n−) = Fs±
(1/vo+ + 1/vo−) n∓Fs∓ + γs

n+Fs+/vo+ + n−Fs−/vo− + γs
Fs± (S27)

and to the cargo velocity

vc(n+, n−) =
n+Fs+ − n−Fs−

n+Fs+/vo+ + n−Fs−/vo− + γs
, (S28)

which still fulfills the majority rule (S12). Our simulations for cargo motion in the presence of
frictional forces were performed as described in Section S1, using the motor forces and velocities
of Equations (S27) and (S28).

The large-friction-limit. During fast plus motion, only plus motors are pulling, n− = 0.
In this case the cargo velocity of Equation (S28) becomes

vc(n+, 0) = n+Fs+/ (n+Fs+/vF+ + γs) (S29)

which is Equation (5) in the main text. Since the velocity (S29) depends on the number n+ of
bound plus motors, which can range between 1 and N+, the velocity distribution displays N+

peaks for plus-end velocities. In the limit of a large friction coefficient γs, these peaks are at

vc(n+, 0) ≈ n+Fs+/γs, (S30)

i.e. at integer multiples of Fs+/γs. Note that this has been derived from a decreasing single-
motor force-velocity curve (S2). In Ref. (50), it was argued that a velocity dependence on motor
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number of the form (S30) should be inconsistent with a single-motor force-velocity-curve (S2).
Equation (S30) implies that the velocity of the cargo, and therefore also of each bound motors,
increases with the number n+ of bound motors. At the same time, Equation (S30) implies that
the force on a single motor is F+ ≈ γsvc(n+, 0)/n+ = Fs+, independent of the number n+ of
bound plus motors. This is apparently inconsistent with a single-motor force-velocity relation
(S2) with decreasing force F+ for increasing velocity vc. In addition, F+ = Fs+ would mean that
a single motor experiences a force equal to its stall force, which would lead to zero cargo velocity,
vc = 0. The apparent contradictions arise because of the expansion in the small parameter 1/γs

for large γs. While the first term in the velocity expansion (S30) is of the order of 1/γs, the first
term in the force expansion F+ = Fs+ is of order 1, i.e. independent of 1/γs. One therefore has
to expand the force (S27)to the next term, leading to the single motor force

F+(n+, 0) ≈ Fs+ [1− Fs+n+/(γsvF+)] , (S31)

which indeed decreases with increasing motor number and therefore also with increasing velocity
vc(n+, 0).

Friction in cells. The cytoplasm is a complicated medium with high crowding due to
proteins and filament meshworks with viscoelastic properties (48, 49). For our purpose this
can be accounted for by using an apparent viscosity which depends on the particle size: large
particles feel a higher viscosity than small ones. This is related to the observation of slowed
diffusion in the cytoplasm compared to diffusion in water (48): For small particles with radii
smaller than 50 nm, diffusion is decreased by about a factor of 10, while for particles with radii of
0.1−1µm, it is slowed down by a factor of 100 or even 1000. We define the apparent cytoplasmic
viscosity η via

η ≡ kBT/ (6πRD) , (S32)

compare Equation (4) in the main text. Here we assume that the diffusion coefficients D
measured for diffusion in the cytoplasm also apply to motor transport, which is however under
debate in the literature. While some argue that the viscosities at different intracellular locations
might significantly differ (51), others apply the viscosity measured from cytoplasmic diffusion
to motor transport in a similar way to us (52, 53). Equation (S32) and the observed slow-down
of diffusion in cells mean that the cytoplasmic viscosity for typical cargos of size R = 0.1− 1µm
is about 100-1000 times the viscosity of water. Indeed, a cytoplasmic viscosity of the order of
1Pa · s, i.e. 1000 times the viscosity of water, has been reported (52, 53).

S5.2 Forces exerted by an optical trap

We now consider the motion of a cargo pulled by two teams of opposing motors in an optical
trap. Such an external force can exert opposing as well as assisting force on the motors. We
therefore have to extend our single motor force-velocity-curve (S3) to assisting forces:

v(F ) = vo(νFA − F/Fs) for F < 0. (S33)

Here we have extended the definition of the velocity parameter vo of Equation (S4) to

vo ≡ vA for F < 0, (S34)

and defined the parameter νFA to be equal to vF /vA for forward motion under assisting force,
and to 1 else. We use the value vA = 0.1µm/s, which leads to a modest increase of the forward
velocity with assisting load, in agreement with single molecule experiments (9, 18).
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We also need an expression for the motor unbinding rate (S1) under assisting forces. To our
knowledge, no experimental data for motor unbinding in this force-regime is available. Using
Kramers rate theory, the unbinding rate should increase exponentially with the absolute value
of the assisting force. Although the force scale for this exponential increase could be different
from the force scale Fd of the exponential increase (S1) with the load force, we expect it to be
of similar order of magnitude. Therefore, and in order to avoid an extra parameter with lack of
experimental data, we use the same force scale Fd for both forward and backward load forces:

ε(F ) = ε0 exp [|F |/Fd] . (S35)

Motor forces and velocities. If there is no frictional force, FSt = 0, the force balance
(S26) and the velocity balance (S9) determine the motor forces

±F± = Fs±

(
νFA+

vo+
+ νFA−

vo−

)
n∓Fs∓ + Fext/vo±

n+Fs+/vo+ + n−Fs−/vo−
(S36)

and the motor velocity

vc(n+, n−) =
n+Fs+ − n−Fs− − Fext

n+Fs+/vo+ + n−Fs−/vo−
. (S37)

The parameters vo± and νFA± are chosen according to:

−n−Fs−
vB−+vF+

vB−
≥ Fext, plus motors win and feel assisting force

−n−Fs−
vB−+vF+

vB−
≤ Fext ≤ n+Fs+ − n−Fs−, plus motors win and feel load force

+n+Fs+
vB++vF−

vB+
≥ Fext ≥ n+Fs+ − n−Fs−, minus motors win and feel load force

+n+Fs+
vB++vF−

vB+
≤ Fext, minus motors win and feel assisting force

Note that the cargo direction still follows from an intuitive majority rule:

vc > 0, if Fs+n+ − Fs−n− > Fext (plus win)
vc < 0, if Fs+n+ − Fs−n− < Fext (minus win)
vc = 0, if Fs+n+ − Fs−n− = Fext (tie)

(S38)

For constant external force Fext =const, the simulation was performed as described in Section S1,
using the motor forces and velocities of Equations (S36) and (S37). For varying external force,
we simulated the motion of 10000 cargos and varied the external force during the simulation
time. Starting with a force Fext = −8 pN, the force was increased by an amount of +1 pN
every 0.5 s (rate 2 pN/s) or every 1 s (rate 1 pN/s). For each value of Fext, the cargo velocity
was averaged over the 10000 trajectory velocities at this force value to give the average cargo
velocity 〈vc〉.

Cargo unbinding. In our calculation, we have neglected cargo unbinding. This is unprob-
lematic for cargos not subject to external forces, compare the discussion in Section 3.2. External
forces, though, enhance cargo unbinding, since the motor unbinding rate (S6) increases expo-
nentially with the force on the motors. However, our results for cargos subject to external forces
remain valid if the experiments are terminated once a cargo unbinds.
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