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development and evolution 
 
File S1: Description of the partial differential equation model  
 
A set of eight coupled partial differential equations was written to represent the following 
features of the developing limb [1,2]: randomly moving uncommitted precartilage 
mesenchymal cells produce diffusible activator and inhibitor morphogens (lumped 
single-variable representations of the activator (A) and inhibitor (I) networks described in 
the main text).  The activator promotes its own synthesis as well as that of the inhibitor 
and the inhibitor suppresses the effects of the activator.  The cells react to elevated levels 
of activator by undergoing a reversible transformation to an inhibitor-producing state, 
from that state to one which produces an adhesive matrix (fibronectin), and then to an 
immobile state (cartilage).  Finally, the system includes a morphogen that, at high levels, 
keeps cells in the uncommitted state (“FGF”).  All morphogens, cell types, and the ECM 
molecule fibronectin are represented by continuous density variables, and all of them, 
with the exception of fibronectin and cartilage cells, are considered to diffuse, with 
characteristic coefficients.  As indicated in the main text, this system is referred to as the 
core patterning network for the developing limb [1,2]. 
 
Although the eight-equation system would be infeasible to solve by available analytical 
or computational methods, it is mathematically “well-behaved” in that smooth solutions 
for it exist [3].  By considering the restrictive but biologically plausible case in which cell 
differentiation equilibrates on a faster time scale than the overall density of the mobile 
cells (the “morphostatic” [4] version of the core mechanism), a two-equation system 
describing the dynamics of the activator and inhibitor was derived [5].  This system 
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thus carries over the original biological framework, including the varying cell densities, 
along with the additional constraints, in a mathematically explicit and rigorous way.  By 
the morphostatic assumption, cells will differentiate according to the morphogen patterns, 
and only then arrange themselves into condensed vs. noncondensed regions. 

In system (1) ac  denotes the concentration of the activator TGF-β, ic  the concentration 

of the inhibitor, aD  and iD  the diffusion constants for the activator and the inhibitor 

respectively, ak  the inhibitor-activator binding rate, and U  and V  the production rates 

of  ac  and ic , respectively. The system is subject to no-flux boundary conditions and 

zero initial concentrations for ac  and ic . The functions U  and V  are given by 
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Following [5], the parameter values in the system are taken as 
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where the values of the reaction kinetic parameters ,     which dramatically affect the 
pattern as shown in [5] and this paper, are varied in a level-specific fashion (see Files S3-
S5). 

The parameter   is related to the feedback strength of the activator morphogen, while   
is related to the activator concentration which separates the linear response phase from 
the saturation response phase in this system.  See ref. [5] for additional details on the 
meaning of these parameters. 
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