Supplementary Material

Structural determinants of specific DNA-recognition by the THAP zinc finger

Sébastien Campagne, Olivier Saurel, Virginie Gervais and Alain Milon

Supplementary Figure 1. ¹⁵N longitudinal (R_1) and transverse (R_2) relaxation rates along the sequence for the THAP zinc finger of THAP1 in its DNA-bound state. Secondary structure elements are shown on the above panel.

Supplementary Figure 2. Influence of ionic strength on nonspecific DNA binding. (A) Plot showing the evolution of fluorescence anisotropy of Trp36 as a function of increased DNA at 250 (green), 150 (blue) and 30 (red) mM NaCl. (B) Overlay of 2D 1 H- 15 N HSQC spectra of the protein in the absence (black) and in the presence of nonspecific DNA at 250 (green), 150 (blue) and 30 (red contour levels) mM NaCl. Residues that undergo chemical shift change of their backbone amide nitrogen upon decreasing NaCl concentration are indicated.

Supplementary Table 1. Intermolecular NOEs extracted from 3D 15 N HSQC NOESY, 3D $^{13}C_{ali}$ HSQC NOESY and 3D $^{13}C_{aro}$ HSQC NOESY.

Supplementary Table 2. Hydrogen bonds observed in the NMR structure of the complex formed by the THAP zinc finger of THAP1 and the 16 bp rrm1 DNA target.

Supplementary Table 3. Hydrophobic contacts observed in the NMR structure of the complex formed by THAP zinc finger of THAP1 and the 16 bp rrm1 DNA target.

Campagne et al. Supplementary Figure 1

residue number

Campagne et al. Supplementary Figure 2

Campagne *et al.* Supplementary Table 1

Amino acid atom	Nucleic acid atom	Interaction strength	
		1	
H _N Lys 24	H_2 , Thy 8	low	
	H_3 , Thy 8	low	
TT A A A	H_5 " Thy 8	low	
H_{β} Asn 44	H_{4} , Cyt 19	low	
H_{α} Pro 47	H ₄₁ Cyt 22	medium	
	H ₅ Cyt 22	low	
	H ₆ Cyt 22	low	
H _N Thr 48	H ₄₁ Cyt 22	strong	
	H ₅ Cyt22	medium	
	H ₆ Cyt 22	low	
	H ₈ Gua 21	strong	
	H ₅ Cyt 22	medium	
H_{α} Thr48	H ₅ Cyt 22	medium	
H _β Thr48	H ₅ Cyt 22	strong	
$H_{\gamma 2}$ Thr48	H ₄₁ Cyt 22	medium	
	H ₆ Cyt 22	low	
	H _{3'} Gua 21	strong	
	H ₄ , Gua 21	low	
H _N Lys 49	H ₅ Cyt 22	low	
H _N Tyr 50	H ₅ Cyt 22	strong	
H_{α} Tyr 50	H ₅ Cyt 22	low	
-	H ₅ Cyt 23	low	
	H ₆ Cyt 23	low	
$H_{\beta 1}$ Tyr 50	H ₅ Cyt 22	low	
, ,	H ₅ Cyt 23	medium	
$H_{\beta 2}$ Tyr 50	H ₅ Cyt 22	medium	
r- •	H ₅ Cyt 23	medium	
H _N Ser 51	H ₅ Cyt 22	medium	
	H ₄₁ Cyt 22	strong	
	H_6 Cyt 22	low	
H_{α} Ser 51	H ₄₁ Cyt 22	strong	
	H ₆ Cvt 22	low	
	H_{42} Cvt 22	medium	
H _B Ser 51	H ₄₁ Cvt 22	medium	
ч Ч	H ₆ Cvt 22	low	
H ₈ Arg 65	H_2 Ade 27	low	
H_{82} Leu 71	H_1 , Gua 7	long	
	H_{3} , Gua 7	medium	
	11, Suu /		

Campagne *et al.* Supplementary Table 2

Hydrogen bon	ds				
Protein	Atom	Base	Atom	Distance (Å)	No (of 15)
Gln3	OE	CYT12	H41	2.08 ± 0.09	15
Gln3	HE2*	THY20	O4	2.15 ± 0.05	15
Lys11	HZ*	CYT19	O1P	1.85 ± 0.15	15
Arg13	HH1*	GUA10	O1P	2.08 ± 0.21	3
Arg13	HH2*	GUA11	O2P	2.23 ± 0.00	3
Tyr14	HH	GUA9	O1P	1.81 ± 0.11	15
Phe22	HN	GUA9	O2P	2.44 ± 0.04	2
Lys24	HN	THY8	O2P	2.08 ± 0.08	15
Lys24	HZ*	THY8	O4	2.37 ± 0.10	15
Lys24	HZ*	GUA9	O6	2.19 ± 0.02	14
Thr28	HG1	GUA7	O1P	1.82 ± 0.04	15
Lys46	HZ*	THY20	O1P	2.24 ± 0.16	5
Lys46	HZ*	THY20	O2P	1.92 ± 0.11	15
Thr48	HG1	CYT22	O2P	1.86 ± 0.05	15
Tyr50	0	CYT23	H41	1.92 ± 0.03	15
Tyr50	HH	CYT23	O2P	2.04 ± 0.08	15
Ser51	OG	CYT22	H41/H42	2.32 ± 0.10	6
Ser52	HG	GUA10	N7	2.28 ± 0.03	14
Lys64	HZ*	THY8	O2P	1.86 ± 0.12	12
Arg65	HH1*	THY6	O2	2.48 ± 0.00	1
Arg65	HH1*	GUA7	O4'	1.95 ± 0.03	15
Lys70	HZ*	ADE29	O3'	1.99 ± 0.22	10
Lys70	HZ*	ADE30	O1P	2.35 ± 0.09	4

Campagne *et al.* Supplementary Table 3

Hydrophobic contacts								
Protein	Atom	Base	Atom	Distance (Å)	No (of 15)			
1 24	CD		07	2.65 ± 0.10	1.4			
Lys24	CB		C7 C7	3.65 ± 0.10	14			
	CG		C7 C7	3.45 ± 0.09	5			
	CD		C7	3.55 ± 0.12	11			
T 1 2 0	CE	THY8	C/	3.63 ± 0.10	10			
Thr28	CG2	THY6	$C3^{\prime}$	$3./2 \pm 0.18$				
Pro47	CA	THY20	C2'	3.69 ± 0.10	14			
	CA	GUA21	C8	3.84 ± 0.03	9			
	CB	GUA21	C8	3.70 ± 0.05	12			
	CG	THY20	C2*	3.83 ± 0.06	12			
	CG	THY20	C6	3.82 ± 0.05	6			
	CD	THY20	C2'	3.85 ± 0.05	9			
Thr48	CG2	GUA21	C2'	3.37 ± 0.05	15			
	CG2	GUA21	C3'	3.56 ± 0.03	15			
Tyr50	CB	CYT22	C4	3.73 ± 0.06	15			
	CB	CYT22	C5	$3.20\pm\ 0.02$	15			
	CB	CYT22	C6	$3.32\pm\ 0.02$	15			
	CB	CYT23	C4	$3.88\pm\ 0.01$	7			
	CB	CYT23	C5	$3.57\pm\ 0.03$	15			
	CD1	CYT22	C2'	$3.84\pm\ 0.04$	10			
	CD1	CYT23	C5	$3.14\pm\ 0.02$	15			
	CD1	CYT23	C6	$3.85\pm\ 0.02$	13			
	CD2	CYT22	C2'	$3.15\pm\ 0.03$	15			
	CD2	CYT22	C5	$3.63\pm\ 0.03$	15			
	CD2	CYT22	C6	3.08 ± 0.03	15			
	CE1	CYT22	C2'	$3.81\pm\ 0.04$	9			
	CE2	CYT22	C2'	$3.13\pm\ 0.03$	15			
	CE2	CYT22	C3'	3.84 ± 0.04	14			
	CG	CYT22	C2'	3.55 ± 0.03	15			
	CG	CYT22	C5	$3.83\pm\ 0.02$	15			
	CG	CYT22	C6	$3.46\pm\ 0.02$	15			
	CG	CYT23	C5	3.62 ± 0.04	15			
	CZ	CYT22	C2'	3.50 ± 0.04	15			
Arg65	CD	GUA7	C4'	3.38 ± 0.11	15			