Supplementary Data

Incorporation of tyrosine and glutamine residues into the soluble guanylate cyclase heme distal pocket alters NO and O₂ binding

Emily R. Derbyshire, Sarah Deng and Michael A. Marletta

<u>Fig. S1</u>. Effect of GTP and YC-1 on the temperature-dependent equilibrium between 5- and 6-coordinate Fe^{II}-NO complexes in sGC $\alpha 1\beta 1$ I145Y and $\alpha 1\beta 1$ F74Y. Spectra (500 - 650 nm) are shown for 5 (black solid line), 30 (black dashed line) and 45 °C (gray solid line) for $\alpha 1\beta 1$ I145Y and for 5 (black solid line), 20 (black dashed line) and 30 °C (gray solid line) for $\alpha 1\beta 1$ F74Y.

<u>Fig. S2</u>. Activity of sGC β 1 distal pocket mutants in the absence and presence of NO (100 μ M DEA/NO) and YC-1 (150 μ M) at 37 °C. The bars, from left to right, refer to wild-type α 1 β 1, α 1 β 1 V5Y, α 1 β 1 F74Y, α 1 β 1 I145Y and α 1 β 1 I149Y. NO-stimulated activity and YC-1 synergism is reduced in all of the mutants.

<u>Fig. S3</u>. Characterization of sGC α 1 β 1 L9W/I145Y. (A) Electronic absorption spectra of Fe^{II}-unligated (black solid line), Fe^{II}-CO (black dashed line) and Fe^{II}-NO (gray solid line) complexes at 20 °C. (B) Activity of wild-type α 1 β 1 (black bars) and α 1 β 1 L9W/I145Y (white bars) in the presence and absence of NO, CO, and YC-1 at 37 °C.

<u>Fig. S4</u>. Activity of wild-type $\alpha 1\beta 1$ (black bars) and $\alpha 1\beta 1$ I145Y/I149Q (white bars). Reduced protein was assayed in the unligated state and after exposure to NO, CO and O₂ at 25 °C. $\alpha 1\beta 1$ I145Y/I149Q was monitored by electronic absorption spectroscopy to ensure the Soret absorbance maximum shifted after addition of each ligand. The Fe^{II} protein was oxidized with potassium ferricyanide (1 mM) and then the enzyme was assayed in the presence and absence of sodium cyanide (10 mM) at 25 °C.

		Specific Activity		
	_	(nmol cGMP min⁻¹ mg⁻¹)		
sGC	Ligand	- YC-1	+ YC-1	
wt	-	185 ± 0	985 ± 125	
	NO	13282 ± 477	26655 ± 5344	
	CO	199 ± 19	6976 ± 899	
β1 I5Y	-	33 ± 12	161 ± 65	
	NO	1588 ± 588	5162 ± 2845	
	CO	43 ± 0.3	423 ± 90	
β1 F74Y	-	433 ± 3	1070 ± 157	
-	NO	5004 ± 137	5079 ± 1142	
	CO	143 ± 52	1253 ± 398	
β1 I145Y	-	94 ± 11	181 ± 67	
	NO	1197 ± 68	3216 ± 448	
	CO	105 ± 5	142 ± 24	
β1 Ι149Υ	-	139 ± 0	245 ± 42	
	NO	416 ± 23	1829 ± 351	
	CO	250 ± 82	185 ± 61	

Table S1. Activity of various $\alpha 1\beta 1$ sGC mutants at 37 °C^{*a*}

 $^{a}Values$ for sGC determined in duplicate. The concentration of YC-1 was 150 $\mu M.$

Figure S1

Figure S2

Figure S3

Figure S4

