## Importance of the $\alpha$ C-helix in the Cyclic Nucleotide Binding Domain for the Stable Channel Regulation and Function of Cyclic Nucleotide Gated Ion Channels in Arabidopsis

Kimberley Chin, Wolfgang Moeder, Huda Abdel-Hamid, Dea Shahinas, Deepali Gupta, and Keiko Yoshioka

Supplemental Figure 1



## Importance of the αC-helix in the Cyclic Nucleotide Binding Domain for the Stable Channel Regulation and Function of Cyclic Nucleotide Gated Ion Channels in Arabidopsis

Kimberley Chin, Wolfgang Moeder, Huda Abdel-Hamid, Dea Shahinas, Deepali Gupta, and Keiko Yoshioka

| Supplemental table 1. Interaction phenotype with <i>H. arabidopsidis</i> isolate Emwa1 <sup>a</sup> |                     |                         |                           |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------|-------------------------|---------------------------|--|--|--|--|--|
| Genotype                                                                                            | Total No. of Plants | No. of Resistant Plants | No. of Susceptible Plants |  |  |  |  |  |
|                                                                                                     |                     |                         | ·                         |  |  |  |  |  |
| Ws-wt                                                                                               | 33                  | 3                       | 30                        |  |  |  |  |  |
| Col-wt                                                                                              | 22                  | 22                      | 0                         |  |  |  |  |  |
| cpr22/CPR22                                                                                         | 26                  | 0                       | 26                        |  |  |  |  |  |
| S58                                                                                                 | 32                  | 0                       | 32                        |  |  |  |  |  |

a Based on formation of sporangiophores; Resistance, no formation; Susceptible, formation.

## Supplemental table 2. Segregation analysis of the cpr22 phenotype

| Plant Line <sup>a</sup>     | Total<br>No. | Morphological Phenotype |       | Hypothesis | χ2с   | Р    |      |
|-----------------------------|--------------|-------------------------|-------|------------|-------|------|------|
|                             |              | Wt                      | cpr22 | Lethal     |       |      |      |
| cpr22/CPR22                 | 92           | 25                      | 43    | 23         | 1:2:1 | 0.41 | 0.81 |
| S58 x cpr22/cpr22 $(B_1)^d$ | 5            | 0                       | 5     | 0          | 0:1:0 |      |      |
| B_2 <sup>e</sup>            | 92           | 19                      | 47    | 24         | 1:2:1 | 0.73 | 0.69 |

a S58 is the pollen accepting plant.

b Both cpr22 and S58 are semi-dominant.

<sup>C</sup> two degrees of freedom

d Backcross first generation of S58 and cpr22 homozygous plants

e Backcross second generation of S58 and cpr22 homozygous plants.