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Supplemental Results 
Three plausible mechanisms for substrate-dependence of autonomy ruled out 

Several possible mechanisms for substrate-dependence of autonomy were considered. The 

difference in autonomy toward AC2 and syntide2 could be caused by an effect on stimulated 

activity. Indeed, AC2 and syntide2 differed more in stimulated than in autonomous 

phosphorylation rates (Fig. 2A). However, two other substrates with similar or lower stimulated 

phosphorylation than AC2 showed the same autonomy as syntide2 (~25%)( Fig. 2B). Thus, 

stimulated activity was not a predictor of autonomy. The difference in autonomy could be caused 

by differential effects of pre-phosphorylation at T286 on stimulated maximal activities 

(increased for AC2 and/or decreased for syntide2). However, Fig. 2C demonstrates that this was 

not the case; this was further validated by a comparison of CaMKII wild type to the non-

phosphorylatable T286A mutant (Fig. 2D). Importantly, the auto-phosphorylation conditions in 

Fig. 2C induced pre-phosphorylation of T286 but not T305, which would decrease stimulated 

activity by interfering with CaM binding (1-3). However, presence of AC2 could enhance T305 

auto-phosphorylation during the activity assay, and thereby decrease stimulated activity and 

indirectly enhance autonomy. However, T305 phosphorylation under stimulated activity assay 

conditions was low and further decreased by both substrate peptides, and actually even more so 

by AC2 than by syntide2 (Fig. 2E,F). Thus, taken together, substrate-dependent autonomy was a 

function of autonomous, but not stimulated CaMKII activities. Elevated autonomy towards AC2 



was found to depend on additional T-site interaction, while autonomy towards “regular” 

substrates was consistently low (Fig. 1). 

 

Substrate-concentration dependence of CaMKII autonomy. 

Substrate-concentration dependence of stimulated and autonomous CaMKII activity was 

assessed for syntide2 and AC2 (Fig. 5A) as well as hAKb-nn and th19 (Fig. S4), two peptides 

derived from human AKAP79 and tyrosine hydroxylase, respectively (see Table S2). Two results 

are shown in the traditional linear double-reciprocal Lineweaver-Burke plot (4)(Fig. 5A, S4). 

However, the calculation of Vmax and Km based on linear regression in a double-reciprocal plot 

is error prone. Thus, for the actual calculation of Vmax and Km, the more reliable method of 

non-linear regression in a non-reciprocal plot was used. The functions shown in Fig. 5A and S4 

are based on these values (see also Table S2).  

With known kinetic parameters for stimulated and autonomous activity (Table S2), 

CaMKII autonomy as function of substrate concentration (as in Fig. 5B) can be calculated based 

on the Michaelis-Menten equation:  
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resulting in a sigmoid function between minimal and maximal asymptotes, defined as: 

 

rKm
rVAut maxmin =        and      maxmax rVAut =  

 

Thus, with a change in both Vmax and Km (Fig. 5A, S4), CaMKII autonomy is substrate 

concentration-dependent, but remains near constant both in the low and in the high range of 

substrate concentration, with a significant change only within a relatively narrow range between 

(Fig. 5B). It is noteworthy that the cellular concentration of virtually all substrates proteins falls 

into the low stable range observed here for all “regular” substrates. However, autonomy in the 

high stable range could occur within cells based on optimized co-localization of kinase and 

substrate.  

 

 



 
 
 
 
 
 
 
 
 
 
 
 
FIGURE S1. CaMKII autonomy is substrate dependent.  
A, Degree of CaMKII autonomy towards AC2 and syntide2 at different reaction times, from 20 to 
80 seconds (compare Fig. 1D).  
B, Phosphorylation rates of AC2 and syntide by stimulated and autonomous CaMKII in the 
timecourse shown in panel A and Fig. 1D. Error bars indicate s.e.m in all panels.   
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FIGURE S2. The T-site mutations I205K and W237 did not reduce autonomy of mGFP-
CaMKIIα (10 nM) towards several “regular” substrates (75 µM). This is in contrast to the 
reduction seen for AC2 substrate, but similar to syntide2, another regular substrate (see Fig. 
3D). For regular substrates, there was a general trend towards increased autonomy by the 
mutations, which became statistically significant in some cases (asterisks; p<0.05). If any, this 
further enhances the conclusion regarding T-site dependence of the high autonomy towards 
AC2. The reverse effect on autonomy towards regular substrates by the T-site mutations is 
consistent with reduced inhibitory interaction with the region around T286 (which binds to the T-
site in the basal state). Details on the substrate peptides examined in this Figure are provided in 
Table S1. The autonomy range of 15-25% expected for regular substrates is indicated by a red 
bar. Compared to AC2, rate of stimulated phosphorylation of these peptides was 20-40 fold 
lower.  
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FIGURE S3. NR2B Phospho-S1303 detection was in the linear range of the Western blot 
analyses, demonstrating that it was indeed the reaction, not the detection, that was not in the 
linear range in Fig. 3.  
A, Phosphorylation of GST-NR2B-c (a GST fusion protein with cytoplasmic C-terminus of NR2B; 
0.5 µM) at S1303 by stimulated and autonomous CaMKII (5 nM) activity after different reaction 
times, as determined by Western-blot analysis with a phospho-S1303 specific antibody. For 
each reaction, 0.6 pmole NR2B was loaded. The standard (NR2B phosphorylated for 30 min at 
30oC with CaMKII) covered 0.1-1.0 pmole, and allowed comparison between blots and 
quantification.   
B, The phopho-NR2B standard was in the linear range between 0.1 and 0.8 pmole. In order to 
determine the phospho-NR2B immuno detection value (IDV), the background immunoreaction 
with 0.6 pmole un-phosphorylated NR2B (~1/3 of the raw IDV of the 5 s reaction time) was 
subtracted for each sample; for each standard, a weighted background (according to amount in 
the standard lane) was subtracted. As all data values were below the 0.8 pmole standard, the 
1.0 pmole was not included in the calculation of the linear regression used to calculate the 
phopho-NR2B pmole equivalents in the samples.   
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE S4. Double reciprocal plot of phosphorylation rate as function of substrate 
concentration for stimulated and autonomous CaMKII activity, for the substrates hAKb-nn 
(derived from human AKAP79) and th19 (derived from tyrosine hydroxylase; see also Table S1). 
As for the regular substrate syntide2, in both cases autonomous CaMKII activity showed lower 
Vmax and higher Km than stimulated activity (compare also Fig. 5 and Table S2).  
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FIGURE S5. CaM binding to CaMKII is impaired by T305/306D mutation, as assessed in an 
overlay assay with biotinylated CaM (upper panel). Extracts from mock-transfected HEK cells 
were loaded as negative control. Equal amount of GFP-CaMKII (arrow) were measured by GFP 
fluorescence in the extracts, and verified by be re-probing the blot with an anti-GFP antibody 
(Ab; lower panel). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE S6. Relative expression levels of GFP-CaMKIIα mutants in differentiated PC12 
cells, as assessed by average GFP fluorescence intensities in individual transfected cells (n=20 
to 23; see Fig. 7A for example picture). The three constructs containing the T286D mutant show 
identical expression levels, but ~1/3 less than CaMKII wild type and the T286A mutant (ANOVA 
with Bonferroni post-hoc analysis). Error bars show s.e.m. 
 
 
 
 
 

 

T286:        wt            D

T305/6:   wt    D     wt    D m
oc

k

CaM
overlay

Ab

T286:        wt            D

T305/6:   wt    D     wt    D m
oc

k

CaM
overlay

Ab
 

 

0

400

800

1200

1600

G
FP

 fl
uo

re
sc

en
ce

[a
rb

itr
ar

y 
un

its
]

T286:
T305/6:

T286DT286D T286A
wt A           D     wt 

wt 
wt 

0

400

800

1200

1600

G
FP

 fl
uo

re
sc

en
ce

[a
rb

itr
ar

y 
un

its
]

T286:
T305/6:

T286DT286D T286A
wt A           D     wt 

wt 
wt  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE S7. Levels of overexpressed versus endogenous CaMKII in differentiated PC12 
cells, as assessed by immunocytochemistry of transfected cells compared to their 
untransfected neighbors.  
A, Example micrographs. Transfected PC12 were identified by GFP fluorescence (left panel). 
PC12 cells were stained with an antibody against all CaMKII isoforms (BD Biosciences; middle 
panels). Visualization of untransfected cells required longer exposures (right panels).  
B, Quantification of CaMKII immunostaining from experiments as shown in panel A showed that 
transfection of PC12 resulted in ~20fold overexpression of GFP-CaMKII over endogenous 
CaMKII expression. 
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TABLE S1. The CaMKII substrates used in this study, and their functions. 
 

Peptide Sequence Protein site Protein Function Phosphorylation Function References 
AC2  KKALRRQETVDAL  CaMKII T286 Protein kinase Generates CaMKII autonomy (5-10) 
syn2    PLARTLSVAGLPGKK GS  S8 Glycogen synthase Inhibits activity (11,12) 
NR2B (190 kDa protein) S1303 NMDA-receptor subunit Regulation of channel desensitization (13,14) 

MAP2 (200 kDa protein) > 10 sites Microtubule regulation Regulation of microtubule stability (15-17) 

hAKb-wt  AWASLKRLVTRRKRSESSK AKAP79 T87 PKA, PKC, PP2B targeting Interferes with CaM and F-actin binding (18-21) 
-“ -     -nn ANASNKRLVTRRKRSESSK  -“ -    
-“ -     -np ANASPKRLVTRRKRSESSK -“ -    
glu1     LIPQQSINEAI  GluR1 S831 AMPA-receptor subunit Increases single channel conductance (22,23) 
tarp TEASPSRDASPVGL  Tarp γ-4 S259 AMPA-receptor regulator Increase of synaptic strength (24) 
cav    YLTRDWSILGP CaV1.2 S439 L-type Ca 2+ channel Mode 2 gating; Timothy Syndrome (25,26) 

th19  AKGFRRAVSELDA    TH S19 Tyrosine hydroxylase Increases activity, the rate-limiting step in dopamine 
synthesis 

(27,28) 
 

Consensus 
CaMKII 
site: 

    hxRnxS/Th 

h: hydrophobic   
n: non-basic (not R or K) 
x: any 

    

 
 



TABLE S2. Kinetic parameters used for the plot of CaMKII autonomy   
                    as a function of substrate concentration (in Fig. 5B) 
 

Parameter Substrate:    
 Syntide-2 AC2 th19 hAKb-nn 
rVmax 0.449  0.722 0.506 0.426 
rKm 1.991  1.245 2.995 1.524 
Km,stim 26.3 µM 8.9  µM 126 µM 151 µM 

 
 
Km,stim represents the Km of the subtrate for Ca2+/CaM-stimulated CaMKII activity. The prefix r 
indicates the ratio of the autonomous to the stimulated value. The values for Syntide2 are based 
on four independent experiments. While the values for the autonomous and stimulated Vmax 
varied between experimental days, their ratio (rVmax) was very consistent.   
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