#### SUPPLEMENTARY INFORMATION

# Pregnenolone Sulphate- and Cholesterol-Regulated TRPM3 Channels Coupled to Vascular Smooth Muscle Secretion and Contraction

Jacqueline Naylor<sup>1-3</sup>, Jing Li<sup>1-3</sup>, Carol J Milligan<sup>1-3</sup>, Fanning Zeng<sup>1-3</sup>, Piruthivi Sukumar<sup>1-3</sup>, Bing Hou<sup>1-3</sup>, Alicia Sedo<sup>1-3</sup>, Nadira Yuldasheva<sup>1,4</sup>, Yasser Majeed<sup>1-3</sup>, Dhananjay Beri<sup>1-3</sup>, Shan Jiang<sup>1-3</sup>, Victoria AL Seymour<sup>1-3</sup>, Lynn McKeown<sup>1-3</sup>, Bhaskar Kumar<sup>2,3</sup>, Christian Harteneck<sup>5</sup>, David O'Regan<sup>6</sup>, Stephen B Wheatcroft<sup>1,4</sup>, Mark T Kearney<sup>1,4</sup>, Clare Jones<sup>7</sup>, Karen E Porter<sup>1,4</sup> & David J Beech<sup>1-3\*</sup>
<sup>1</sup>Multidisciplinary Cardiovascular Research Centre and <sup>2</sup>Institute of Membrane & Systems Biology, Faculties of <sup>3</sup>Biological Sciences and <sup>4</sup>Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK.
<sup>5</sup>Institute of Pharmacology and Toxicology, Eberhard-Karls-University, Wilhelmstr. 56, 72074 Tübingen, Germany. <sup>6</sup>Department of Cardiac Surgery, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX. <sup>7</sup>Respiratory & Inflammation AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, UK.

\*author for correspondence: Professor David J Beech, Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, England (UK). Tel: +44-(0)-113-343-4323; Fax: +44-(0)-113-343-4228; Email: d.j.beech@leeds.ac.uk

#### **Detailed Methods**

#### Human vein and cell culture

Freshly discarded human saphenous vein segments were obtained anonymously and with informed consent from patients undergoing open heart surgery in the General Infirmary at Leeds. Approval was granted by the Leeds Teaching Hospitals Local Research Ethics Committee. Proliferating vascular smooth muscle cells (VSMCs) were prepared using an explant technique and grown in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10 % foetal calf serum (FCS), penicillin/streptomycin and L-glutamine at 37 °C in a 5 % CO<sub>2</sub> incubator. Experiments were performed on cells passaged 2-5 times. VSMCs stained positively for smooth muscle  $\alpha$ -actin. For culture of endothelial cells (ECs), endothelium was digested using 1 mg/ml Type II collagenase (Worthington Biochemicals, UK) dissolved in Medium 199 (Sigma, UK) (37 °C, 15 min). Cells were resuspended in M199 supplemented with 20 % FCS and 1 % penicillin–streptomycin and including endothelial growth factor (15 µg/ml) and pyruvate (1 µM). Cells were used up to passage 3. Growth of neointima has been described<sup>1</sup>. HEK 293 cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM)-F12 + Glutamax-1 (Gibco) supplemented with 10 % FCS and penicillin-streptomycin at 37 °C in a 5 % CO<sub>2</sub> incubator.

### Mouse femoral artery injury

12 week old male C57/BL6 mice were anaesthetized and the left femoral arteries were isolated under aseptic conditions. A small area of the femoral artery was partially transected to allow the passage of a guide wire into the vessel. The guide wire was then removed and the incision closed. A sham procedure (without guide wire passage) was performed on the opposite leg for comparison. At 21 days post injury, mice were anaesthetized and perfused with 4 % paraformaldehyde. Procedures were conducted in accord with accepted standards of humane animal care under UK Home Office Project License 40/2988. Femoral artery bundles were removed and embedded in paraffin wax. For histological staining, sections 10 µm thick were mounted onto slides.

#### Physiological mouse aorta

Eight week old male C57/BL6 mice were killed by CO<sub>2</sub> asphyxiation and cervical dissociation in accordance with Schedule 1 Code of Practice, UK Animals Scientific Procedures Act 1986. The thoracic

aorta was removed and placed in ice-cold Hanks solution. Fat was removed completely by dissection and blood was flushed from the lumen with Hanks solution. Hanks solution contained (mmole/L): NaCl, 137; KCl, 5.4; CaCl<sub>2</sub>, 0.01; NaH<sub>2</sub>PO<sub>4</sub>, 0.34; K<sub>2</sub>HPO<sub>4</sub>, 0.44; D-glucose, 8; Hepes, 5.

## **RNA isolation and RT-PCR**

Total RNA was extracted using a Tri-reagent protocol followed by DNase I (Ambion) treatment. 1 µg of total RNA was used for reverse transcription (RT) based on oligo-dT primers and AMV RT enzyme. The specificity of PCR was verified by reactions without RT (-RT) and by melt-curve analysis of PCR products. PCR products were electrophoresed on 2 % agarose gels containing ethidium bromide. Sequences of PCR primers are in Supplementary Table I. PCR products were sequenced to confirm identity (Leeds University Sequencing Facility or Lark UK).

## **Quantitative RT-PCR**

Quantitative, real-time, PCR was carried out using a Lightcycler (Roche). Relative abundance of target RNA was normalized to  $\beta$ -actin RNA, which showed no difference between samples. PCR efficiency (E) was 10<sup>(-1/slope)</sup>. Relative abundance of target RNA was calculated from  $(E_{\beta\text{-actin}}^{Cp}) / (E_{target}^{Cp})$ , where PCR cycle crossing-points (C<sub>P</sub>) were determined by fit-points methodology.

## **TRPM3 cDNA expression**

Human TRPM3 cDNA (accession number AJ505026) was used for over-expression studies<sup>2</sup>. For most experiments we used stable expression of the human TRPM3 in the T-REx expression system (Invitrogen, UK), as previously described<sup>2</sup>. The T-REx cells were maintained in the presence of 400  $\mu$ g/mL zeocin and 5  $\mu$ g/mL blasticidin S (InvivoGen). To induce TRPM3 expression cells were incubated with 1  $\mu$ g/mL tetracycline (Sigma, UK) for 24-72 hr prior to experiments. Non-induced cells without addition of tetracycline (Tet-) were used as controls. In some experiments, where specified, we used transient transfection for TRPM3 expression<sup>2</sup>: Briefly, wild-type HEK 293 cells were plated onto poly-L-lysine coated coverslips and grown to ~80 % confluency. 1  $\mu$ g TRPM3-YFP or YFP cDNA was transfected into the cells using FuGENE 6 (Roche, UK). Functional studies were carried out 48 hr after transfection on YFP-fluorescent cells. Also in a small number of experiments we used mouse TRPM3a2 cDNA (accession number AJ544535) in pCAGGSM2-IRESGFP was a gift from Dr SE Philipp<sup>3</sup>. 1  $\mu$ g TRPM3a2 was co-transfected into HEK 293 cells with GFP using FuGENE 6 (Roche, UK). Functional studies were carried out 48 hr after transfection on 48 hr after transfection on SE Philipp<sup>3</sup>. 1  $\mu$ g TRPM3a2 was co-transfected into HEK 293 cells with GFP using FuGENE 6 (Roche, UK). Functional studies were carried out 48 hr after transfection on GFP-fluorescent cells.

#### Transfection with siRNA

0.5-2 x10<sup>6</sup> VSMCs were centrifuged (100 g) for 10 min, resuspended in Basic Nucleofector solution (Amaxa GmbH, Germany), mixed with 1 µmole/L short interfering (si) RNA and transferred into a cuvette for electroporation (Amaxa). The scrambled control siRNA was Silencer Negative Control #1, a 19 bp scrambled sequence with no significant homology to human gene sequences (Ambion Europe Ltd). Cells were transferred from cuvettes to pre-warmed culture medium and incubated in a 5 % CO<sub>2</sub> incubator at 37 °C. Culture medium was changed after 24 hr and recordings were made after a further 24 hr. Transfection efficiency was about 80 %. TRPM3 siRNA was (sense strand, 5'-3') CCCAAUGUGAUCUCGAUUGtt (Ambion). Smart pool TRPM3 siRNA-2 was a mixture of GAGAUGUUGUCCGGCCAUA, GAAGGAUCAUGCCUCUAAG, GACCCAAUGUGAUCUCGAU and GAGCGUGGAUAUUCACUGG (Dharmacon).

# Intracellular Ca<sup>2+</sup> measurement

Cells were pre-incubated with fura-2AM for 1 hr at 37 °C followed by a 0.5 hr wash at room temperature (21±2 °C). Measurements were made at room temperature on a fluorescence microscope (Zeiss, Germany) or a 96-well fluorescence plate reader (FlexStation II<sup>384</sup>, Molecular Devices). The inverted microscope was equipped with a 40x Fluar oil-immersion objective (NA 1.3). Fura-2 dye was excited by light of 340 and 380 nm from a xenon arc lamp, the wavelength of which was selected by a

monochromator (Till photonics, Germany). Emitted light at 510 nm was collected via an emission filter and images captured every 10 s by an Orca-ER digital camera (Hamamatsu, Japan). The same excitation wavelengths were used in the FlexStation, where wells within columns of the 96-well plate were loaded alternately for test and control conditions. For either method, the intracellular calcium ( $Ca^{2+}_i$ ) concentration is indicated as the ratio of fura-2 fluorescence (F) emission intensities for 340 nm and 380 nm excitation. The recording solution (standard bath solution, SBS) contained (mmole/L): 130 NaCl, 5 KCl, 8 D-glucose, 10 HEPES, 1.5 CaCl<sub>2</sub> and 1.2 MgCl<sub>2</sub>, titrated to pH 7.4 with NaOH. When 0 Ca<sup>2+</sup> is indicated, CaCl<sub>2</sub> was omitted and replaced by 0.4 mmole/L EGTA.

#### **Chemical screen**

Cells were pre-incubated with fluo3 AM for 1 hr at 37 °C followed by a wash at room temperature (21 $\pm$ 2 °C). Measurements were made at room temperature on a 96-well fluorescence plate reader (FLIPR, Molecular Devices). Fluo3 dye was excited by light of 485 nm, and emitted light collected at 525 nm. Wells within columns of the 96-well plate were loaded alternately for test and control conditions. The recording solution (standard bath solution, SBS) contained (mmole/L): 130 NaCl, 5 KCl, 8 D-glucose, 10 HEPES, 1.5 CaCl<sub>2</sub> and 1.2 MgCl<sub>2</sub>, titrated to pH 7.4 with NaOH. Response amplitudes were graded to a colour scale, with 1 being the maximal response (dark green) and a lack of response <0.1 (white).

#### **Cholesterol delivery**

Cells were pre-treated with a cholesterol/m $\beta$ CD complex (Sigma, UK) at 37 °C for 2 hr during fura-2 loading and washing. Working concentrations were 1 mmole/L cholesterol plus 5 mmole/L m $\beta$ CD or 0.5 mmole/L cholesterol plus 2.5 mmole/L m $\beta$ CD. Cells were washed thoroughly with SBS before recordings to avoid the possibility that m $\beta$ CD might chelate the TRPM3 agonist. For the generation of foam cells, VSMC were plated onto coverslips and incubated with media containing 0.5 mmole/L cholesterol plus 2.5 mmole/L m $\beta$ CD and 2 % bovine serum albumin for 0-72 hr. To determine cholesterol uptake, cells were washed with 60 % isopropanol before the addition of Oil Red O. Cells were washed with water before stain was extracted by 100 % isopropanol. The optical density of the resulting solution was determined using a spectrophotometer at 500 nm. For Ca<sup>2+</sup> imaging, cells were cholesterol loaded for 48 hr and washed thoroughly with SBS before use.

#### Wire myography

Vessels were mounted on two 40-µm diameter wires for isometric tension recording in a 410A dual wire myograph system (Danish Myo Technology, Denmark). The wires were separated by 1 mm to provide basal tension and the bath solution was at 37 °C gassed continuously with 95 % O<sub>2</sub> and 5 % CO<sub>2</sub>. The bath solution contained (mmole/L): 125 NaCl, 3.8 KCl, 25 NaHCO<sub>3</sub>, 1.5 MgSO<sub>4</sub>, 1.2 KH<sub>2</sub>PO<sub>4</sub>, 8 D-glucose, 1.2 CaCl<sub>2</sub>, 0.02 EDTA.

#### Patch-clamp on proliferating VSMCs

Recordings were made using a planar patch-clamp system (Nanion, Germany) in whole-cell mode<sup>4</sup>. Prior to recordings, cells were detached from culture flasks with 0.05 % trypsin/EDTA and resuspended at a density of  $1 \times 10^{6}$ – $5 \times 10^{7}$  per ml. The bath (external) solution contained (mmole/L): 145 NaCl, 3 KCl, 10 CsCl, 2 CaCl<sub>2</sub>, 2 MgCl<sub>2</sub> 10 HEPES and 10 D-glucose; titrated to pH 7.4 with NaOH. The patch pipette (intracellular) solution contained (mmole/L): 40 EGTA, 17 CaCl<sub>2</sub>, 2 MgCl<sub>2</sub>, 8 NaCl, 1 Na<sub>2</sub>ATP, 10 HEPES, 66 L-glutamic acid, 66 CsOH, titrated to pH 7.2 with CsOH (calculated unbound Ca<sup>2+</sup>, 100 nmole/L). Voltage ramps were applied from -100 mV to +100 mV for 1 s every 10 s from a holding potential of 0 mV. Currents were filtered at 1 kHz and sampled at 3 kHz. Recordings were at room temperature.

### Patch-clamp on contractile VSMCs and HEK 293 cells transiently expressing mouse TRPM3

For isolation of fresh contractile VSMCs, aortae were flushed slowly with 0.3 % CHAPS in Hanks solution to remove endothelial cells and incubated in Hanks solution containing 0.5 mg/ml collagenase,

0.1 mg/ml protease, 0.13 mg/ml hyaluronidase and 475 Units elastase for 5 min at 37 °C. The adventitia was gently removed, followed by a second incubation in fresh enzyme mix for 30 min at 37 °C. Enzymes were removed and the tissue was incubated in fresh Hanks solution at room temperature for 30 min before being agitated with a modified Pasteur pipette. Myocytes were plated onto coverslips, stored at 4 °C and used within 8 hr. Myocyte or HEK 293 cell recordings were made at room temperature using conventional whole-cell recording. Signals were amplified and sampled using an Axopatch 200B amplifier and pCLAMP 8 software (Molecualr Devices, USA). Signals were filtered at 1 kHz and sampled at 2 kHz. Patch pipettes had resistance of 3-5 MΩ. The bath solution contained (mmole/L): 145 NaCl, 3 KCl, 10 CsCl, 2 CaCl<sub>2</sub>, 2 MgCl<sub>2</sub> 10 HEPES and 10 D-glucose; titrated to pH 7.4 with NaOH. The patch pipette solution contained (mmole/L): 5 EGTA, 2 MgCl<sub>2</sub>, 5 NaCl, 130 KCl, 3 Na<sub>2</sub>ATP, 10 HEPES, titrated to pH 7.4 with KOH.

#### Secretion

IL-6 concentrations were quantified using a PeliKine-compact ELISA kit (Sanquin, Netherlands). MMP-9 was measured using a Quantikine ELISA Kit (R&D Systems, UK). Hyaluronan concentrations were quantified using a Corgenix ELISA kit (USA). Extracellular medium contained TPA (100 nmole/L) to induce tonic submaximal secretion.

### Antibodies and labeling

Rabbit polyclonal anti-TRPM3 (TM3E3) and anti-TRPC1 (T1E3) antibodies have been described<sup>2,5</sup>. For control experiments TM3E3 antibody was preadsorbed to 10 µM antigenic peptide (ratio 1:1) overnight at 4 °C prior to experiments (+pep). Antibody labeling of cells and intact vein sections was as described<sup>1</sup> except fixation of cells was for 4 min in 3 % paraformaldehyde and incubation with primary antibody was overnight at 4 °C. Tissue samples were incubated with TM3N1 anti-TRPM3 antibody targeted to the peptide CQEKEAEEPEKPTKE<sup>6</sup> (1:400 dilution) or TM3E3 (1:2000 dilution) overnight at 4 °C. Images were collected using a laser confocal microscope (Zeiss, Germany) and analysed using Image J software (NIH, USA). For calcium imaging, cells were pre-incubated with TM3E3 or preimmune control antisera from the same rabbit at 1:500 dilution in DMEM media and standard bath solution for 3.5 hours at 37 °C. For contraction studies mouse aorta was pre-incubated with TM3E3 at 1:200 dilution or boiled control in Hanks solution overnight at 4 °C prior to recordings.

#### Data analysis

Averaged data are presented as mean $\pm$ s.e.mean. Data produced in pairs (test and control) were compared using *t* tests, where statistical significance is indicated by \* (P<0.05) and no significant difference by NS. When there were more than two groups, data sets were first compared using ANOVA. The *n* is the number of independent experiments, and *N* is the total number of individual cells, or wells of the 96-well plate. For experiments on saphenous vein, independent experiments were repeated on tissue/cells from at least 3 different patients.

#### **Supplementary Results**

There has been concern about whether sphingosine is indeed a TRPM3 activator, based on studies of mouse TRPM3<sup>3</sup>. While we observe stimulation of human TRPM3 by sphingosine, we also find that sphingosine inhibits action of TRPM3 by pregnenolone sulphate (Supplementary Fig VI). Our data support the concept of sphingosine as a modulator of TRPM3 but suggest that the polarity of the effect varies depending on the experimental design.

#### **Supplementary References**

1. Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh-Nilsson A, Gomez

MF, Porter KE, Hellstrand P & Beech DJ. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. *Circ Res.* 2006;98:557-563.

- 2. Naylor J, Milligan CJ, Zeng F, Jones C & Beech DJ. Production of a specific extracellular inhibitor of TRPM3 channels. *Br J Pharmacol*. 2008;155:567-573.
- **3.** Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE & Oberwinkler J. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. *Nat Cell Biol.* 2008;10:1421-1430.
- 4. Milligan CJ, Li J, Sukumar P, Majeed Y, Dallas ML, English A, Emery P, Porter KE, Smith AM, McFadzean I, Beccano-Kelly D, Bahnasi Y, Cheong A, Naylor J, Zeng F, Liu X, Gamper N, Jiang LH, Pearson HA, Peers C, Robertson B & Beech DJ. Robotic multiwell planar patch-clamp for native and primary mammalian cells. *Nat Protoc*. 2009;4:244-255.
- 5. Li J, Sukumar P, Milligan CJ, Kumar B, Ma ZY, Munsch CM, Jiang LH, Porter KE & Beech DJ. Interactions, functions, and independence of plasma membrane STIM1 and TRPC1 in vascular smooth muscle cells. *Circ Res.* 2008;103:e97-104.
- 6. Grimm C, Kraft R, Sauerbruch S, Schultz G & Harteneck C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. *J Biol Chem.* 2003;278:21493-21501.

| mRNA target               | Primer (5'-3'; F, forward; R, reverse) | Predicted<br>amplicon (bp) |  |  |
|---------------------------|----------------------------------------|----------------------------|--|--|
| encoded protein           |                                        | umpricon (op)              |  |  |
| TRPM3                     | F AGCAGTTCTACCTAACGT                   | 268                        |  |  |
|                           | R CTTGCTCGACTAGACTTG                   |                            |  |  |
| TRPM3 <sub>1325</sub> (i) | F CCTGGTGGAATTTGGAAG                   | 335                        |  |  |
|                           | R GAGTTGAGTGTGTTTGCT                   |                            |  |  |
| TRPM3f (ii)               | F GGAGCAGAGGTGAAACT                    | 215 (- insert)             |  |  |
|                           | R CCAAAGGCCAGGATGTC                    | 290 (+ insert)             |  |  |
| Mouse TRPM3               | F ACCCCGTCAAGTAGTG                     | 295                        |  |  |
|                           | R CCCCAAAGTTGGCGTA                     |                            |  |  |
| β-actin                   | F TCGAGCAAGAGATGGC                     | 194                        |  |  |
|                           | R TGAAGGTAGTTTCGTTGGATG                |                            |  |  |
| TRPC1                     | F TTAGCGCATGTGGCAA                     | 303                        |  |  |
|                           | R CCACTTACTGAGGCTACTAAT                |                            |  |  |
| K <sub>Ca</sub> 3.1       | F CCGCCACTGGTTCGTGGCCA                 | 192                        |  |  |
|                           | R CCATAGCCAATGGTCAGGAA                 |                            |  |  |
| K <sub>v</sub> 1.3        | F GCTGGGATTGCTCATCTTCT                 | 101                        |  |  |
|                           | R TGCTGCTGAAACCTGAAGTG                 |                            |  |  |
| REST                      | F ACTTTGTCCTTACTCAAGTTCTCAG            | 130                        |  |  |
|                           | R ATGGCGGGTTACTTCATGTT                 |                            |  |  |
| cyclophilin               | F ACCCCACCGTGTTCTTCGAC                 | 292                        |  |  |
|                           | R TGGACTTGCCACCAGTGCCA                 |                            |  |  |

Supplementary Table I. Primers are for human sequences unless indicated.



### **Supplementary Figure I**

**Supplementary Figure I.** Specificity and validation of TRPM3 knock-down by RNAi. (A) Summary of real-time quantitative RT-PCR analysis to determine the abundance of mRNAs encoding the indicated proteins in human VSMCs. Each mRNA was quantified in paired experiments comparing cells transfected with TRPM3 siRNA or scrambled (control) siRNA. The abundance of each mRNA in the TRPM3 siRNA group was normalized to that in its own control group. The data show that TRPM3 mRNA was reduced in abundance by TRPM3 siRNA and that other mRNAs were not affected (*n*=3). (B) Effect of Smart pool TRPM3 siRNA-2 on the intracellular Ca<sup>2+</sup> response to 100  $\mu$ mole/L PregS (*N*=4 for each).



# **Supplementary Figure II**

**Supplementary Figure II.** Real-time RT-PCR comparison of TRPM3 mRNA abundance in cultured human saphenous vein vascular smooth muscle cells (VSMCs) and endothelial cells (ECs).



**Supplementary Figure III.** Effects of chemical agents on PregS responses. The data are from intracellular Ca<sup>2+</sup> measurements. (A) Example comparison of responses to 25 µmole/L PregS in HEK 293 cells induced (Tet+) or not induced (Tet-) to express exogenous human TRPM3. (B) Mean data for amplitudes of responses to 25 µmole/L PregS without (control) or with the presence of 0.1 mmole/L gadolinium ions (Gd<sup>3+</sup>) or 75 µmole/L 2-aminoethoxydiphenylborate (2-APB) (n/N = 7/23 and 3/28 respectively). DMSO (dimethylsulphoxide) was the solvent and control for 2-APB. Responses are compared for HEK 293 cells expressing exogenous TRPM3 and human VSMCs. (C) Typical microscopebased Ca<sup>2+</sup> measurement data showing responses to 25 µmole/L PregS in wild-type HEK 293 cells transiently expressing YFP-tagged human TRPM3 or YFP only (representative of n=3 and N=27-48).



# **Supplementary Figure IV**

**Supplementary Figure IV.** Functional specificity of anti-TRPM3 antibody TM3E3. The data show example intracellular Ca<sup>2+</sup> measurements from human VSMCs. Cells were exposed to extracellular 1 µmole/L sphingosine-1-phosphate (S1P, A) or 100 µmole/L adenosine 5'-triphosphate (ATP, B). The responses were at least partly due to intracellular Ca<sup>2+</sup>-release following activation of G-protein coupled receptors. Incubation with TM3E3 had no effect compared with the preimmune serum control (n/N = 3/17 and 4/22).



# Supplementary Figure V

**Supplementary Figure V.** Current-voltage relationships (I-Vs) for PregS-induced currents in human VSMCs. The I-Vs marked 'initial' were obtained before bath-application of 25 µmole/L PregS. (A) Typical I-Vs observed in 27 out of 37 recordings. (B) Typical I-Vs observed in 10 out of 37 recordings.





**Supplementary Figure VI** 

**Supplementary Figure VI.** Effects of sphingosine or dihydrosphingosine. Data are from intracellular Ca<sup>2+</sup> measurements from HEK 293 cells (A, B, F) or VSMCs (C, D, E, G). Cells were exposed to 20  $\mu$ mole/L sphingosine (SPH) or dihydrosphingosine (DHS), ethanol vehicle control (cntrl), or the concentrations of pregnenolone sulphate (PregS) indicated in (F). (A, B) Typical data from HEK 293 cells transiently expressing YFP-tagged human TRPM3 or YFP only (representative of *n*=3-6 and *N*=9-29). (D, E) Typical data from VSMCs (representative of *n*=3-6 and *N*=9-29). (E) Example responses to 20  $\mu$ mole/L SPH after pretreatment with TM3E3 antiserum or its preimmune control. (F) Representative experiment for the concentration-dependence of PregS responses in the absence (cntrl) or presence (+SPH) of 20  $\mu$ mole/L sphingosine (*N*=2, representative of *n*=3). HEK 293 cells were induced to express exogenous human TRPM3 (Tet+). (G) Concentration-dependence of Ca<sup>2+</sup> responses to sphingosine (SPH) in VSMCs normalized to responses to 20  $\mu$ mole/L SPH (*n*/*N*=4/24). (F, G) Fitted curves are Hill equations.



# **Supplementary Figure VII**

**Supplementary Figure VII.** Typical current-voltage relationship (I-Vs) for constitutive membrane current in a human VSMC, showing the effect of TM3E3 anti-TRPM3 blocking antibody (example from n=8).



# **Supplementary Figure VIII**

**Supplementary Figure VIII.** Inhibition of murine TRPM3 by anti-TRPM3 blocking antibody (TM3E3). The data are from intracellular Ca<sup>2+</sup> measurements performed on HEK 293 cells transiently transfected with mouse TRPM3 $\alpha$ 2. (A) Mean time-series data for experiments comparing the 50 µmole/L PregS response in cells preincubated in TM3E3 or its preimmune control (n/N = 6/66 and 6/64). Suppression of the basal Ca<sup>2+</sup> signal and the PregS response are evident. (B) As for (A) but comparing only the amplitudes of the PregS responses.



### **Supplementary Figure IX**

**Supplementary Figure IX.** Pregnenolone sulphate responses in smooth muscle cells freshly-isolated from the mouse aorta compared with HEK 293 cells over-expressing mouse TRPM3. (A) From 5 independent recordings, example ionic currents recorded at +80 and -80 mV from a freshly isolated mouse aorta smooth muscle cell. (B) From 15 independent recordings, example ionic currents recorded at +80 and -80 mV from a HEK 293 cell heterologously expressing mouse TRPM3. Pregnenolone sulphate (PregS, 100  $\mu$ mole/L) and gadolinium (Gd<sup>3+</sup>, 100  $\mu$ mole/L) were bath-applied as indicated by horizontal bars. HEK 293 cells not transfected with TRPM3 failed to respond to pregnenolone sulphate (*n*=13).



**Supplementary Figure X.** Stimulation by dihydroepiandrosterone sulphate (DHEAS). (A, B) The data show intracellular Ca<sup>2+</sup> measurement experiments from HEK 293 cells induced to express exogenous human TRPM3 (Tet+) or not (Tet-). (A) In Tet+ cells, a typical paired comparison showing Ca<sup>2+</sup> responses to 30 µmole/L DHEAS in the presence and absence of extracellular 1.5 mmole/L Ca<sup>2+</sup> (*N*=4 for each condition; representative of *n*=4). (B) Concentration-dependence of Ca<sup>2+</sup> responses to DHEAS, comparing mean data for Tet+ and Tet- cells (*n/N=3/9* for each; estimated EC<sub>50</sub> for Tet+ cells 11.5 µmole/L). Tet+ cell data are the same as shown in Fig. 5B of the main paper. (C) In VSMCs, a typical paired comparison showing Ca<sup>2+</sup> responses to 100 µmole/L DHEAS in the presence and absence of extracellular 1.5 mmole/L Ca<sup>2+</sup> (*N*=4 for each condition; representative of *a*<sup>2+</sup> responses to 100 µmole/L DHEAS in the presence and absence of extracellular 1.5 mmole/L Ca<sup>2+</sup> (*N*=4 for each condition; representative of *a*<sup>2+</sup> responses to 100 µmole/L DHEAS in the presence and absence of extracellular 1.5 mmole/L Ca<sup>2+</sup> (*N*=4 for each condition; representative of *n*=4).



# **Supplementary Figure XI**

**Supplementary Figure XI.** Stimulation of TRPM3 by methyl- $\beta$ -cyclodextrin (m $\beta$ CD). (A) HEK 293 cells were induced to express exogenous human TRPM3 (Tet+). The data summarise paired comparisons of peak and sustained responses to 25 µmole/L PregS in cells pre-incubated for 1 hr with 2.78 mmole/L m $\beta$ CD or without m $\beta$ CD (N = 8 for each condition). (B) Typical paired experiment showing lack of effect of 25 µmole/L PregS or 2.78 mmole/L m $\beta$ CD in non-induced HEK 293 cells (Tet-) (N=8).



# Supplementary Figure XII

**Supplementary Figure XII.** Time course for cholesterol uptake by VSMCs during loading with exogenous cholesterol (0.5 mmole/L) and measured by the optical density (OD) of Oil Red O.







PregS Vehicle (DMSO) AM 92016 Amiloride hydrochloride 4-Aminopyridine Aminopyridine 2-Aminoethyl diphenylborina Amitriptyline hydrochloride Anandamide Antazoline hydrochloride Benzocaine Bepridil hydrochloride Bisindolylmaleimide I Bupivacaine Calmidazolium chloride Canrenoic acid potassium sa Carbamazepine Chloroquine diphosphate (+)-Chlorpheniramine malea Chlorpromazine hydrochlorid Chromanol Citalopram hydrobromide Clotromizole CP 339818 HCI Dexamethasone DIDS 5.5-Diphenvlhvdantoin Diltiazem HCI Diphenhydramine HCI Doxepin HCI Epigallocatechin-3-gallate Erythromycin Ethosuximide Felodipine . Flecainide acetate Fluoxetine HCL Fluspirilene Fluvoxamine maleate Gabapentin Haloperidol Imipamine HCI Indapamide Capsaicin Ketoconazole Lamotrigine Lidocaine Linopiridine Loperamide HCI Mepivacaine (+)-Methoxyverapamil HCI Mexiletene HCI Mibefradil diHCI W-7 N-acetylprocainamide HCI Nicardapine HCI Nicotine Nifedipine Niflumic acid Nimodipine Nisoldipine Nitrendipine Nortryptyline Papaverine HCI Perhexiline maleate 3-phenyl-1-pyrrolidin-1-yl-pro Procainamide Propafenone HCI Quinidine sulfate QX222 QX314 R(+)-SCH-23390 HCL RCL R41,038-1 Riluzole Ruthenium red SKF 96365 (+)-Solatol HCI Spironolactone SR 33805 (+)-Sulpiride TEA CI Thioridazine HCI Tocainide Triamterene Venlafaxine Verapamil Vinpocetine

Chemical

<0.1 0.1-0.3 0.3-0.5 0.5-1 1

|        |            |       |          |       | Chemical                                     |             |       |            |       |
|--------|------------|-------|----------|-------|----------------------------------------------|-------------|-------|------------|-------|
|        | ۸1         | tet+  | A2       | tet-  | Cholesterol                                  | 117         | tet+  | 118        | tet-  |
|        | B1         | 0.018 | B2       | 0.021 | Dihydrolipoic acid                           | 07<br>V7    | 0.058 | V8         | 0.062 |
|        |            | 0.045 | C2       | 0.032 | Oleic acid                                   | A9          | 0.08  | A10        | 0.073 |
|        | D1         | 0.041 | D2       | 0.045 | Linoleic acid                                | B9          | 0.062 | B10        | 0.094 |
|        | E1         | 0.028 | E2       | 0.038 | PIP2                                         | C9          | 0.065 | C10        | 0.08  |
| te     | G1         | 0.021 | F2<br>G2 | 0.023 | Cholesterol esterase                         | E9          | 0.080 | E10        | 0.092 |
|        | H1         | 0.031 | H2       | 0.024 | Sphingosine                                  |             | 0.051 | F10        | 0.036 |
|        |            | 0.03  | 12       | 0.036 | DHS                                          | G9          | 0.039 | G10        | 0.016 |
|        | J1         | 0.029 | J2       | 0.035 | Safingol                                     | H9          | 0.053 | H10        | 0.029 |
|        | L1         | 0.035 | κ2<br>L2 | 0.021 | SPC                                          | '1ð         | 0.023 | J10        | 0.02  |
|        | <b>M</b> 1 | 0.036 | M2       | 0.032 | LPC (egg yolk)                               | К9          | 0.036 | K10        | 0.025 |
|        | N1         | 0.034 | N2       | 0.035 | ET-18-OCH3                                   |             | 0.05  | L10        | 0.017 |
| -14    | 01         | 0.015 | 02       | 0.075 | Methanandamide                               | M9          | 0.029 | M10        | 0.013 |
| ait    | 01         | 0.018 | P2<br>Q2 | 0.017 | a-lippic acid                                | N9<br>09    | 0.023 | O10        | 0.023 |
|        | R1         | 0.01  | R2       | 0.013 | Palmitic acid                                | P9          | 0.041 | P10        | 0.016 |
| te     |            | 0.013 | S2       | 0.012 | Carbacyclin                                  | Q9          | 0.078 | Q10        | 0.043 |
| ie     | T1         | 0.021 | T2       | 0.019 | Angiotensin II                               | R9          | 0.054 | R10        | 0.075 |
|        | V1         | 0.015 | 02<br>V2 | 0.043 | L HRH                                        | 59<br>T9    | 0.058 | 510<br>T10 | 0.074 |
|        | A3         | 0.024 | A4       | 0.031 | Melanin Conc. Hormone                        | U9          | 0.065 | U10        | 0.071 |
|        | <b>B</b> 3 | 0.023 | B4       | 0.021 | Bradykinin                                   | V9          | 0.383 | V10        | 0.49  |
|        | C3         | 0.016 | C4       | 0.013 | Substance P fragment                         | A11         | 0.067 | A12        | 0.21  |
|        | E3         | 0.015 | E4       | 0.012 | Arg Vaostocin                                | C11         | 0.433 | C12        | 0.226 |
|        | F3         | 0.04  | F4       | 0.034 | Oxytocin                                     | D11         | 0.09  | D12        | 0.069 |
|        | G3         | 0.022 | G4       | 0.022 | Thyrotropin RH                               | E11         | 0.08  | E12        | 0.073 |
|        | H3         | 0.025 | H4       | 0.03  | Neurotensin                                  | F11         | 0.167 | F12        | 0.13  |
|        | 13<br>J3   | 0.025 | J4       | 0.035 | Leukotriene B4                               | H11         | 0.089 | H12        | 0.108 |
|        | КЗ         | 0.027 | K4       | 0.027 | Leukotriene C4                               | 111         | 0.083 | l12        | 0.099 |
|        | L3         | 0.033 | L4       | 0.023 | Leukotriene D4                               | J11         | 0.081 | J12        | 0.108 |
|        | M3         | 0.033 | M4       | 0.031 | Leukotriene E4                               | K11         | 0.067 | K12        | 0.09  |
|        | 03         | 0.101 | 04       | 0.089 | REV 5901                                     | M11         | 0.103 | M12        | 0.149 |
|        | P3         | 0.037 | P4       | 0.034 | Prostaglandin A2                             | N11         | 0.082 | N12        | 0.174 |
|        | Q3         | 0.017 | Q4       | 0.018 | Prostaglandin B2                             | 011         | 0.082 | 012        | 0.115 |
|        | К3<br>53   | 0.024 | R4<br>S4 | 0.015 | Prostaglandin D2<br>Prostaglandin E1         | P11<br>011  | 0.095 | P12<br>012 | 0.101 |
|        | Т3         | 0.017 | T4       | 0.019 | Prostaglandin E2                             | R11         | 0.082 | R12        | 0.079 |
|        | U3         | 0.043 | U4       | 0.034 | Prostaglandin F2a                            | S11         | 0.107 | S12        | 0.095 |
|        | V3         | 0.02  | V4       | 0.026 | Carbocyclic thromboxane A2<br>Thromboxane B2 | T11         | 0.071 | T12        | 0.179 |
|        | B5         | 0.013 | B6       | 0.028 | U-46619                                      | V11         | 0.106 | V12        | 0.04  |
|        | C5         | 0.029 | C6       | 0.019 | AH6809                                       | A13         | 0.111 | A14        | 0.064 |
|        | D5         | 0.077 | D6       | 0.073 | Carbaprostacyclin                            | B13         | 0.12  | B14        | 0.067 |
|        | ED<br>F5   | 0.022 | E0<br>F6 | 0.017 | BW245C                                       | D13         | 0.076 | D14        | 0.055 |
|        | G5         | 0.018 | G6       | 0.022 | trans-BTP Dioxolane                          | E13         | 0.054 | E14        | 0.065 |
|        | H5         | 0.065 | H6       | 0.128 | Prostaglandin I2                             | F13         | 0.099 | F14        | 0.074 |
|        | 15         | 0.047 | 16<br>16 | 0.048 | 15d-PGJ2<br>Prostaglandin K1                 | G13         | 0.084 | G14        | 0.074 |
|        | K5         | 0.026 | K6       | 0.028 | L-a-phosphatidic acid                        | 113         | 0.59  | 114        | 0.608 |
|        | L5         | 1.508 | L6       | 1.334 | S-1-P                                        | J13         | 0.4   | J14        | 0.3   |
|        | M5         | 1.005 | M6       | 0.276 | C2 ceramide                                  | K13         | 0.097 | K14        | 0.071 |
|        | 05         | 0.043 | 06       | 0.03  | C8 ceramide-1P                               | M <u>13</u> | 0.081 | M14        | 0.082 |
|        | P5         | 0.22  | P6       | 0.084 | Arachadonic acid                             | N13         | 0.15  | N14        | 0.074 |
|        | Q5         | 0.064 | Q6       | 0.061 | Hepoxillin A3                                | 013         | 0.348 | 014        | 0.079 |
|        | R5<br>S5   | 0.039 | R6<br>S6 | 0.041 | REV 5901 para isomer<br>Misoprostol          | P13         | 0.15  | P14        | 0.115 |
|        | T5         | 0.066 | T6       | 0.085 | SPC                                          | R13         | 0.08  | R14        | 0.09  |
| penone | U5         | 0.037 | U6       | 0.048 | B-cyclodextrin                               | S13         | 0.302 | S14        | 0.141 |
|        | V5         | 0.03  | V6       | 0.029 | Ginkgolide A                                 | T13         | 0.088 | T14        | 0.09  |
|        | A/<br>B7   | 0.022 | A8<br>B8 | 0.027 | PAF-16<br>PAF-16 antagonist                  | U13<br>V13  | 0.535 | U14<br>V14 | 0.494 |
|        | C7         | 0.043 | C8       | 0.046 | lyso PAF-16                                  | A15         | 0.437 | A16        | 0.701 |
|        | D7         | 0.028 | D8       | 0.036 | PAF-18                                       | B15         | 0.305 | B16        | 0.225 |
|        | E7         | 0.028 | E8       | 0.038 | lyso PAF-18                                  | C15         | 0.299 | C16        | 0.225 |
|        | G7         | 0.020 | G8       | 0.055 | 5(S),15(S)-DIHETE                            | E15         | 0.237 | E16        | 0.143 |
|        | H7         | 0.048 | H8       | 0.055 | 8(S),15(S)-DIHETE                            | F15         | 0.246 | F16        | 0.232 |
|        | 17         | 0.019 | 18       | 0.023 | 12(R)-DIHETE                                 | G15         | 0.258 | G16        | 0.224 |
|        | J/<br>K7   | 0.021 | K8<br>J8 | 0.015 | 15(S)-DIHETE<br>7-ketocholesterol            | H15         | 0.258 | H16        | 0.204 |
|        |            | 0.019 | L8       | 0.024 | 7 B-hydroxy cholesterol                      | J15         | 0.025 | J16        | 0.003 |
|        | M7         | 0.018 | M8       | 0.018 | bovine SPH                                   | K15         | 0.15  | K16        | 0.25  |
|        | N7         | 0.017 | N8       | 0.039 | Palmitoyl CoA                                | L15         | 0.025 | L16<br>M16 | 0.025 |
|        | P7         | 0.083 | P8       | 0.025 | LPI                                          | N15         | 1.2   | N16        | 0.2   |
|        | Q3         | 0.021 | Q4       | 0.019 | Gd                                           | 015         | 0.07  | 016        | 0.09  |
|        | R7         | 0.018 | R8       | 0.017 | CCh                                          | P15         | 0.49  | P16        | 0.43  |
|        | 57<br>T7   | 0.021 | К8<br>Т8 | 0.02  | n202<br>progesterone                         | Q15<br>R15  | 0.6   | Q16<br>R16 | 0.7   |
|        |            |       |          |       | 5Bpreg3a                                     | S15         | 0.003 | S16        | 0.003 |
|        |            |       |          |       | 5apreg3a                                     | T15         | 0.003 | T16        | 0.003 |
|        |            |       |          |       | 5preg3B<br>3B-OH-3a                          | U15         | 0.003 | U16        | 0.003 |
|        |            |       |          |       | 00 01108                                     | 0.00        | 0.003 | 1.10       | 0.003 |