Supplemental Material

Strain	Genotype		
WT - YPH499	<i>MATa ura</i> $3-52$ <i>lys</i> $2-801$ <i>ade</i> $2-101$ <i>trp</i> $1-\Delta 63$ <i>his</i> $3-\Delta 200$ <i>leu</i> $2-\Delta 1$		
$\Delta YHM2$	as YPH499 but $\Delta YHM2$::HIS3		
$\Delta CTP1$	" " <i>ΔCTP1</i> ::KanMX3		
$\Delta ZWFI$	" " $\Delta ZWF1$::KanMX3		
$\Delta YHM2\Delta CTP1$	" " Δ <i>YHM2</i> ::HIS3 Δ <i>CTP1</i> ::KanMX3		
$\Delta YHM2\Delta ZWF1$	" " Δ <i>YHM2</i> ::HIS3 Δ <i>ZWF1</i> ::NatMX4		
$\Delta CTP1\Delta ZWF1$	" " $\Delta CTP1$::KanMX3 $\Delta ZWF1$::NatMX4		
UTL-7A	<i>MAT</i> α ura3-52 trp1 leu2-3,112		
BJ1991∆pox1	MATα leu2 ura $3-52$ trp1 pep $4-3$ prb $1-1122$ gal 2Δ		
-	POX1::LEU2		

Table S1. Strains used in this study

Table S2. Percentage of non-viable cells. Yeast strains, precultured in YP with glucose and grown in acetate-supplemented SC, were incubated in the presence or absence of H_2O_2 for 60 min. After this time-period the cells were washed and tested for viability.

Strain	Untreated (%)	Treated with H_2O_2 (%)	Boiled
Wild-type	1.8 ± 0.6	5.5 ± 2.0	99.7
$\Delta YHM2$	1.8 ± 0.5	5.6 ± 1.2	99.8
$\Delta ZWF1$	1.2 ± 0.2	5.0 ± 1.8	99.6
$\Delta YHM2\Delta ZWF1$	1.5 ± 0.2	8.2 ± 2.1	99.8

<u>Fig. S1.</u> Expression in *S. cerevisiae* and purification of Yhm2p. Proteins were separated by SDS-PAGE and stained with Coomassie-blue dye (A) or transferred to nitrocellulose and immunodecorated with an anti-Yhm2p polyclonal antiserum (B). Lanes 1-3 (A and B), mitochondrial protein (30 μ g) from wild-type (lane 1), Δ *YHM2* (lane 2) and *YHM2-pYES2* (lane 3) strains. Cells were harvested 6 h after addition of galactose. Lanes 4, 1.5 μ g (A) and 0.3 μ g (B) Yhm2p purified from *YHM2-pYES2* mitochondria.

Fig. S2. Yhm2p is localized to mitochondria. (A) Immunological detection of Yhm2p in a sucrose density gradient. Cell-free extracts of oleic acid-induced wild-type cells (UTL-7A) were separated on a continuous sucrose density gradient (32-54%). The resulting fractions were analyzed for the distribution of Yhm2p, peroxisomal matrix protein Fox3p and mitochondrial Mir1p by immunoblotting. The enzymatic activities of peroxisomal catalase (\blacksquare) and mitochondrial fumarase (▲) were determined in the same fractions. Values are presented as the percentage of the peak fraction. Fraction densities are indicated by a hatched line. (B) Detection of Yhm2p in an Accudenz gradient. Peroxisomes were enriched on a sucrose density gradient (32-54%) and re-isolated by a 25,000x g centrifugation step. The organelles were then separated on an Accudenz gradient (20-40%), and the distribution of Yhm2p was compared to that of peroxisomal Fox3p and Pex11p as well as to mitochondrial Mir1p by immunoblotting.

<u>Fig. S3.</u> NADH/NAD⁺ ratios in the cytosol of parental and deleted *S. cerevisiae* strains. Yeast strains, precultured in YP with glucose and grown in acetate-supplemented SC, were incubated in the presence (B) or absence (A) of H_2O_2 for 60 min. NADH/NAD⁺ ratios and the sums of NADH + NAD⁺ are reported as means \pm S.E.M. of at least three independent experiments. Differences between the NADH/NAD⁺ ratio of $\Delta ZWF1$ and $\Delta YHM2\Delta ZWF1$ cells and control (wild-type cells) in the presence of H_2O_2 were significant (*P

< 0.05, one-way ANOVA followed by Bonferroni's *t*-test).

<u>Fig. S4.</u> NADH and NAD⁺ levels in the mitochondria of parental and deleted *S. cerevisiae* strains. Yeast strains, precultured in YP with glucose and grown in acetate-supplemented SC, were incubated in the presence (B) or absence (A) of H_2O_2 for 60 min. The sums of NADH + NAD⁺ with and without H_2O_2 , and the NADH/NAD⁺ ratio with H_2O_2 are reported as means \pm S.E.M. of at least three independent experiments.

