Supporting Material for

Cloning and Characterization of the Ravidomycin and Chrysomycin Biosynthetic Gene Clusters

Madan K. Kharel,[#] S. Eric Nybo,[#] Micah D. Shepherd,[#] and Jürgen Rohr*

[*] Dr. Madan K. Kharel, S. Eric Nybo, Micah D. Shepherd, Prof. Dr. J. Rohr, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536-0082 (USA); Fax: (+1) 859-257-7564; E-mail: <u>jrohr2@email.uky.edu</u>

List of contents:

Table S1. ORFs and proposed function of corresponding enzymes	S3
Table S2. ORFs and proposed function of corresponding enzymes	S4
Table S3. Bacterial strains and the plasmids used in this study	S6
Table S4. Oligo primers used in this study	S7
¹ H and ¹³ C NMR data of deacetylravidomycin E (31)	S8
Figure S1 HPLC analyses of the compounds	S9
Figure S2. HPLC analyses of the metabolites	S10
Figure S3 Multiple sequence alignment of 4,6-dehydratases used for desiging degenerate primers	S11
References	S11

ORFs	Size ^[a]	ID/SM (%) ^[b]	Closest homologue of corresponding enzyme	Protein accession no.	Proposed function
ravX	106	94/100	PaaB, S. clavuligerus	ZP_03184882	Phenylacetic acid degradation protein
ravX1	325	92/94	PaaA, S. clavuligerus	ZP_03184883	Phenylacetate-CoA oxygenase
ravX2	270	65/79	S. pristinaespiralis	YP_002198855	Unknown
ravX3	65	-	-	-	Hypothetical protein
ravF	261	77/87	SimA6, S. antibioticus	AAK06787	Ketoreductase
ravX4	161	66/79	S. griseus	YP_001826336	Regulatory protein
ravV	107	30/48	GilV, S. griseoflavus	ABE03981	Hypothetical protein
ravH	189	55/67	GilH, S. griseoflavus	AAP69587	NADPH-dependent FMN reductase
ravOl	503	57/67	JadH, S. venezuelae	AAV52248	Bifunctional monooxygenase- dehydratase
ravG	108	76/83	schP9, S. sp. SCC 2136	CAH10118	Cyclase
ravC1	82	68/79	KinC, S. murayamaensis	AAO65348	Acyl carrier protein
ravK	315		OvmA, S. antibioticus	CAG14969	Aromatase/cyclase
ravOIV	520	48/58	LndM2, S. globisporus	AAT64432	Monooxygenase
ravA	423	79/86	UrdA, S. fradiae	CAA60569	Ketoacyl synthase α (KS α)
ravB	401	71/84	S. venezuelae	AAB36563	Ketoacyl synthase β (KS β)
ravC	86	62/75	S. venezuelae	AAB36564	Acyl carrier protein
ravOIII	394	70/80	GilOIII, S. griseoflavus	AAP69584	Cytochrome P-450 monooxygenase
ravY	72	43/63	<i>Nocardia farcinica</i> IFM 10152	YP_116742	Ferredoxin
ravP	323	51/64	PgaH, S. sp. PGA64	AAK57533	Malonyl-CoA acyl carrier protein transacylase
ravQ	330	45/55	AknF, S <i>.galilaeus</i>	BAB72049	Acyltransferase
ravJ	289	42/53	SchP11, S. sp. SCC 2136	CAH10120	Unknown

 Table S1. ORFs and proposed function of corresponding enzymes

ravX5	202	56/74	S violaceoruber	CAA09631	Regulatory protein
141710	202	00/11		0, 1, 100001	regulatory protoni
ravE	328	77/85	S. sviceus	YP_002205670	NDP-glucose 4,6-
					dehydratase
ravD	355	79/88	S sviceus	YP 002205669	NDP-alucose synthese
Tavb	000	10/00	5. SVICEUS	11_002200000	NDI -giucose synthase
ravX6	55	-	-	-	Hypothetical protein
TOUCT.	270	16/66	CilCT S grippofloyup	A A D60579	Calvoosultransforma
TavGT	519	40/00	Gild I, S. griseoliavus	AAF09576	C-giycosylitalisletase
ravNMT	265	56/71	SnogX, S. nogalater	CAA12020	N,N-dimethyltransferase
	450	47/00			
ravIM	156	47/69	Burkholderia phymatum	YP_001858530	NDP-6-deoxy-3, 4-keto-
ravAMT	369	60/75	Saccharopolyspora	YP_001103001	Aminotransferase
			erythraea		
ravMT	339	51/66	S tubercidicus	AAT45298	O-methyltransferase
, aviii i	000	0 11 0 0	0. 1000/010/000	701110200	e meanglatanoi orace
ravOll	231	68/77	GilOII, S. griseoflavus	AAP69583	Anthrone Monooxygenase
rov PM	776				
Tavitivi	110				
	N-	54/67;	S. galilaeus	ABI15166	Dehydrogenase
	terminal				
	535 aa,				
	C-	41/58	GilM, S. griseoflavus	AAP69591	Unknown
	terminal,				
	241 aa				
ravX7	126	_	-	-	Hypothetical protein
	120				
ravW	247	37/46	Arthrobacter aurescens	YP_950015	N-acetyltransferases
			TC1		
ravX8	564	59/74	S ariseus	YP 001827711	Hypothetical protein
		0011	e. g.,0000		

^[a]: number of amino acids of corresponding enzymes ; ^[b]: identity/similarity; aa: amino acids

ORFs	Size ^[a]	ID/SM (%) ^[b]	Closest homologue of corresponding enzyme	Protein accession no.	Proposed function
		()-)	······		
chryX	149	84/89	<i>S. griseoflavus</i> Tu 4000	ZP_05536903	Spore-associated protein precursor
chryF	261	71/83	FabG, S. echinatus	ABL09955	Ketoreductase
chryV	110	31/52	GilV, S. griseoflavus	ABE03981	Hypothetical Protein
chryH	189	62/73	<i>Kribbella flavida</i> DSM 17836	ZP_03859638	Oxidoreductase/NADH- dependent FMN Reductase
chryOl	513	59/70	PgaE, <i>Streptomyces sp.</i> PGA64	2QA1_A	FAD-Dependent Monooxygenase
chryG	109	70/83	OvmC, S. antibioticus	CAG14964	Cyclase
chryC1	83	58/71	SimA3, S. antibioticus	AAL15582	Acyl Carrier Protein
chryK	314	61/71	Tfu_1222, <i>Thermobifida</i> fusca YX	YP_289283	Bifunctional Cyclase/Dehydratase
chryOIV	491	55/63	OvmOII, S. antibioticus	CAG14970	FAD-Dependent Monooxygenase
chryA	422	79/87	Pd2A, <i>Streptomyces sp</i> . WP 4669	AAO65362	Ketoacyl Synthase (KS α)
chryB	402	70/82	UrdB, S. fradiae	CAA60570	Chain Length Factor (KSβ)
chryC	87	60/70	Acp, S. venezuelae	AAB36564	Acyl Carrier Protein
chryOIII	394	71/80	GilOIII, S. griseoflavus	AAP69584	Cytochrome P-450 Monooxygenase
chryY	62	44/62	FdxD, <i>Mycobacterium</i> <i>tuberculosis</i> H37rv	NP_218020	Ferredoxin
chryP	322	49/63	PgaH, <i>Streptomyces sp.</i> PGA64	AAK57533	Malonyl-CoA Carrier Protein Transacylase
chryQ	327	49/58	AknF, <i>S. galileus</i>	AAF70110	Propionyl-CoA Carrier Protein Transacylase
chryX1	265	38/50	AurlO, S. aureofaciens	AAK59995	Regulator

Table S2. ORFs and proposed function of corresponding enzymes

chryX2	201	56/72	Gra-orf10, S. violaceoruber	CAA09631	Two-Component Response Regulator
chryE	328	77/84	SSDG_01263, S. pristinaespiralis ATCC 25486	YP_002200633	TDP-glucose-4,6- dehydratase
chryD	355	78/90	SSEG_09374, <i>S. sviceus</i> ATCC 29083	YP_002205669	Glucose-1-phosphate thymidylyltransferase
chryJ	570	75/84	SGR_4823, S. griseus subsp. griseus NBRC 13350	YP_001826335	Major facilitator superfamily permease
chryX3	193	71/82	SGR_4824, S. griseus subsp. griseus NBRC 13350	YP_001826336	MarR family transcriptional regulator
chryGT	379	44/62	GilGT, S. griseoflavus	AAP69578	C-glycosyltransferase
chryMT	340	49/63	MetLA1, S. tubercidicus	AAT45282	O-methyltransferase
chryOll	236	65/76	GilOII, S. griseoflavus	AAP69583	Anthrone Monooxygenase
chryRM	761				
	N- terminal 518 aa.	52/67;	ORF 22, S. echinatus	ABL09969/	Oxidoreductase
	C- terminal 243 aa.	41/58	GilM, S. griseoflavus	AAP69591	Thiopurine-S- methyltransferase
chryU	302	46/55	Acel_0416, <i>Acidothermus</i> cellulolyticus 11B	YP_872176	TDP-4-dehydrorhamnose ketoreductase
chryCMT	411	61/72	PCZA361, Amycolatopsis orientalis	CAA11777	C-methyltransferase
chryX4	309	61/75	Tfu_1012, <i>Thermobifida</i> fusca YX	YP_289073	Hexokinase
chryL	210	37/50	GilL, S. Griseoflavus	AAP69590	NAD-dependent epimerase/dehydratase
chryX5	204	70/83	S. griseus griseus NBRC 13350	YP_001824391	TetR Family Regulator
chryX6	135	70/82	SGR_2879, S. griseus subsp.	YP_001824391	TetR Family transcriptional regulator
			griseus NBRC 13350		
chryX7	120	61/74	SC2H2.18, S. coelicolor A3(2)	NP_631661	Hypothetical Protein
chryX8	202	78/83	SGR_429, S. griseus	YP_001821941	TetR Family regulator
chryX9	545	83/89	SSDG_02680, S. pristinaespiralis ATCC 25486	YP_002198950	Acyl-CoA Dehydrogenase

 $^{[a]}\!:$ number of amino acids in corresponding enzymes; $^{[b]}\!:$ identity/similarity

Strain/ plasmid no.	Strain/ plasmid	Characteristics and relevance	References
1	E. coli XL1-Blue-MRF	Host for routine cloning works and for the construction of	Stratagene
2	<i>E. coli</i> ET12567/pUZ8002	Host for conjugal transfer of plasmid into <i>Streptomyces</i>	[1]
3	<i>Streptomyces</i> species S. <i>ravidus</i> C23201	Ravidomycin producer-wild	Wyeth
4	S. albaduncus AD819	strain Chrysomycin producer-wild strain	Wyeth
5	S. lividans TK24	olium	
6	S. lividans TK24/cosG9B3-GT	Produces defucoGE and defucoGM-the strain harbors the GilGT deleted mutant cosmid	[2]
7	S. <i>lividans</i> TK24/cosG9B3- OIII	Produces defucoGE and defucoGM-the strain harbors the GilOIII deleted mutant cosmid	[2]
8	S. lividans TK24/cosG9B3-OII	Produces dehydrorabelomycin, dehydro-homo-rabelomycin and -the strain harbors the GilOII deleted mutant cosmid	[3]
9	S. <i>lividans</i> TK24/cosG9B3- OIV	cosG9B3-OII [–] Produces rabelomycin and homorabelomycin-the strain harbors the GilOIV deleted	[4]
10	S. lividans TK24/cosRav32	Produces2,3-dehydroUWM6, 2,3-dehydro-HomoUWM6, preGM-O-quinone, preGV-O- quinone, 4'-O- deacetylravidomycin M, 4'-O- deacetylravidomycin E -the strain barbors the cosRav32	This work
11	S. lividans TK24/cosG9B3- GT ^{-/} pRayGT	Produces GE and GM-pRavGT was introduced into strain no. 6	This work
12	S. lividans TK24/cosG9B3- OIII /pRavOIII	Produces GV and GM-pRavOIII was introduced into strain no 7	This work
13	S. lividans TK24/cosG9B3- OIII ⁻ /pChryOIII	Produces GV, GE and GM- pChryOIII was introduced into	This work
14	S. <i>lividans</i> TK24/cosG9B3- OII [–] /pChryOII	Produces GV, GE and GM - pChryOII was introduced into	This work
15	S. <i>lividans</i> TK24/cosG9B3- OIV [–] /pChryOIV	strain no. 8 Produces GV and GM-pChryOIV was introduced into strain no. 9	This work
	Plasmids/cosmids		
16	pOJ446	Vector for cosmid library	[5]
17	cosRav32	Entire ravidomycin gene cluster	This work
18	cosChry1-1	Partial chrysomycin gene cluster	This work
19	cosChryF2	Partial chrysomycin gene cluster cloned into pOJ446.	This work

Table S3. Bacterial strains and the plasmids used in this study

20 21	pEM4 pUWL201PW	<i>E. coli-Streptomyces</i> shuttle plasmid that contains ermEp*for the expression of genes in <i>Streptomyces</i>	[6] [7]
22	pRavGT	ravGT cloned into pUWL201PW	This work
23	pRavOIII	ravOIII cloned into pEM4	This work
24	pChryOIV	chryOIV cloned into pEM4	This work
25	pChryOIII	chryOIII cloned into pEM4	This work
26	pChryOll	chryOII cloned into pEM4	This work
27	PCR-Blunt-II-TOPO	To clone PCR products	Invitrogen

Table S4. Oligo primers used in this study

Т

Oligo's name	Oligonucleotide sequence
ChryOII_for	5'-ATTCTAGACCACCCGTACCGAGCCAC-3'
ChryOII_rev	5'-AT <i>GAATTC</i> CCCGTCGTCCGCCGCGCG-3'
ChryOIII_for	5'-AT <i>TCTAGA</i> GACCCGTTCCCGCAGCTC-3'
ChryOIII_rev	5'-AT <i>GAATTC</i> GAACACGAAGGCTGTCGT-3'
ChryOIV_for	5'-GCGGTTCTAGACCGCGCGCACCGGCTGCCCGGG-3'
ChryOIV_rev	5'-CCGGT <i>GAATTC</i> ACAGGAATCCGATGGCGGT-3'
CM_cons_F1	5'-GCCCTVGTSACSGGNGGNACCAGY-3'
CM_cons_R1	5'-GTTGCCVAGNCCGCCGCASACGTT-3'
RavOIII_for	5'-AAGTCTAGAAGGAGACGGAGCACCATGGCG-3'
RavOIII_rev	5'-CGGAATTCTCTGCTCGTCGGCCGTGGTCACGT-3'
RavGT_for	5'-ATCATATGAAAGTCCTGTTCATCGCAGCGGGA-3'
RavGT_rev	5'-AT <i>GAATTC</i> TCATCCGCGCACCAGTCCTTCCAG-3'
KS_probe_for	5'-GTSTCSACSGGSTGYACSTCSGGS-3'
KS_probe_rev	5'-SCCGATSGCSCCSAGSGARTGSCC-3'
DH_probe_for	5'-CSGGSGSSGCSGGSTTCATSGG-3'
DH_probe_rev	5'-CAGTGGTCSACGTGSAGCCACTCSCG-3'

¹H and ¹³C NMR data of deacetylravidomycin E (31): ¹H NMR (CDCl₃, 300 MHz) δ 9.83 (br, s, 1H, -OH1, D₂O exchangeable) 8.51 (s, 1H, H11), 7.97 (d, J = 9.0 Hz, 1H, H3), 7.95 (d, J = 3.3 Hz, 1H, H7), 7.25 (d, J = 3.3 Hz, 1H, H9), 7.08 (d, J = 9.0 Hz, 1H, H2), 6.01 (d, J = 9.0 Hz, 1H, H1'), 4.44 (t, J = 9.0 Hz, 1H, H2'), 4.16 - 4.26 (m, 2H, H4', H5'), 4.15 (s, 3H, 12-OMe), 4.12 (s, 3H, 10-OMe), 3.35 (dd, J = 9.0, 3.0 Hz, 1H, H3'), 2.95 (s, 6H, 3'-N(Me)₂), 2.83 (q, J = 7.5 Hz, 2H, H1"), 1.32 (t, J = 7.5 Hz, 3H, H2") 1.31 (d, J = 6.0 Hz, 3H, 6'-Me); ¹³C NMR (CDCl₃, 75 MHz) δ 170.2, 161.0, 157.5, 155.0, 152.5, 146.8, 129.8, 125.3, 124.7, 122.4, 121.3, 117.7, 116.0, 114.5, 113.0, 102.8, 79.8, 78.5, 71.6, 69.6, 68.8, 68.4, 56.6, 43.1, 29.2, 16.95, 15.37.

Figure S1. HPLC analyses of the compounds: A, standard GE; B, metabolites from the *S. lividans* TK24(cosG9B3-GilGT⁻) mutant; C, metabolites from the *S. lividans* TK24(cosG9B3-GilGT⁻) PRavGT).

Figure S2. HPLC analyses of the metabolites: trace A, gilvocarcin V (Rt. 14.65 min) isolated from *S. lividans* TK24(cosG9B3); trace B, gilvocarcin E (Rt. 15.03 min) isolated from the *S. lividans* TK24(cosG9B3-GilOIII[–]) mutant; trace C, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOIII[–]) mutant; trace D, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOIII[–])pChryOIII) mutant; trace E, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOIII[–]/pChryOIII) mutant; trace E, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOIV[–]/pChryOIV) mutant; trace F, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOIV[–]/pChryOIV) mutant; trace F, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOII[–]/pChryOIV) mutant; trace F, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOII[–]/pChryOIV) mutant; trace F, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOII[–]/pChryOIV) mutant; trace F, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOII[–]/pChryOIV) mutant; trace F, metabolites isolated from the *S. lividans* TK24(cosG9B3-GilOII[–]/pChryOIV) mutant. Arrows indicate the important metabolites. Y and X axes represent relative absorbance and retention time (in minutes), respectively.

		1 50
CosH	(1)	-MNILVTGRAGEIGSHEVETLLSGGYPCHEDDRVTVLDKLTYAGTLNNLP
RhoH	(1)	-MNIPVTGRAGFIGSHFVRTLLSGGYPCHEDDRVTVVDKLTYAGTLNNLP
Gra-ORF17	(1)	-MRLLVTGAAGFIGSHYVREILAGSYPESDDVHVTVVDRLTYAGRRDNLP
LanH14	(1)	MKKILITGGAGFIGSKYVETLLNDGYEDWKGAHVTVLDKLTYAGNRDNLP
SchS5	(1)	-MRILVTGAAGFIGSHFVENVLEGSYSGWEDAOVTALDKLTYAGNRDNLP
		51 100
CosH	(50)	ANNO RLTF VNGDI CUTT LLDKVF PCHE AVVNFARE SNVDR SVAGAEAF VR
RhoH	(50)	PRHPRLTFVHGDICDTPLLGKVFPGHERVVHFRAESHVDRSVAGAERFVR
Gra-ORF17	(50)	EKHERLDFVHGDICDRDLLDRVLPGHDAVVHFAAESHVDRSLTGPGEFVR
LanH14	(51)	EANPRLTFVQGDICDFELLLELLPGNDAVVNFARESNVDRSLESAEEFVN
SchS5	(50)	A SHERL VF VRGD VCDRKLLREL VPGHD AVVHFAAET HVDR SLEGAGD FFR
		101 150
CosH	(100)	TNVLGTQALLERALRHGIGVFVQVSTDETYGSIAEGRWTEDEPLLPNSPY
RhoH	(100)	TNVLGTQALLEAALRHGTGVFVQVSTDETYGSIAEGSWTEDEPLLPNSPY
Gra-ORF17	(100)	TNVMGTQQLLDRALHAGVDRVLHVSTDEVYGSLDSGTWTEDSPLLPNSPY
LanH14	(101)	TNVTGTORLLDRVLATRVKRVVHVSTDEVYGSIDEGSWTEEWPLRPNSPY
SchS5	(100)	TNVLGTOT LLDRVLDSGVERVVHVST DEVYGSI DEG SWTEEWPL APN SPY
		151 200
CosH	(150)	AA SKA SADLI AR SYVET HGLD VRITEC ANNYGPGQHPEKL VPL FVT RLLD
RhoH	(150)	AA SKR SADLI AR SYVET HGLD VR VTRC ANNY GPGO HPEKL VPL FVT RLLD
Gra-ORF17	(150)	AR SKR STTWS RAPTTVRHGLD VRITRC SNNYCPROHPEKLIPNF VTRLLT
LanH14	(151)	SASKRASDLLARSYWRTHGLDLSITRCSNNYCPYOHPEKLIPLFVTNLLE
SchS5	(150)	BASKAGSDLVARAYWRSHGVDLSITRCSNNYCPYOHPEKLIPLFVTNLLE
		201 250
CosH	(200)	GQPVPLYGDGSNLREWLHVDDHCHAVRLVLDRGRPGEVYNVGGGTHLTNK
RhoH	(200)	GQPVPLYGDGSNLREWLHVDDHCRAVRLVLDEGRPGETYNIGGGTHLTNK
Gra-ORF17	(200)	GRQVPLYGDGRNVREWLHVDDHCRALQLVLTKGRAGETYNIGGGSGMSNR
LanH14	(201)	GEQVPLYGDGGNI REWLHVDDHCRAIDLVLNKERAGETYNIGGGNEQTNR
SchS5	(200)	GRRVPLYGEGANVREWLHVDBHCRGIHLVLNOGRAGETYNIGGGNERTNL
		251 300
CosH	(250)	EMTGRLLALCGRDWDLVRRVADRALMDFRYAVDDSKIRRELGYAPRWSLE
RhoH	(250)	EMTGRLLALCGRDWDLVQRVADRKGHDFRYAVDDSKIRRELGYAPRWSLE
Gra-ORF17	(250)	EMTARLIDLICADWDMVRHVEDRIGHDFRYAIDDSKIREELGYAPRWSIE
LanH14	(251)	AITERLIALTGODWSKVRHVPDRKAHDLRYSLDESKIREELGYAPRITFE
SchS5	(250)	AITEOLLELTGAGAEAIORVPDRKAHDLRYSIEETKIREELGYAPRIGFE
		301 329
CosH	(300)	D <mark>GL</mark> RET VEWYAAHRDH <mark>W</mark> DAREEGADEGY-
RhoH	(300)	D <mark>GL</mark> RET VEWYAAHRDH <mark>W</mark> DAREEGGDGGY-
Gra-ORF17	(300)	S <mark>GL</mark> GAV <mark>VDWY</mark> RDHPDF <mark>W</mark> RAPAS
LanH14	(301)	QCLADT VAWYHDNPGWWKGTKHNKQG
Sch55	(300)	Q <mark>GL</mark> AET <mark>VAWY</mark> RDNPIW <mark>W</mark> KAAKHGTDRAVA

Figure S3. Multiple sequence alignment of 4,6-dehydratases used for desiging degenerate primers (DH_prob_for and DH_prob_rev): solid arrows indicate the amino acid residues used in this study; the dotted arrow represents the original amino acid sequence region used by Bechthold et al. for the reverse primer^[8]

References

- [1] D. J. Macneil, J. L. Occi, K. M. Gewain, T. Macneil, P. H. Gibbons, C. L. Ruby, S. J. Danis, *Gene* 1992, 115, 119.
- [2] T. Liu, M. K. Kharel, C. Fischer, A. McCormick, J. Rohr, *Chembiochem* **2006**, *7*, 1070.
- [3] M. K. Kharel, L. L. Zhu, T. Liu, J. Rohr, J. Am. Chem. Soc. 2007, 129, 3780.
- [4] T. Liu, C. Fischer, C. Beninga, J. Rohr, J. Am. Chem. Soc. 2004, 126, 12262.
- [5] M. Bierman, R. Logan, K. Obrien, E. T. Seno, R. N. Rao, B. E. Schoner, *Gene* **1992**, *116*, 43.
- [6] L. M. Quiros, I. Aguirrezabalaga, C. Olano, C. Mendez, J. A. Salas, *Mol. Microbiol.* **1998**, *28*, 1177.
- [7] M. Doumith, P. Weingarten, U. F. Wehmeier, K. Salah-Bey, B. Benhamou, C. Capdevila, J. M. Michel, W. Piepersberg, M. C. Raynal, *Mol. Gen. Genet.* **2000**, *264*, 477.
- [8] H. Decker, S. Gaisser, S. Pelzer, P. Schneider, L. Westrich, W. Wohlleben, A. Bechthold, FEMS Microbiol. Lett. 1996, 141, 195.