Supporting Information

for

Copper/α-Ketocarboxylate Chemistry With Supporting Peralkyated Diamines: Reactivity of Copper(I) Complexes and Dicopper-Oxygen Intermediates

Aalo K. Gupta and William B. Tolman*

Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455. E-mail: wtolman@umn.edu.

Contents

Table S1. X-ray crystallographic parameters for (tBu₂Me₂eda)Cu(BF), (tBu₂Me₂eda)Cu(*p-nitro*-BF), and (Me₄pda)CuBF₂.

Figure S1. UV-vis spectral data for the reaction of $(tBu_2Me_2eda)Cu(nitro-BF)$ in CH_2Cl_2 (0.67 mM) with O₂ at -80 °C

Figure S2. Variable temperature ¹H-NMR spectra of (tBu₂Me₂eda)Cu(BF).

Figure S3. Variable temperature ¹H-NMR spectra of (tBu₂Me₂eda)Cu(nitro-BF).

Figure S4. Expansion of the ¹H NMR features at ~2.06 and ~3.06 ppm for (tBu₂Me₂eda)Cu(BF) in CD₂Cl₂ at -60 °C.

Figure S5. FTIR spectra of solid samples of Bu₄NBA, Bu₄NBF, and nitro-BF.

Figure S6. FTIR spectra of solid and solution sample of (tBu₂Me₂eda)Cu(BF).

Figure S7. FTIR spectra of solid and solution sample of (tBu₂Me₂eda)Cu(nitro-BF).

Figure S8. FTIR spectra of solid and solution sample of (Me₄pda)Cu(BF)₂.

Figure S9. Variable temperature ¹H-NMR spectra of $(tBu_2Me_2eda)Cu(BF)$ in CD_2Cl_2 with 5 equivalents of cyclohexene.

Figure S10. Variable temperature ¹H-NMR spectra of $(tBu_2Me_2eda)Cu(nitro-BF)$ in CD_2Cl_2 with 5 equivalents of cyclohexene.

Figure S11. Results from the global fitting analysis of the reaction $[(Me_4pda)_2Cu_2O_2]OTf_2 + 60$ equivalents Bu₄NBF.

	(tBu ₂ Me ₂ eda)Cu(BF)	(tBu ₂ Me ₂ eda)Cu(<i>p-nitro-</i> BF)	(Me ₄ pda)CuBF ₂
Empirical formula	C ₂₀ H ₃₃ CuN ₂ O ₃	C ₂₀ H ₃₂ CuN ₃ O ₅	$C_{23}H_{28}CuN_2O_6$
Formula weight	413.02	458.03	492.01
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	P ₂₁	P _{21/c}	P_1
<i>a</i> (Å)	9.7882(6)	19.2670(13)	8.076(5)
<i>b</i> (Å)	10.3914(6)	8.9816(6)	11.998(5)
<i>c</i> (Å)	10.3951(7)	13.6990(9)	12.092(5)
α (deg)	90	90	86.948(5)
β (deg)	97.540(2)	107.274(2)	81.838(5)
γ (deg)	90	90	76.588(5)
Volume ($Å^3$)	1048.18(11)	2263.7(3)	1127.9(10)
Z	2	4	2
T(K)	173(2)	173(2)	173(2)
ρ (calculated) (Mg/m ³)	1.309	1.347	1.449
θ range (deg)	1.98 to 25.06	1.11 to 25.07	1.7 to 25.06
μ (mm ⁻¹)	1.062	0.999	1.010
Reflections collected	10469	21392	10940
Independent reflections	3708	4019	4007
parameters	244	313	293
R1, wR2 (for $I > 2\sigma(I)$)	0.0249, 0.0598	0.0660, 0.1425	0.0355, 0.0844
GOF	1.006	1.037	0.985
Largest Peak, Hole (e.Å ⁻³)	0.307 and -0.181	1.917 and -1.754	0.424 and -0.382
F(000)	440	972	514
Crystal color, morphology	yellow, plate	gold, plate	green, block
Crystal size	0.50 x 0.40 x 0.10 mm ³	0.50 x 0.40 x 0.10	0.4 x 0.3 x 0.2
Index ranges	$-11 \le h \le 11, -12 \le k \le 12,$	$-22 \le h \le 22, -10 \le k \le 10,$	$-9 \le h \le 9, -14 \le k \le 14, -$
	$-12 \le l \le 12$	$-16 \le l \le 16$	$14 \le l \le 14$

Table S1. X-ray crystallographic parameters for (tBu₂Me₂eda)Cu(BF), (tBu₂Me₂eda)Cu(*p-nitro*-BF), and (Me₄pda)CuBF₂. For a complete description, see the CIF.

Figure S1. UV-vis spectral data for the reaction of $(tBu_2Me_2eda)Cu(nitro-BF)$ in CH₂Cl₂ (0.67 mM) (*blue*) with O₂ at -80 °C with spectra shown every 20 sec (spectrum for the intermediate shown in *red*). The inset displays the time trace for the formation and decay of the intermediate data monitored at 375 nm (*red dots*) and fit to a bi-exponential equation [A_t = A1 – A2*exp(- k_1*t) + A3*exp(- k_2*t), $k_1 = 0.0062$ s⁻¹ and $k_2 = 0.0010$ s⁻¹; R = 0.998].

Figure S2. Variable temperature ¹H NMR spectra of (tBu₂Me₂eda)Cu(BF) in CD₂Cl₂ at a) Room temperature; b) 0 °C; c) -20 °C; d) -40 °C; e) -60 °C. The new features observed at -60 °C and modeled in Figures S3 and S4 are marked with asterisks.

3.20 3.10 3.00 2.90 2.80 2.70 2.60 2.50 2.40 2.30 2.20 2.10 2.00 1.90 11 (ppm)

Figure S3. Expansion of the ¹H NMR features at ~2.06 and ~3.06 ppm for (tBu₂Me₂eda)Cu(BF) in CD₂Cl₂ at -60 °C (*black*) with a simulated spectrum overlaid (*red*). The simulated spectrum was generated with 4 spins (A, B, C, and D) with A = 2.09 ppm, B = 2.03 ppm, C= 3.09 ppm, and D = 3.03 ppm and $J_{AB} = J_{CD} = 15$ Hz, $J_{AC} = J_{AD} = J_{BC} = 3$ Hz using MestReNova v6.0.2 NMR processing software.

Figure S4. Variable temperature ¹H NMR spectra of (tBu₂Me₂eda)Cu(nitro-BF) in CD₂Cl₂ at a) Room temperature; b) 0 °C; c) -20 °C; d) -40 °C; e) -60 °C. The new features observed at -60 °C are marked with asterisks.

Figure S5. FTIR spectra of solid samples of Bu₄NBA (*left*), Bu₄NBF (*center*), and nitro-BF (free acid) (*right*).

Figure S6. FTIR spectra of solid sample of (tBu₂Me₂eda)Cu(BF) (*left*) and solution sample of (tBu₂Me₂eda)Cu(BF) (10 mM in CH₂Cl₂) (*right*).

Figure S7. FTIR spectra of solid sample of (tBu₂Me₂eda)Cu(nitro-BF) (*left*) and solution sample of (tBu₂Me₂eda)Cu(nitro-BF) (10 mM in CH₂Cl₂) (*right*).

Figure S8. FTIR spectra of solid sample of (Me₄pda)Cu(BF)₂ (*left*) and solution sample of (Me₄pda)Cu(BF)₂ (10 mM in CH₂Cl₂) (*right*).

Figure S9. Variable temperature ¹H-NMR spectra of $(tBu_2Me_2eda)Cu(BF)$ in CD₂Cl₂ with 5 equivalents of cyclohexene at a) Room temperature; b) 0 °C; c) -20 °C; d) -40 °C; e) -60 °C. New features observed at -60 °C are marked with asterisks.

Figure S10. Variable temperature ¹H-NMR spectra of $(tBu_2Me_2eda)Cu(nitro-BF)$ in CD₂Cl₂ with 5 equivalents of cyclohexene at a) Room temperature; b) 0 °C; c) -20 °C; d) -40 °C; e) -60 °C. New features observed at -60 °C are marked with asterisks.

Figure S11. Results from the global fitting analysis of the UV-vis spectra obtained during the reaction of $[(Me_4pda)_2Cu_2O_2]OTf_2$ in CH₂Cl₂ (0.1 mM) at -80 °C (*blue*) with 60 equivalents Bu₄NBF. Data was truncated to a region between 300-440 nm to only include areas of significant spectral change followed by singular value decomposition (SVD) factor analysis using Olis GlobalWorksTM. Three kinetic species were chosen from the significant eigenvectors resulting from the SVD process and are shown (*left*). The data were fit to an A(blue)→B(dashed line)→C(red) model with the relative amounts of intermediate species with respect to time shown (*right*). Each step was treated as a first order reaction with the following rate constants $k_1 = 5.1 \times 10^{-1} \text{ s}^{-1}$ and $k_2 = 5.1 \times 10^{-1} \text{ s}^{-1}$.