Supporting Information

Cadmium(II) Complex Formation with Cysteine and Penicillamine

Farideh Jalilehvand^{*}, Bonnie O. Leung and Vicky Mah

Department of Chemistry, University of Calgary, Calgary, AB, Canada

Figure S-1. Distribution diagrams for cadmium(II) cysteine complexes as a function of pH in solutions **A**, **B**, **D** and **E**, containing $C_{Cd^{2+}} \sim 0.1 \text{ mol dm}^{-3}$ and (H_2Cys / Cd^{2+}) ratios 2.0, 3.0, 5.0 and 10.0 (*Ref.* 14).

The following complexes were considered as the result of reaction between Cd^{2+} , Cys^{2-} and H^+ : $q Cd^{2+} + p Cys^{2-} + r H^+ \leftrightarrow Cd_q (Cys)_p H_r \qquad \beta_{q, p, r}$

Cd(Cys) (log $\beta_{1, 1, 0} = 10.3$), Cd(Cys)(OH) (log $\beta_{1, 1, -1} = 2.42$), Cd(Cys)₂ (log $\beta_{1, 2, 0} = 16.92$), Cd(HCys)(Cys) (log $\beta_{1, 2, 1} = 24.97$), Cd(HCys)₂ (log $\beta_{1, 2, 2} = 30.93$), Cd(Cys)₃ (log $\beta_{1, 3, 0} = 19.78$) and Cd(HCys)(Cys)₂ (log $\beta_{1, 3, 1} = 29.21$). These formation constants were calculated for cadmium(II) and cysteine complexation at 37 °C in the ionic medium 0.15 mol dm⁻³ NaCl, with total cysteine concentration ranging between 0.005 to 0.020 mol dm⁻³ (*Ref.* 14). The distribution diagrams in Figure S-1 were calculated with MEDUSA computer program (http://www.kemi.kth.se/medusa/). The full input file to MEDUSA is:

H+ Cd 2+ Cys 2-Cl-HCys -, 10.26 1 0 1 0 H2Cys , 18.48 2 0 1 0 , 20.52 H3Cys + 3 0 1 0 , 10.3 CdCys 0 1 1 0 Cd(Cys)2 2-, 16.92 0 1 2 0 Cd(Cys)3 4-, 19.78 0 1 3 0 CdH(Cys)3 3- , 29.21 1 1 3 0 CdCys(-H) - , 2.42 -1 1 1 0 CdH(Cys)2 - , 24.97 1 1 2 0 CdH2(Cys)2 , 30.93 2 1 2 0, -20.35 Cd(OH)2 -2 1 0 0 , -33.3 Cd(OH)3--3 1 0 0 Cd(OH)4 2-, -47.35 -4 1 0 0 Cd2OH 3+ , -9.39 -1 2 0 0 Cd4(OH)4 4+ , -32.85 -4 4 0 0 , 1.98 CdCl+ 0 1 0 1 , 2.6 CdCl2 0 1 0 2 CdCl3-, 2.4 0 1 0 3 , -7.404 -1 1 0 1 CdClOH , -10.08 CdOH+ -1 1 0 0 , -14.0 OH--1 0 0 0 Cd(OH)2(am) , -13.73 -2 1 0 0 *Cd(OH)2(cr) , -13.65 -2 1 0 0 CdCl2(c), 0.68 0 1 0 2 CdCl2:2.5H2O(c), 1.94 0 1 0 2 , -13.77 CdO(cr) -2 1 0 0 CdOHCl(c) , -3.52 -1 1 0 1

4, 21, 6, 0 /MEDUSA, t= 25 C, p= 1

Figure S-2a. Distribution diagrams for cadmium(II) penicillamine complexes as a function of pH in solutions **H**, **I**, **K** and **L**, containing $C_{Cd^{2+}} \sim 0.1 \text{ mol dm}^{-3}$ and (H_2Pen / Cd^{2+}) ratios 2.0, 3.0, 5.0 and 10.0 (*Ref.* 15). The following complexes were considered as the result of reaction between Cd^{2+} , Pen²⁻ and H⁺:

$$q \operatorname{Cd}^{2+} + p \operatorname{Pen}^{2-} + r \operatorname{H}^{+} \leftrightarrow \operatorname{Cd}_q (\operatorname{Cys})_p \operatorname{H}_r \qquad \qquad \beta_{q, p, r}$$

[Cd(Pen)] (log $\beta_{1, 1, 0} = 12.68$), [Cd(HPen)]⁺ (log $\beta_{1, 1, 1} = 17.15$), [Cd(HPen)(Pen)]⁻ (log $\beta_{1, 2, 1} = 28.31$), [Cd(Pen)₂]²⁻ (log $\beta_{1, 2, 0} = 20.68$), [Cd(HPen)₂] (log $\beta_{1, 2, 2} = 34.53$) and [Cd(Pen)₂(OH)]³⁻ (log $\beta_{1, 2, -1} = 9.14$). These formation constants were obtained for cadmium(II) and penicillamine complexation at 25 °C in the ionic medium 3.0 mol dm⁻³ NaClO₄ (*Ref.* 15).

The distribution diagrams in Figure S-2a were calculated with MEDUSA computer program (http://www.kemi.kth.se/medusa/). The full input file to MEDUSA is:

3, 16, 3, 0	/HYDRA,	t=25 C
H+		
Cd 2+		
Pen 2-		
CdPen	, 12.68	0 1 1
CdPenH+	, 17.15	1 1 1
Cd(Pen)2 2-	, 20.68	0 1 2
Cd(Pen)2H -	, 28.31	1 1 2
Cd(Pen)2H2	, 34.53	2 1 2
Cd(Pen)2OH 3-	, 9.14	-1 1 2
Cd(OH)2	, -20.35	-2 1 0
Cd(OH)3-	, -33.3	-3 1 0
Cd(OH)4 2-	, -47.35	-4 1 0
Cd2OH 3+	, -9.39	-1 2 0
Cd4(OH)4 4+	, -32.85	-4 4 0
CdOH+	, -10.08	-1 1 0
HPen -	, 11.01	1 0 1
H2Pen	, 19.61	2 0 1
H3Pen +	, 22.04	3 0 1
OH-	, -14.0	-1 0 0
Cd(OH)2(am)	, -13.73	-2 1 0
Cd(OH)2(c)	, -13.65	-2 1 0
CdO(c)	, -13.77	-2 1 0

Figure S-2b. Distribution diagrams for cadmium(II) penicillamine complexes as a function of pH in solutions containing $C_{Cd^{2+}} \sim 0.1 \text{ mol dm}^{-3}$ and $(H_2 \text{Pen} / \text{Cd}^{2+})$ ratios 2.0, 3.0, 5.0 and 10.0 (*Ref.* 16). The following complexes were considered as the result of reaction between Cd²⁺, Pen²⁻ and H⁺:

$$q \operatorname{Cd}^{2+} + p \operatorname{Pen}^{2-} + r \operatorname{H}^{+} \leftrightarrow \operatorname{Cd}_{q}(\operatorname{Cys})_{p} \operatorname{H}_{r} \qquad \qquad \beta_{q, p, r}$$

 $[Cd(HPen)]^{+} (\log \beta_{1, 1, 1} = 16.39), [Cd(Pen)_2]^{2-} (\log \beta_{1, 2, 0} = 20.27), [Cd(Pen)_2(OH)]^{3-} (\log \beta_{1, 2, -1} = 9.74), [Cd_2(HPen)_3(Pen)_2]^{3-} (\log \beta_{2, 5, 3} = 71.04), [Cd_3(HPen)_2(Pen)_2] (\log \beta_{3, 4, 2} = 63.26), [Cd_3(HPen)_4(Pen)_2]^{2-} (\log \beta_{3, 6, 4} = 93.54), [Cd_4(HPen)_5(Pen)_2]^{2-} (\log \beta_{4, 7, 5} = 113.4), [Cd_5(HPen)_6(Pen)_2] (\log \beta_{5, 8, 6} = 133.8).$ These formation constants were obtained for cadmium(II) and penicillamine complexation at 25 °C in the ionic medium 0.2 mol dm⁻³ KNO₃, with $[Cd^{2+}]_{total} = 1 - 5$ mmol dm⁻³ and 3-fold or more excess of penicillamine (*Ref.* 16).

The distribution diagrams in Figure S-2b were calculated with MEDUSA computer program (http://www.kemi.kth.se/medusa/). The full input file to MEDUSA is:

3, 18, 3, 0 /	HYDRA, $t=25 C$	
H+		
Cd 2+		
Pen 2-		
CdPenH+	, 16.39	1 1 1
Cd(Pen)2 2-	, 20.27	0 1 2
Cd3(Pen)4H2	, 63.26	2 3 4
Cd(Pen)2OH 3-	, 9.74	-1 1 2
Cd2(Pen)5H3 3-	, 71.04	3 2 5
Cd3(Pen)6H4 2-	, 93.54	4 3 6
Cd5(Pen)8H6	, 133.8	658
Cd4(Pen)7H5-	, 113.4	547
Cd(OH)2	, -20.35	-2 1 0
Cd(OH)3-	, -33.3	-3 1 0
Cd(OH)4 2-	, -47.35	-4 1 0
Cd2OH 3+	, -9.39	-1 2 0
Cd4(OH)4 4+	, -32.85	-4 4 0
CdOH+	, -10.08	-1 1 0
HPen -	, 10.42	1 0 1
H2Pen	, 18.30	2 0 1
H3Pen +	, 20.20	3 0 1
OH-	, -14.0	-1 0 0
Cd(OH)2(am)	, -13.73	-2 1 0
Cd(OH)2(c)	, -13.65	-2 1 0
CdO(c)	, -13.77	-2 1 0

Figure S-3a. Least-squares curve-fitting of the k^3 -weighted EXAFS spectrum of imidazolium tris(thiosaccharinato)aqua cadmate(II), (HIm)[Cd(tsac)₃(H₂O)], as CdS₃O model. For simulating the theoretical EXAFS oscillation, the atomic coordinates of its crystal structure were used in the ATOMS program to generate the FEFF input file.

Figure S-3b. Least-squares curve-fitting of the k^3 -weighted EXAFS spectrum of bis(thiosaccharinato)bis(imidazole) cadmium(II), [Cd(tsac)₂(Im)₂], as CdS₂N₂ model. For simulating the theoretical EXAFS oscillation, the atomic coordinates of its crystal structure were used in the ATOMS program to generate the FEFF input file.

Table S-1. Total number of scans collected during the 113 Cd NMR measurements for Cd(II) – cysteine and penicillamine solutions, and the full width at half-height (FWHH) for the observed NMR signals

Cysteine ssolution	No. scans	FWHH (Hz)	Solution	No. scans	FWHH (Hz)
(pH = 7.5)			(pH = 11.0)		· · ·
A1	3489	2320	A2	805	761
B1	736	945	B2	1040	271
C1	750	418	C2	658	190
D1	511	115	D2	605	157
E1	376	33	E2	537	136
F1	181	15	F2	539	21
G1	154	16	G2	550	17
Penicillamine solution	No. scans	S FWHH (Hz)) Solution	No. scans	FWHH (Hz)

Penicillamine solution	No. scans	FWHH (Hz)	Solution	No. scans	FWHH (Hz)
(pH = 7.5)			(pH = 11.0)		
H1	4299	2120	H2	11348	77
I1	1531	1595	I2	1118	114
J1	750	805	J2	278	106
K1	626	447	K2	434	92
L1	500	55	L2	724	19
M1	141	14	M2	542	6
N1	353	38	N2	550	6

Figure S-4. Cd L₃-edge XANES spectra of cadmium(II) cysteine solutions **A2** and **G2** (pH = 11), compared with those of crystalline Cd(II) complexes with CdS_2N_2 , CdS_3N_2 and CdS_4 geometries.

Figure S-5. Comparison between the k^3 -weighted EXAFS spectra of cadmium(II) cysteine

solutions E1 (red), F1 (blue) and G1 (green) solutions (pH = 7.5).

Figure S-6. Comparison between the k^3 -weighted EXAFS spectra of cadmium(II) cysteine solutions **E2** (red), **F2** (blue) and **G2** (green) solutions (pH = 11.0).

Figure S-7. Comparison between the k^3 -weighted EXAFS spectra of cadmium(II) penicillamine solutions: *a*) **H1** (red) and **L1** (blue) (pH = 7.5); *b*) **H2** (red) and **L2** (blue) (pH = 11.0).

Figure S-8. Comparison between the k^3 -weighted EXAFS spectra of cadmium(II) penicillamine solutions L2 (red), M2 (blue) and N2 (green) solutions (pH = 11.0).

Scheme S-1. Structure **k** with CdS_3N_2 geometry does not seem to be a feasible structure for $[Cd(Cys)_3]^{4-}$ complex (see the text).

Scheme S-2. Possible structures for the polynuclear cadmium(II)-penicillamine complexes $[Cd_2(HPen)_3(Pen)_2]^{3-}$ (*left*) and $[Cd_3(HPen)_4(Pen)_2]^{2-}$ (*right*), proposed by Avdeef et al. (*Ref.* 16), to form between pH = 4 – 8 (see Figure S-2b).