Supplementary material

formula	$C_{28}H_{28}ClFeN_4$
FW, amu	511.84
a, Å	10.1710(5)
b, Å	11.309(3)
$c, \mathrm{\AA}$	12.170(3)
α , deg	91.774(9)
β , deg	113.170(14)
γ, \deg	112.149(9)
$V, \mathrm{\AA}^3$	1165.2(4)
space group	$P\bar{1}$
Z	2
$D_c, g/cm^3$	1.459
F(000)	534
μ, mm^{-1}	0.787
power and current settings	$50 \mathrm{kV}, 40 \mathrm{mA}$
detector distance, mm	40
detector tilt angle, deg	-25
image time, sec	30
increment, deg	0.4
crystal dimensions, mm	$0.43 \times 0.30 \times 0.03$
radiation	MoK α , $\bar{\lambda} = 0.71073$ Å
temperature, K	130(2)
diffractometer	Enraf Nonius FAST
θ range for collected data, deg	2.31 – 29.75
index range	$-12 \le h \le 14$
	$-15 \le k \le 15$
	$-16 \le l \le 10$
total data collected	10744
absorption correction	DIFABS
relative transmission coefficients (I)	1.000 and 0.684
unique data	5831 ($R_{\rm int} = 0.0983$)
unique observed data $[I > 2\sigma(I)]$	4545
refinement method	Full-matrix least-squares on F^2
data/restraints/parameters	5831/0/311
goodness-of-fit (based on F^2)	1.055
$\max(\Delta \rho), e/Å^3$	2.156
$\min(\Delta ho), \mathrm{e}/\mathrm{\AA}^3$	-1.094
final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0844, wR_2 = 0.2073$
final R indices (all data)	$R_1 = 0.1060, wR_2 = 0.2254$

 $\label{eq:table S1. Complete Crystallographic Details for [Fe(TEtP)(Cl)].$

atom	x	y	2	U(eq)
$\operatorname{Fe}(1)$	0.40905(7)	0.28864(5)	0.32123(5)	0.0274(2)
Cl	0.51041(14)	0.19808(11)	0.22573(10)	0.0394(3)
N(1)	0.2017(4)	0.1327(3)	0.2915(3)	0.0267(7)
N(2)	0.2728(4)	0.3526(3)	0.1851(3)	0.0285(7)
N(3)	0.5733(4)	0.4789(3)	0.3883(3)	0.0277(7)
N(4)	0.5040(4)	0.2575(3)	0.4946(3)	0.0268(7)
C(a1)	0.1885(5)	0.0335(4)	0.3565(4)	0.0282(8)
C(a2)	0.0591(5)	0.0884(4)	0.1876(4)	0.0320(9)
C(a3)	0.1206(6)	0.2782(5)	0.0958(4)	0.0362(10)
C(a4)	0.3275(6)	0.4693(5)	0.1485(4)	0.0387(10)
C(a5)	0.5870(5)	0.5778(4)	0.3236(4)	0.0320(9)
C(a6)	0.7118(5)	0.5265(4)	0.4952(4)	0.0305(8)
C(a7)	0.6523(5)	0.3342(4)	0.5864(4)	0.0314(8)
C(a8)	0.4491(5)	0.1415(4)	0.5316(4)	0.0294(8)
C(b1)	0.0353(5)	-0.0727(5)	0.2910(5)	0.0389(10)
C(b2)	-0.0425(5)	-0.0390(5)	0.1892(5)	0.0394(10)
C(b3)	0.0800(7)	0.3512(6)	0.0042(5)	0.0522(14)
C(b4)	0.2045(8)	0.4669(6)	0.0359(5)	0.0546(15)
C(b5)	0.7355(6)	0.6882(4)	0.3922(5)	0.0386(10)
C(b6)	0.8105(5)	0.6570(4)	0.4968(5)	0.0375(10)
C(b7)	0.6891(6)	0.2639(5)	0.6813(4)	0.0421(11)
C(b8)	0.5670(6)	0.1463(5)	0.6481(4)	0.0388(10)
C(m1)	0.3026(5)	0.0356(4)	0.4680(4)	0.0293(8)
C(m2)	0.0194(5)	0.1543(5)	0.0954(4)	0.0353(9)
C(m3)	0.4736(6)	0.5744(4)	0.2109(4)	0.0383(10)
C(m4)	0.7511(5)	0.4599(4)	0.5891(4)	0.0323(9)
C(11)	0.2642(6)	-0.0806(4)	0.5279(4)	0.0371(10)
C(21)	-0.1465(6)	0.0917(6)	-0.0078(5)	0.0493(13)
C(31)	0.5093(9)	0.6915(5)	0.1510(5)	0.0617(17)
C(41)	0.9127(5)	0.5273(5)	0.6983(4)	0.0437(11)
C(12)	0.1997(6)	-0.0638(5)	0.6170(5)	0.0408(10)
C(22)	-0.2637(7)	0.1220(7)	0.0263(6)	0.0598(16)
C(32)	0.5679(11)	0.6774(6)	0.0592(6)	0.085(3)
C(42)	1.0404(6)	0.5008(8)	0.6804(5)	0.0624(17)

Table S2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for $[Fe(TEtP)(Cl)]^a$

 $^{a}U(eq)$ is defined as one third of the trace of the orthogonalized \mathbf{U}_{ij} tensor. The estimated standard deviations of the least significant digits are given in parentheses.

bond	length (Å)	bond	length (Å)
Fe(1)-N(3)	2.048(3)	C(a5)-C(m3)	1.390(6)
Fe(1)– $N(4)$	2.051(3)	C(a5)– $C(b5)$	1.435(6)
m Fe(1)-N(2)	2.052(3)	C(a6)-C(m4)	1.398(6)
${ m Fe}(1) - { m N}(1)$	2.060(3)	C(a6)-C(b6)	1.433(6)
$\rm Fe(1)-Cl$	2.2644(13)	C(a7)-C(m4)	1.388(6)
N(1)– $C(a2)$	1.386(5)	C(a7)-C(b7)	1.431(6)
N(1)– $C(a1)$	1.389(5)	C(a8)-C(m1)	1.394(6)
N(2)-C(a3)	1.387(6)	C(a8)– $C(b8)$	1.435(6)
N(2)-C(a4)	1.389(5)	C(b1)-C(b2)	1.338(7)
N(3)– $C(a6)$	1.382(5)	C(b3)-C(b4)	1.341(9)
N(3)– $C(a5)$	1.383(5)	C(b5)-C(b6)	1.339(7)
N(4)– $C(a7)$	1.379(5)	C(b7)-C(b8)	1.342(7)
N(4)-C(a8)	1.385(5)	C(m1)– $C(11)$	1.519(6)
C(a1)-C(m1)	1.388(6)	m C(m2)- m C(21)	1.518(6)
C(a1)-C(b1)	1.434(6)	m C(m3)– m C(31)	1.524(6)
C(a2)-C(m2)	1.379(6)	C(m4)– $C(41)$	1.523(6)
C(a2)-C(b2)	1.428(6)	C(11)-C(12)	1.512(7)
C(a3)-C(m2)	1.390(7)	m C(21)- m C(22)	1.548(8)
C(a3)-C(b3)	1.431(6)	C(31)– $C(32)$	1.488(10)
C(a4)-C(m3)	1.386(7)	C(41)-C(42)	1.529(8)
C(a4)-C(b4)	1.438(7)		

Table S3. Bond Lengths for $[Fe(TEtP)(Cl)]^a$

angle	degree	angle	degree
N(3)-Fe(1)-N(4)	87.45(14)	N(3)-C(a5)-C(b5)	109.8(4)
N(3)-Fe(1)-N(2)	87.49(14)	C(m3)-C(a5)-C(b5)	124.2(4)
N(4)-Fe(1)-N(2)	155.21(14)	N(3)-C(a6)-C(m4)	126.1(4)
N(3)-Fe(1)-N(1)	154.47(14)	N(3)-C(a6)-C(b6)	109.5(4)
N(4)-Fe(1)-N(1)	87.54(14)	C(m4)-C(a6)-C(b6)	124.4(4)
N(2)-Fe(1)-N(1)	86.66(14)	N(4)-C(a7)-C(m4)	126.4(4)
N(3)-Fe (1) -Cl	103.55(11)	N(4)-C(a7)-C(b7)	109.0(4)
N(4)-Fe (1) -Cl	101.75(10)	C(m4)-C(a7)-C(b7)	124.6(4)
N(2)– $Fe(1)$ – Cl	103.03(11)	N(4)-C(a8)-C(m1)	126.4(4)
N(1)– $Fe(1)$ – Cl	101.98(10)	N(4)-C(a8)-C(b8)	109.3(4)
C(a2)-N(1)-C(a1)	105.9(3)	C(m1)-C(a8)-C(b8)	124.3(4)
C(a2)-N(1)-Fe(1)	126.7(3)	C(b2)-C(b1)-C(a1)	107.7(4)
C(a1)-N(1)-Fe(1)	125.5(3)	C(b1)–C(b2)–C(a2)	108.0(4)
C(a3)-N(2)-C(a4)	106.3(3)	C(b4)-C(b3)-C(a3)	107.9(4)
C(a3)– $N(2)$ – $Fe(1)$	126.7(3)	C(b3)-C(b4)-C(a4)	107.9(5)
C(a4)-N(2)-Fe(1)	125.5(3)	$\rm C(b6)–\rm C(b5)–\rm C(a5)$	107.2(4)
C(a6)-N(3)-C(a5)	105.6(3)	C(b5)-C(b6)-C(a6)	107.8(4)
C(a6)-N(3)-Fe(1)	126.5(3)	C(b8)-C(b7)-C(a7)	108.3(4)
C(a5)-N(3)-Fe(1)	126.3(3)	C(b7)-C(b8)-C(a8)	107.1(4)
C(a7)-N(4)-C(a8)	106.3(3)	C(a1)-C(m1)-C(a8)	123.6(4)
C(a7)-N(4)-Fe(1)	126.2(3)	C(a1)-C(m1)-C(11)	118.7(4)
C(a8)-N(4)-Fe(1)	125.7(3)	C(a8)-C(m1)-C(11)	117.6(4)
C(m1)-C(a1)-N(1)	126.3(4)	C(a2)-C(m2)-C(a3)	123.3(4)
C(m1)-C(a1)-C(b1)	124.7(4)	C(a2)-C(m2)-C(21)	118.2(5)
N(1)-C(a1)-C(b1)	109.1(4)	C(a3)-C(m2)-C(21)	118.4(4)
C(m2)– $C(a2)$ – $N(1)$	126.3(4)	C(a4)-C(m3)-C(a5)	123.6(4)
C(m2)– $C(a2)$ – $C(b2)$	124.4(4)	C(a4)-C(m3)-C(31)	117.3(5)
N(1)-C(a2)-C(b2)	109.3(4)	C(a5)-C(m3)-C(31)	119.1(5)
N(2)-C(a3)-C(m2)	126.3(4)	C(a7)-C(m4)-C(a6)	123.3(4)
N(2)-C(a3)-C(b3)	109.2(4)	C(a7)-C(m4)-C(41)	118.4(4)
C(m2)–C(a3)–C(b3)	124.5(4)	C(a6)-C(m4)-C(41)	118.3(4)
C(m3)-C(a4)-N(2)	126.6(4)	C(12)-C(11)-C(m1)	112.9(4)
C(m3)-C(a4)-C(b4)	124.6(4)	C(m2)-C(21)-C(22)	111.4(4)
N(2)-C(a4)-C(b4)	108.8(4)	C(32)-C(31)-C(m3)	113.9(6)
N(3)-C(a5)-C(m3)	125.9(4)	C(m4)-C(41)-C(42)	112.9(4)

Table S4. Bond Angles for $[Fe(TEtP)(Cl)]^a$

atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\operatorname{Fe}(1)$	0.0276(3)	0.0270(3)	0.0222(3)	0.0061(2)	0.0061(2)	0.0111(2)
Cl	0.0448(6)	0.0414(6)	0.0361(6)	0.0071(4)	0.0176(5)	0.0224(5)
N(1)	0.0225(15)	0.0298(16)	0.0267(16)	0.0024(13)	0.0090(13)	0.0121(13)
N(2)	0.0365(18)	0.0305(16)	0.0187(14)	0.0071(12)	0.0090(13)	0.0175(14)
N(3)	0.0312(17)	0.0240(15)	0.0246(15)	0.0035(12)	0.0098(13)	0.0112(13)
N(4)	0.0275(16)	0.0295(16)	0.0240(15)	0.0063(12)	0.0103(13)	0.0138(13)
C(a1)	0.0290(19)	0.0300(18)	0.032(2)	0.0066(15)	0.0186(16)	0.0137(15)
C(a2)	0.0268(19)	0.034(2)	0.032(2)	-0.0020(16)	0.0103(16)	0.0130(16)
C(a3)	0.042(2)	0.044(2)	0.0225(19)	0.0056(17)	0.0055(17)	0.026(2)
C(a4)	0.056(3)	0.037(2)	0.025(2)	0.0122(17)	0.0149(19)	0.024(2)
C(a5)	0.045(2)	0.0250(18)	0.033(2)	0.0063(15)	0.0241(19)	0.0150(17)
C(a6)	0.0297(19)	0.0304(19)	0.031(2)	0.0015(15)	0.0137(16)	0.0120(16)
C(a7)	0.030(2)	0.041(2)	0.0221(18)	0.0049(16)	0.0078(15)	0.0174(17)
C(a8)	0.034(2)	0.035(2)	0.0277(19)	0.0130(16)	0.0154(16)	0.0207(17)
C(b1)	0.034(2)	0.033(2)	0.049(3)	0.0035(19)	0.024(2)	0.0081(18)
C(b2)	0.026(2)	0.039(2)	0.042(3)	-0.0016(19)	0.0102(18)	0.0086(17)
C(b3)	0.060(3)	0.054(3)	0.029(2)	0.012(2)	0.001(2)	0.029(3)
C(b4)	0.074(4)	0.053(3)	0.034(3)	0.021(2)	0.012(3)	0.035(3)
C(b5)	0.042(2)	0.0260(19)	0.052(3)	0.0041(18)	0.029(2)	0.0099(18)
C(b6)	0.026(2)	0.033(2)	0.049(3)	0.0002(18)	0.0188(19)	0.0069(16)
C(b7)	0.039(2)	0.054(3)	0.026(2)	0.0099(19)	0.0052(18)	0.022(2)
C(b8)	0.044(2)	0.051(3)	0.028(2)	0.0178(19)	0.0135(19)	0.028(2)
C(m1)	0.036(2)	0.0308(19)	0.0309(19)	0.0096(15)	0.0190(17)	0.0191(16)
C(m2)	0.032(2)	0.042(2)	0.0241(19)	-0.0030(16)	0.0027(16)	0.0193(18)
C(m3)	0.058(3)	0.029(2)	0.032(2)	0.0122(17)	0.022(2)	0.020(2)
C(m4)	0.0274(19)	0.039(2)	0.0275(19)	0.0011(16)	0.0090(16)	0.0149(17)
C(11)	0.048(3)	0.034(2)	0.040(2)	0.0154(18)	0.025(2)	0.0206(19)
C(21)	0.034(2)	0.064(3)	0.031(2)	-0.005(2)	-0.0019(19)	0.021(2)
C(31)	0.094(5)	0.033(2)	0.043(3)	0.016(2)	0.027(3)	0.015(3)
C(41)	0.027(2)	0.055(3)	0.032(2)	-0.004(2)	0.0034(17)	0.012(2)
C(12)	0.045(3)	0.033(2)	0.048(3)	0.0113(19)	0.029(2)	0.0122(19)
C(22)	0.040(3)	0.078(4)	0.054(3)	-0.004(3)	0.004(2)	0.036(3)
C(32)	0.121(7)	0.045(3)	0.057(4)	0.006(3)	0.051(4)	-0.009(4)
C(42)	0.034(3)	0.104(5)	0.043(3)	-0.002(3)	0.007(2)	0.034(3)

Table S5. Anisotropic Displacement Parameters $(Å^2)$ for $[Fe(TEtP)(Cl)]^a$

^{*a*}The estimated standard deviations of the least significant digits are given in parentheses. The anisotropic displacement factor exponent takes the form: $-2 \pi [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]$.

atom	x	y	2	$U(\mathrm{eq})$
H(b1)	-0.0039	-0.1526	0.3154	0.047
H(b2)	-0.1470	-0.0907	0.1287	0.047
H(b3)	-0.0178	0.3228	-0.0666	0.063
H(b4)	0.2104	0.5351	-0.0082	0.066
H(b5)	0.7734	0.7685	0.3680	0.046
H(b6)	0.9113	0.7117	0.5607	0.045
H(b7)	0.7837	0.2951	0.7552	0.050
H(b8)	0.5600	0.0789	0.6932	0.047
H(11a)	0.1856	-0.1600	0.4635	0.045
H(11b)	0.3611	-0.0939	0.5715	0.045
H(21a)	-0.1819	-0.0040	-0.0264	0.059
H(21b)	-0.1459	0.1247	-0.0821	0.059
H(31a)	0.4121	0.7051	0.1106	0.074
H(31b)	0.5895	0.7703	0.2155	0.074
H(41a)	0.9051	0.4971	0.7719	0.052
H(41b)	0.9440	0.6227	0.7126	0.052
H(12a)	0.1741	-0.1423	0.6509	0.061
H(12b)	0.1042	-0.0500	0.5746	0.061
H(12c)	0.2792	0.0119	0.6834	0.061
H(22a)	-0.3700	0.0785	-0.0411	0.090
H(22b)	-0.2315	0.2166	0.0413	0.090
H(22c)	-0.2637	0.0902	0.1003	0.090
H(32a)	0.6661	0.6668	0.0989	0.128
H(32b)	0.5877	0.7556	0.0242	0.128
H(32c)	0.4884	0.6006	-0.0060	0.128
H(42a)	1.1436	0.5546	0.7484	0.094
H(42b)	1.0415	0.5224	0.6033	0.094
H(42c)	1.0180	0.4083	0.6781	0.094

Table S6. Hydrogen Atom Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$ for $[Fe(TEtP)(Cl)]^a$

 ${}^{a}U(\text{eq})$ is defined as one third of the trace of the orthogonalized $\mathbf{U}_{-}ij$ tensor. The estimated standard deviations of the least significant digits are given in parentheses.

formula	C ₃₂ H ₃₆ ClFeN ₄
FW, amu	567.95
a, Å	13.040(2)
b, Å	15.221(2)
<i>c</i> , Å	14.6681(9)
β , deg	109.997(11)
$V, \mathrm{\AA}^3$	2735.9(7)
space group	P2(1)/n
Z	4
$D_c, g/cm^3$	1.379
F(000)	1196
μ, mm^{-1}	0.678
power and current settings	$50 \mathrm{kV}, 40 \mathrm{mA}$
detector distance, mm	40
detector tilt angle, deg	-25
image time, sec	20
increment, deg	0.25
crystal dimensions, mm	$0.35 \times 0.33 \times 0.30$
radiation	${\rm MoK}\alpha,\bar{\lambda}=0.71073~{\rm \AA}$
temperature, K	130(2)
diffractometer	Enraf Nonius FAST
θ range for collected data, deg	2.25 - 29.94
index range	$-18 \le h \le 17$
	$-18 \le k \le 21$
	$-8 \le l \le 20$
total data collected	19425
absorption correction	None
unique data	7047 ($R_{\rm int} = 0.0544$)
unique observed data $[I > 2\sigma(I)]$	6174
refinement method	Full-matrix least-sq
data/restraints/parameters	7047/0/347
goodness-of-fit (based on F^2)	1.052
$\max(\Delta ho), \mathrm{e}/\mathrm{\AA}^3$	0.949
$\min(\Delta ho), \mathrm{e}/\mathrm{\AA}^3$	-0.936
final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0477$, $wR_2 = 0.1176$
final R indices (all data)	$R_1 = 0.0556, wR_2 = 0.1235$

Table S7. Complete Crystallographic Details for [Fe(TPrP)(Cl)].

atom	x	y	2	U(eq)
Fe(1)	0.44462(2)	0.16332(2)	0.61486(2)	0.0087(1)
$\operatorname{Cl}(1)$	0.45108(4)	0.30989(3)	0.61265(3)	0.0179(1)
N(1)	0.30107(12)	0.13730(10)	0.63957(10)	0.0114(3)
N(2)	0.36154(11)	0.13041(9)	0.47291(10)	0.0108(3)
N(3)	0.58445(12)	0.12454(10)	0.59135(10)	0.0126(3)
N(4)	0.52419(12)	0.13165(9)	0.75846(10)	0.0109(3)
C(m1)	0.17364(14)	0.15512(11)	0.47112(12)	0.0117(3)
C(m2)	0.51424(14)	0.09674(11)	0.41438(12)	0.0127(3)
C(m3)	0.71386(14)	0.14100(12)	0.75929(12)	0.0135(3)
C(m4)	0.36868(15)	0.11137(11)	0.81684(11)	0.0137(3)
C(a1)	0.28625(14)	0.12531(12)	0.72754(12)	0.0142(3)
C(a2)	0.19830(14)	0.14848(11)	0.57141(12)	0.0129(3)
C(a3)	0.25083(13)	0.14293(11)	0.42630(11)	0.0118(3)
C(a4)	0.40433(14)	0.11106(11)	0.40129(11)	0.0124(3)
C(a5)	0.59776(14)	0.10498(12)	0.50415(12)	0.0136(3)
C(a6)	0.68813(13)	0.13036(12)	0.65902(12)	0.0132(3)
C(a7)	0.63603(14)	0.13540(11)	0.80463(12)	0.0129(3)
C(a8)	0.47972(14)	0.11620(11)	0.83008(11)	0.0126(3)
C(b1)	0.17224(15)	0.13001(14)	0.71390(13)	0.0193(4)
C(b2)	0.11807(15)	0.14577(13)	0.61836(13)	0.0179(3)
C(b3)	0.22455(14)	0.13294(12)	0.32331(12)	0.0148(3)
C(b4)	0.31836(15)	0.11117(12)	0.30843(12)	0.0160(3)
C(b5)	0.71212(15)	0.09721(14)	0.51830(13)	0.0198(4)
C(b6)	0.76764(15)	0.11557(14)	0.61293(13)	0.0199(4)
C(b7)	0.66166(15)	0.12425(12)	0.90733(12)	0.0165(3)
C(b8)	0.56590(15)	0.10997(12)	0.92251(12)	0.0159(3)
C(11)	0.05579(13)	0.16796(12)	0.40807(13)	0.0141(3)
C(12)	-0.00868(15)	0.08286(13)	0.37917(14)	0.0203(4)
C(13)	-0.12877(16)	0.10140(15)	0.32360(16)	0.0262(4)
C(21)	0.54426(15)	0.07472(12)	0.32610(12)	0.0145(3)
C(22)	0.56489(15)	0.15490(12)	0.27204(13)	0.0160(3)
C(23)	0.59004(16)	0.12751(14)	0.18184(13)	0.0199(4)
C(31)	0.83294(14)	0.14810(13)	0.82131(13)	0.0171(3)
C(32)	0.88980(15)	0.05922(14)	0.84855(14)	0.0210(4)

Table S8. Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for $[Fe(TPrP)(Cl)]^a$

atom	x	y	z	$U(\mathrm{eq})$
C(33)	1.01076(15)	0.06983(16)	0.90482(14)	0.0246(4)
C(41)	0.33527(16)	0.09100(13)	0.90427(12)	0.0171(3)
C(42)	0.32081(17)	0.17130(13)	0.96096(13)	0.0200(4)
C(43)	0.28739(17)	0.14550(15)	1.04700(14)	0.0236(4)

Table S8. Continued

^{*a*}U(eq) is defined as one third of the trace of the orthogonalized \mathbf{U}_{ij} tensor. The estimated standard deviations of the least significant digits are given in parentheses.

bond	length (Å)	bond	length (Å)
Fe(1)-N(2)	2.0536(14)	C(m4)-C(a1)	1.398(2)
Fe(1)– $N(3)$	2.0548(15)	C(m4)-C(41)	1.521(2)
Fe(1)– $N(4)$	2.0618(14)	C(a1)-C(b1)	1.432(3)
Fe(1)– $N(1)$	2.0632(15)	C(a2)-C(b2)	1.436(2)
Fe(1)-Cl(1)	2.2332(6)	C(a3)-C(b3)	1.438(2)
N(1)-C(a1)	1.381(2)	C(a4)-C(b4)	1.438(2)
N(1)-C(a2)	1.381(2)	C(a5)-C(b5)	1.438(2)
N(2)-C(a4)	1.379(2)	C(a6)-C(b6)	1.436(2)
N(2)-C(a3)	1.383(2)	C(a7)-C(b7)	1.437(2)
N(3)-C(a6)	1.380(2)	C(a8)-C(b8)	1.438(2)
N(3)-C(a5)	1.381(2)	C(b1)-C(b2)	1.358(3)
N(4)-C(a8)	1.383(2)	C(b3)-C(b4)	1.355(3)
N(4)-C(a7)	1.383(2)	C(b5)-C(b6)	1.357(3)
C(m1)-C(a3)	1.390(2)	C(b7)-C(b8)	1.359(3)
C(m1)– $C(a2)$	1.398(2)	C(11)-C(12)	1.523(3)
C(m1)-C(11)	1.511(2)	C(12)-C(13)	1.524(3)
C(m2)-C(a4)	1.397(2)	C(21)-C(22)	1.529(2)
C(m2)– $C(a5)$	1.398(2)	C(22)-C(23)	1.526(2)
C(m2)-C(21)	1.513(2)	C(31)-C(32)	1.529(3)
C(m3)– $C(a7)$	1.393(2)	C(32)-C(33)	1.518(3)
C(m3)– $C(a6)$	1.402(2)	C(41)-C(42)	1.526(3)
C(m3)-C(31)	1.511(2)	C(42)-C(43)	1.521(3)
C(m4)– $C(a8)$	1.395(3)		

Table S9. Bond Lengths for $[Fe(TPrP)(Cl)]^a$

angle	degree	angle	degree
N(2)-Fe(1)-N(3)	87.16(6)	N(1)-C(a2)-C(m1)	125.99(16)
N(2)– $Fe(1)$ – $N(4)$	152.31(6)	N(1)-C(a2)-C(b2)	109.57(15)
N(3)–Fe (1) –N (4)	86.50(6)	C(m1)–C(a2)–C(b2)	124.29(16)
N(2)– $Fe(1)$ – $N(1)$	86.30(6)	N(2)-C(a3)-C(m1)	125.93(15)
N(3)– $Fe(1)$ – $N(1)$	152.24(6)	N(2)-C(a3)-C(b3)	109.77(14)
N(4)– $Fe(1)$ – $N(1)$	86.88(6)	C(m1)-C(a3)-C(b3)	124.04(15)
N(2)-Fe (1) -Cl (1)	103.79(4)	N(2)-C(a4)-C(m2)	126.30(14)
N(3)– $Fe(1)$ – $Cl(1)$	104.15(4)	N(2)-C(a4)-C(b4)	109.50(15)
N(4)-Fe (1) -Cl (1)	103.89(4)	C(m2)-C(a4)-C(b4)	124.16(15)
N(1)– $Fe(1)$ – $Cl(1)$	103.61(4)	N(3)-C(a5)-C(m2)	125.98(16)
C(a1)-N(1)-C(a2)	106.35(14)	N(3)-C(a5)-C(b5)	109.67(15)
C(a1)-N(1)-Fe(1)	127.95(11)	$\rm C(m2)–\rm C(a5)–\rm C(b5)$	124.32(16)
C(a2)-N(1)-Fe(1)	124.28(11)	N(3)-C(a6)-C(m3)	125.90(16)
C(a4)-N(2)-C(a3)	106.18(13)	N(3)-C(a6)-C(b6)	109.81(15)
C(a4)-N(2)-Fe(1)	127.86(11)	(Cm3)-C(a6)-C(b6)	124.04(16)
C(a3)– $N(2)$ – $Fe(1)$	124.56(11)	N(4)-C(a7)-C(m3)	125.95(15)
C(a6)-N(3)-C(a5)	106.12(14)	N(4)-C(a7)-C(b7)	109.67(15)
C(a6)-N(3)-Fe(1)	124.64(11)	C(m3)– $C(a7)$ – $C(b7)$	124.14(16)
C(a5)-N(3)-Fe(1)	128.12(11)	N(4)-C(a8)-C(m4)	126.02(15)
C(a8)-N(4)-C(a7)	106.32(13)	N(4)-C(a8)-C(b8)	109.38(15)
C(a8)-N(4)-Fe(1)	128.36(11)	C(m4)-C(a8)-Cb8)	124.54(15)
C(a7)-N(4)-Fe(1)	124.65(11)	C(b2)-C(b1)-C(a1)	107.57(16)
C(a3)-C(m1)-C(a2)	123.01(15)	C(b1)-C(b2)-C(a2)	107.02(16)
C(a3)-C(m1)-C(11)	118.50(15)	C(b4)-C(b3)-C(a3)	106.92(15)
C(a2)-C(m1)-C(11)	118.24(16)	C(b3)-C(b4)-C(a4)	107.58(15)
C(a4)-C(m2)-C(a5)	123.21(15)	C(b6)-C(b5)-C(a5)	107.15(16)
C(a4)-C(m2)-C(21)	118.07(14)	C(b5)-C(b6)-C(a6)	107.17(16)
C(a5)-C(m2)-C(21)	118.67(15)	C(b8)-C(b7)-C(a7)	107.05(15)
C(a7)-C(m3)-C(a6)	122.80(15)	C(b7)-C(b8)-C(a8)	107.50(15)
C(a7)-C(m3)-C(31)	118.90(15)	C(m1)-C(11)-C(12)	114.17(15)
C(a6)-C(m3)-C(31)	117.90(16)	C(11)-C(12)-C(13)	111.09(16)
C(a8)-C(m4)-C(a1)	123.46(15)	C(m2)-C(21)-C(22)	114.21(15)
C(a8)-C(m4)-C(41)	118.44(15)	C(23)-C(22)-C(21)	111.09(15)
C(a1)-C(m4)-C(41)	118.10(16)	C(m3)-C(31)-C(32)	113.62(15)

Table S10. Bond Angles for $[Fe(TPrP)(Cl)]^a$

Table S10. Continued

angle	degree	angle	degree
N(1)-C(a1)-C(m4)	125.97(16)	C(33)-C(32)-C(31)	111.64(17)
N(1)-C(a1)-C(b1)	109.46(15)	C(m4)-C(41)-C(42)	114.88(15)
C(m4)-C(a1)-C(b1)	124.57(16)	C(43)-C(42)-C(41)	111.67(17)

atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U_{13}	U_{12}
Fe(1)	0.0126(1)	0.0075(1)	0.0051(1)	0.0004(1)	0.0021(1)	0.0000(1)
$\operatorname{Cl}(1)$	0.0276(2)	0.0085(2)	0.0153(2)	0.0010(1)	0.0044(2)	-0.0014(2)
N(1)	0.0152(6)	0.0109(6)	0.0081(6)	0.0001(5)	0.0039(5)	-0.0007(5)
N(2)	0.0129(6)	0.0111(6)	0.0073(6)	-0.0004(5)	0.0020(5)	0.0004(5)
N(3)	0.0151(6)	0.0132(7)	0.0079(6)	0.0004(5)	0.0017(5)	0.0006(5)
N(4)	0.0162(6)	0.0091(6)	0.0069(6)	0.0008(5)	0.0031(5)	0.0002(5)
C(m1)	0.0123(7)	0.0092(7)	0.0115(7)	0.0008(5)	0.0016(6)	-0.0006(5)
C(m2)	0.0195(8)	0.0108(7)	0.0089(7)	-0.0001(5)	0.0063(6)	0.0008(6)
C(m3)	0.0158(7)	0.0111(7)	0.0102(7)	0.0007(6)	0.0003(6)	0.0005(6)
C(m4)	0.0233(8)	0.0117(8)	0.0074(7)	0.0009(5)	0.0070(6)	0.0006(6)
C(a1)	0.0193(8)	0.0141(8)	0.0107(7)	0.0000(6)	0.0070(6)	-0.0013(6)
C(a2)	0.0149(7)	0.0108(7)	0.0128(7)	-0.0005(6)	0.0046(6)	-0.0007(6)
C(a3)	0.0147(7)	0.0104(7)	0.0081(7)	0.0005(5)	0.0011(6)	-0.0011(6)
C(a4)	0.0182(8)	0.0120(7)	0.0065(7)	0.0007(5)	0.0035(6)	-0.0012(6)
C(a5)	0.0179(8)	0.0129(8)	0.0109(7)	0.0014(6)	0.0060(6)	0.0020(6)
C(a6)	0.0125(7)	0.0146(8)	0.0118(7)	0.0027(6)	0.0030(6)	0.0017(6)
C(a7)	0.0168(8)	0.0103(7)	0.0087(7)	-0.0006(6)	0.0005(6)	0.0013(6)
C(a8)	0.0213(8)	0.0090(7)	0.0071(7)	0.0003(5)	0.0045(6)	0.0009(6)
C(b1)	0.0200(8)	0.0253(10)	0.0157(8)	-0.0020(7)	0.0102(7)	-0.0018(7)
C(b2)	0.0149(8)	0.0232(9)	0.0168(8)	-0.0017(7)	0.0071(6)	-0.0003(7)
C(b3)	0.0175(8)	0.0156(8)	0.0088(7)	-0.0003(6)	0.0014(6)	-0.0028(6)
C(b4)	0.0207(8)	0.0187(9)	0.0075(7)	-0.0027(6)	0.0035(6)	-0.0026(7)
C(b5)	0.0189(8)	0.0278(10)	0.0144(8)	0.0027(7)	0.0079(7)	0.0048(7)
C(b6)	0.0167(8)	0.0268(10)	0.0167(8)	0.0035(7)	0.0062(7)	0.0030(7)
C(b7)	0.0206(8)	0.0181(9)	0.0075(7)	0.0007(6)	0.0007(6)	0.0045(7)
C(b8)	0.0253(9)	0.0146(8)	0.0062(7)	0.0021(6)	0.0035(6)	0.0049(7)
C(11)	0.0123(7)	0.0141(8)	0.0141(7)	0.0018(6)	0.0022(6)	0.0005(6)
C(12)	0.0174(8)	0.0167(9)	0.0227(9)	0.0014(7)	0.0018(7)	-0.0033(7)
C(13)	0.0165(8)	0.0285(11)	0.0298(10)	0.0026(8)	0.0029(8)	-0.0058(8)
C(21)	0.0218(8)	0.0142(8)	0.0096(7)	-0.0015(6)	0.0078(6)	0.0016(6)
C(22)	0.0221(8)	0.0152(8)	0.0127(8)	-0.0007(6)	0.0088(6)	-0.0015(6)
C(23)	0.0248(9)	0.0245(10)	0.0129(8)	-0.0002(7)	0.0095(7)	-0.0017(7)
C(31)	0.0141(8)	0.0192(9)	0.0141(8)	0.0000(6)	0.0000(6)	-0.0013(6)
C(32)	0.0185(8)	0.0228(10)	0.0177(8)	0.0010(7)	0.0007(7)	0.0029(7)

Table S11. Anisotropic Displacement Parameters $(Å^2)$ for $[Fe(TPrP)(Cl)]^a$

	TT	TT	TT	TT	17	τ
atom	U_{11}	U 22	U_{33}	U_{23}	U_{13}	U_{12}
C(33)	0.0151(8)	0.0358(12)	0.0220(9)	0.0023(8)	0.0052(7)	0.0051(8)
C(41)	0.0265(9)	0.0178(9)	0.0092(7)	0.0024(6)	0.0088(6)	-0.0012(7)
C(42)	0.0275(9)	0.0215(9)	0.0138(8)	0.0009(7)	0.0105(7)	0.0024(7)
C(43)	0.0235(9)	0.0367(12)	0.0141(8)	-0.0009(8)	0.0109(7)	-0.0003(8)

Table S11. Continued

^{*a*}The estimated standard deviations of the least significant digits are given in parentheses. The anisotropic displacement factor exponent takes the form: $-2 \pi [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]$.

atom	x	y	z	$U(\mathrm{eq})$
H(b1)	0.1403	0.1233	0.7628	0.023
H(b2)	0.0416	0.1535	0.5883	0.021
H(b3)	0.1547	0.1402	0.2749	0.018
H(b4)	0.3260	0.0983	0.2477	0.019
H(b5)	0.7430	0.0821	0.4704	0.024
H(b6)	0.8447	0.1182	0.6430	0.024
H(b7)	0.7322	0.1265	0.9555	0.020
H(b8)	0.5574	0.0981	0.9831	0.019
H(11a)	0.0535	0.1996	0.3484	0.017
H(11b)	0.0197	0.2055	0.4432	0.017
H(12a)	-0.0020	0.0484	0.4382	0.024
H(12b)	0.0222	0.0474	0.3382	0.024
H(13a)	-0.1586	0.1386	0.3631	0.039
H(13b)	-0.1691	0.0458	0.3092	0.039
H(13c)	-0.1358	0.1317	0.2628	0.039
H(21a)	0.4846	0.0396	0.2808	0.017
H(21b)	0.6107	0.0378	0.3467	0.017
H(22a)	0.4997	0.1933	0.2528	0.019
H(22b)	0.6270	0.1889	0.3157	0.019
H(23a)	0.6544	0.0893	0.2008	0.030
H(23b)	0.6045	0.1799	0.1493	0.030
H(23c)	0.5274	0.0958	0.1375	0.030
H(31a)	0.8388	0.1804	0.8815	0.020
H(31b)	0.8714	0.1829	0.7859	0.020
H(32a)	0.8554	0.0259	0.8884	0.025
H(32b)	0.8802	0.0251	0.7888	0.025
H(33a)	1.0440	0.1066	0.8676	0.037
H(33b)	1.0458	0.0120	0.9158	0.037
H(33c)	1.0205	0.0978	0.9674	0.037
H(41a)	0.3912	0.0523	0.9488	0.021
H(41b)	0.2657	0.0579	0.8819	0.021
H(42a)	0.3902	0.2045	0.9845	0.024
H(42b)	0.2644	0.2102	0.9173	0.024
H(43a)	0.2183	0.1131	1.0239	0.035

Table S11. Hydrogen Atom Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$ for $[Fe(TPrP)(Cl)]^a$

atom	<i>x</i>	y	z	U(eq)
H(43b)	0.2782	0.1985	1.0813	0.035
H(43c)	0.3441	0.1083	1.0912	0.035

Table S11. Continued

^{*a*}U(eq) is defined as one third of the trace of the orthogonalized \mathbf{U}_{ij} tensor. The estimated standard deviations of the least significant digits are given in parentheses.

formula	$\rm C_{44}H_{60}ClFeN_4{\cdot}0.1CH_2Cl_2$
FW, amu	744.75
$a, \mathrm{\AA}$	10.246(7)
$b, \mathrm{\AA}$	12.834(4)
$c,\mathrm{\AA}$	17.420(15)
α , deg	69.74(3)
β, \deg	87.52(4)
γ, \deg	84.89(3)
$V, Å^3$	2140(2)
space group	$P\bar{1}$
Z	2
$D_c, g/cm^3$	1.156
F(000)	790
μ, mm^{-1}	0.460
power and current settings	$50~\mathrm{kV}$ and $40~\mathrm{mA}$
detector distance, mm	40
detector tilt angle, deg	-25
image time, sec	40
increment, deg	0.2
crystal dimensions, mm	$0.77 \times 0.33 \times 0.10$
radiation	MoK α , $\bar{\lambda} = 0.71073$ Å
temperature, K	130(2)
diffractometer	Enraf Nonius FAST
θ range for collected data, deg	2.34 - 29.86
index range	$-14 \le h \le 14$
	$-17 \le k \le 17$
	$-23 \le l \le 13$
total data collected	19908
absorption correction	DIFABS
relative transmission coefficients (I)	1.000 and 0.650
unique data	$10732 \ (R_{\rm int} = 0.082)$
unique observed data $[I > 2\sigma(I)]$	6108
refinement method	Full-matrix least-squares on \mathbf{F}^2
data/restraints/parameters	10732/115/540
goodness-of-fit (based on F^2)	1.026
$\max(\Delta ho), e/A^3$	1.174
$\min(\Delta ho), \mathrm{e}/\mathrm{\AA}^3$	-1.010
final R indices $[I > 2\sigma(I)]$	$R_1 = 0.1024, \ wR_2 = 0.2659$
final R indices (all data)	$R_1 = 0.1647, \ wR_2 = 0.3239$

 $\label{eq:table_stable_stable_transform} \textbf{Table S13.} \ \text{Complete Crystallographic Details for } [Fe(THexP)(Cl)].$

atom	x	y	z	U(eq)
Fe	0.34162(7)	0.32158(6)	0.46190(4)	0.0370(2)
Cl	0.18944(13)	0.20416(11)	0.52345(9)	0.0492(4)
N(1)	0.4732(4)	0.2286(4)	0.4131(2)	0.0373(9)
N(2)	0.2707(4)	0.3998(4)	0.3452(3)	0.0407(9)
N(3)	0.2784(4)	0.4658(3)	0.4833(3)	0.0383(9)
N(4)	0.4768(4)	0.2933(4)	0.5520(3)	0.0401(9)
C(b1)	0.6186(5)	0.0848(5)	0.4074(3)	0.0447(12)
C(b2)	0.5647(6)	0.1319(5)	0.3341(4)	0.0509(13)
C(b3)	0.2054(7)	0.4314(5)	0.2143(4)	0.0574(15)
C(b4)	0.1262(6)	0.4999(5)	0.2432(4)	0.0562(15)
C(b5)	0.1369(7)	0.6142(5)	0.4870(4)	0.0591(16)
C(b6)	0.2238(7)	0.5921(5)	0.5483(4)	0.0552(15)
C(b7)	0.5674(6)	0.2830(7)	0.6721(4)	0.0627(17)
C(b8)	0.6148(7)	0.1917(6)	0.6556(4)	0.0639(18)
C(a1)	0.5629(5)	0.1458(4)	0.4577(3)	0.0382(10)
C(a2)	0.4705(5)	0.2198(5)	0.3364(3)	0.0449(12)
C(a3)	0.2945(6)	0.3676(5)	0.2778(3)	0.0469(12)
C(a4)	0.1670(5)	0.4810(4)	0.3240(3)	0.0420(11)
C(a5)	0.1727(6)	0.5370(5)	0.4455(3)	0.0454(12)
C(a6)	0.3109(6)	0.4965(4)	0.5481(3)	0.0453(12)
C(a7)	0.4792(5)	0.3468(5)	0.6081(3)	0.0449(12)
C(a8)	0.5623(5)	0.1991(5)	0.5800(3)	0.0440(11)
C(m1)	0.6006(5)	0.1283(4)	0.5372(3)	0.0427(11)
C(m2)	0.3896(7)	0.2854(6)	0.2718(4)	0.0567(15)
C(m3)	0.1147(5)	0.5410(5)	0.3733(4)	0.0474(12)
C(m4)	0.4059(5)	0.4444(4)	0.6064(3)	0.0411(11)
C(1)	0.6999(5)	0.0296(4)	0.5779(3)	0.0440(11)
C(2)	0.8415(5)	0.0648(5)	0.5681(3)	0.0479(12)
$\mathrm{C}(3)$	0.9443(5)	-0.0298(5)	0.6052(4)	0.0565(15)
C(4)	0.9195(7)	-0.1043(6)	0.6915(4)	0.050(2)
C(5)	1.0367(9)	-0.1844(7)	0.7289(5)	0.060(2)
$\mathrm{C}(6)$	1.0799(10)	-0.2642(7)	0.6854(6)	0.064(3)
C(41)	0.948(2)	-0.1527(12)	0.6325(14)	0.054(7)
C(51)	1.070(2)	-0.2169(17)	0.6770(13)	0.048(7)

Table S14. Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for $[Fe(THexP)(Cl)]^a$

atom	x	y	z	$U(\mathrm{eq})$
C(61)	1.078(3)	-0.221(3)	0.7641(14)	0.070(9)
C(13)	0.0007(7)	0.6288(5)	0.3402(4)	0.0617(16)
C(14)	0.0436(9)	0.7394(5)	0.2850(5)	0.086(3)
C(15)	-0.0418(9)	0.8434(7)	0.2670(7)	0.108(3)
C(16)	-0.1654(9)	0.8406(12)	0.2331(8)	0.146(6)
C(17)	-0.2610(10)	0.9476(10)	0.2098(9)	0.127(4)
C(18)	-0.3741(13)	0.9332(12)	0.1655(12)	0.191(8)
C(19)	0.4234(6)	0.4916(5)	0.6738(3)	0.0504(13)
C(20)	0.3322(6)	0.4476(6)	0.7463(3)	0.0527(14)
C(21)	0.3475(6)	0.4997(6)	0.8115(3)	0.0576(15)
C(22)	0.2461(9)	0.4637(9)	0.8796(5)	0.097(3)
C(23)	0.2542(13)	0.5117(13)	0.9461(6)	0.140(5)
C(24)	0.223(3)	0.6318(15)	0.9235(13)	0.193(18)
C(240)	0.1246(18)	0.520(2)	0.9896(12)	0.083(8)
C(80)	0.4205(14)	0.2799(11)	0.1871(7)	0.046(3)
C(81)	0.3420(12)	0.1942(13)	0.1723(8)	0.060(3)
C(82)	0.3546(16)	0.1935(15)	0.0861(9)	0.085(5)
C(83)	0.2954(17)	0.0999(16)	0.0718(11)	0.103(6)
C(84)	0.153(2)	0.096(3)	0.0751(13)	0.132(11)
C(85)	0.063(2)	0.175(2)	0.0305(14)	0.124(9)
C(90)	0.3734(17)	0.2379(14)	0.2009(9)	0.062(4)
C(91)	0.4804(15)	0.2847(12)	0.1362(7)	0.066(3)
C(92)	0.4725(15)	0.2399(14)	0.0652(7)	0.070(4)
C(93)	0.5840(15)	0.2731(15)	0.0032(8)	0.081(5)
C(94)	0.5799(16)	0.2119(14)	-0.0598(9)	0.075(4)
C(95)	0.6990(19)	0.228(3)	-0.1136(12)	0.142(12)
$\operatorname{Cl}(1)$	0.608(3)	0.296(2)	-0.0990(16)	0.153(8)
$\operatorname{Cl}(2)$	0.746(4)	0.080(3)	-0.073(3)	0.27(2)
C(100)	0.741(4)	0.207(3)	-0.054(3)	0.044(11)

Table S14. Continued

^{*a*}U(eq) is defined as one third of the trace of the orthogonalized \mathbf{U}_{ij} tensor. The estimated standard deviations of the least significant digits are given in parentheses.

bond	length (Å)	bond	length (Å)
Fe–N(4)	2.054(5)	C(4m)– $C(19)$	1.519(7)
Fe-N(3)	2.056(4)	m C(1)- m C(2)	1.543(7)
${ m Fe-}N(2)$	2.063(5)	${ m C}(2){ m -}{ m C}(3)$	1.512(7)
${ m Fe-}N(1)$	2.068(4)	C(3) - C(41)	1.479(14)
Fe–Cl	2.2375(18)	${ m C}(3) ightarrow { m C}(4)$	1.502(8)
N(1)– $C(a1)$	1.376(7)	m C(4)– m C(5)	1.520(9)
m N(1)- m C(a2)	1.381(6)	${ m C}(5) ightarrow { m C}(6)$	1.500(10)
N(2)– $C(a3)$	1.379(7)	C(41)-C(51)	1.515(14)
N(2)– $C(a4)$	1.386(7)	m C(51)- m C(61)	1.508(15)
N(3)– $C(a6)$	1.380(7)	C(13)-C(14)	1.504(9)
N(3)– $C(a5)$	1.382(7)	C(14)-C(15)	1.474(9)
N(4)– $C(a7)$	1.376(7)	m C(15)– m C(16)	1.428(11)
N(4)– $C(a8)$	1.382(7)	C(16)-C(17)	1.555(12)
C(b1)-C(b2)	1.330(8)	C(17)-C(18)	1.479(12)
C(b1)– $C(a1)$	1.434(7)	${ m C}(19) – { m C}(20)$	1.512(7)
C(b2)– $C(a2)$	1.429(8)	C(20)-C(21)	1.524(7)
C(b3)-C(b4)	1.353(9)	m C(21)- m C(22)	1.517(8)
C(b3)– $C(a3)$	1.434(8)	$\mathrm{C}(22) ext{-}\mathrm{C}(23)$	1.497(10)
C(b4)– $C(a4)$	1.418(8)	${ m C}(23) – { m C}(24)$	1.461(14)
m C(b5)- m C(b6)	1.357(9)	C(23)-C(240)	1.513(13)
m C(b5)- m C(a5)	1.431(8)	C(80)-C(81)	1.515(14)
m C(b6)- m C(a6)	1.453(8)	C(81)-C(82)	1.505(14)
m C(b7)- m C(b8)	1.346(9)	C(82)-C(83)	1.492(15)
C(b7)-C(a7)	1.433(9)	C(83)-C(84)	1.465(16)
m C(b8)- m C(a8)	1.412(8)	C(83)– $CL2#1)$	2.38(4)
C(a1)-C(m1)	1.391(8)	C(84)-C(85)	1.34(3)
C(a2)– $C(m2)$	1.401(9)	C(84)- $CL2#1)$	2.42(4)
C(a3)-C(m2)	1.399(8)	${ m C(90)-C(91)}$	1.541(13)
C(a4)-C(m3)	1.401(8)	C(91)-C(92)	1.541(12)
C(a5)-C(m3)	1.397(8)	m C(92)- m C(93)	1.521(13)
C(a6)-C(m4)	1.388(8)	C(93)-C(94)	1.558(13)
C(a7)-C(m4)	1.394(8)	C(94)-C(95)	1.492(14)
C(a8)-C(m1)	1.385(7)	CL1)-C(100)	1.73(2)
C(m1)-C(1)	1.534(7)	CL1)-CL2)	2.889(19)

Table S15. Bond Lengths for $[Fe(THexP)(Cl)]^a$

bond	length (Å)	bond	length (Å)
C(m2)-C(80)	1.521(12)	CL2)-C(100)	1.76(2)
C(m2)– $C(90)$	1.576(17)	CL2)-C(83)#1)	2.38(4)
C(m3)-C(13)	1.530(8)	CL2)-C(84)#1)	2.42(4)

Table S15. Continued

angle	degree	angle	degree
N(4)–Fe– $N(3)$	87.23(18)	C(a1)-C(m1)-C(1)	118.2(5)
N(4)–Fe– $N(2)$	153.32(17)	C(a3)– $C(m2)$ – $C(a2)$	123.8(5)
N(3)–Fe– $N(2)$	86.41(17)	C(a3)-C(m2)-C(80)	117.4(7)
N(4)–Fe– $N(1)$	86.31(17)	C(a2)-C(m2)-C(80)	118.1(7)
N(3)–Fe– $N(1)$	152.14(17)	C(a3)-C(m2)-C(90)	116.8(8)
N(2)–Fe– $N(1)$	87.32(17)	C(a2)-C(m2)-C(90)	116.3(8)
N(4)–Fe–Cl	103.35(14)	C(80)-C(m2)-C(90)	27.1(5)
N(3)–Fe–Cl	103.99(13)	C(a5)-C(m3)-C(a4)	123.4(5)
N(2)–Fe–Cl	103.33(13)	C(a5)-C(m3)-C(13)	117.6(5)
N(1)–Fe–Cl	103.87(13)	C(a4)-C(m3)-C(13)	118.3(5)
C(a1)-N(1)-C(a2)	106.5(4)	C(a6)-C(m4)-C(a7)	122.2(5)
C(a1)-N(1)-Fe	124.9(3)	C(a6)-C(m4)-C(19)	118.4(5)
C(a2)-N(1)-Fe	127.3(4)	C(a7)-C(m4)-C(19)	119.2(5)
C(a3)-N(2)-C(a4)	105.7(4)	C(m1)-C(1)-C(2)	111.9(4)
C(a3)-N(2)-Fe	127.7(4)	C(3)-C(2)-C(1)	114.3(5)
C(a4)-N(2)-Fe	125.3(4)	C(41)-C(3)-C(4)	55.2(10)
C(a6)-N(3)-C(a5)	106.7(4)	C(41)-C(3)-C(2)	134.9(9)
C(a6)-N(3)-Fe	127.2(4)	C(4)-C(3)-C(2)	116.6(5)
C(a5)-N(3)-Fe	124.6(4)	C(3)-C(4)-C(5)	113.2(6)
C(a7)-N(4)-C(a8)	106.4(4)	C(6)-C(5)-C(4)	114.7(7)
C(a7)-N(4)-Fe	127.3(4)	C(3)-C(41)-C(51)	116.6(14)
C(a8)-N(4)-Fe	124.6(4)	C(61)-C(51)-C(41)	114.7(14)
C(b2)-C(b1)-C(a1)	106.8(5)	C(14)-C(13)-C(m3)	113.5(6)
$\rm C(b1)\text{-}C(b2)\text{-}C(a2)$	109.0(5)	C(15)-C(14)-C(13)	122.3(8)
C(b4)-C(b3)-C(a3)	107.9(5)	C(16)-C(15)-C(14)	114.4(9)
C(b3)-C(b4)-C(a4)	106.8(5)	C(15)-C(16)-C(17)	118.3(11)
$\rm C(b6)–C(b5)–C(a5)$	106.7(5)	C(18)-C(17)-C(16)	109.9(10)
C(b5)-C(b6)-C(a6)	107.9(5)	C(20)-C(19)-C(m4)	113.3(4)
C(b8)– $C(b7)$ – $C(a7)$	107.8(5)	C(19)-C(20)-C(21)	112.4(5)
C(b7)-C(b8)-C(a8)	107.4(6)	C(22)-C(21)-C(20)	111.8(6)
N(1)-C(a1)-C(m1)	125.5(4)	C(23)-C(22)-C(21)	115.1(7)
N(1)-C(a1)-C(b1)	109.5(4)	C(24)-C(23)-C(22)	116.5(12)
C(m1)-C(a1)-C(b1)	124.9(5)	C(24)-C(23)-C(240)	77.1(15)
N(1)-C(a2)-C(m2)	126.2(5)	C(22)-C(23)-C(240)	113.3(11)

Table S16. Bond Angles for $[Fe(THexP)(Cl)]^a$

angle	degree	angle	degree
N(1)-C(a2)-C(b2)	108.2(5)	C(81)-C(80)-C(m2)	110.2(10)
C(m2)-C(a2)-C(b2)	125.6(5)	C(82)-C(81)-C(80)	113.3(11)
N(2)-C(a3)-C(m2)	125.9(5)	C(83)-C(82)-C(81)	115.2(13)
N(2)-C(a3)-C(b3)	109.2(5)	C(84)-C(83)-C(82)	119.6(14)
C(m2)– $C(a3)$ – $C(b3)$	124.9(5)	C(84)-C(83)-Cl(2)#1	73.6(17)
N(2)-C(a4)-C(m3)	124.9(5)	C(82)-C(83)-Cl(2)#1	163.0(17)
N(2)-C(a4)-C(b4)	110.5(5)	C(85)-C(84)-C(83)	128(2)
C(m3)-C(a4)-C(b4)	124.5(5)	C(85)-C(84)-Cl(2)#1	136.4(19)
N(3)-C(a5)-C(m3)	125.9(5)	C(83)-C(84)-Cl(2)#1	70.8(18)
N(3)-C(a5)-C(b5)	110.1(5)	C(91)-C(90)-C(2m)	106.9(12)
C(m3)-C(a5)-C(5b)	123.8(5)	C(92)-C(91)-C(90)	110.0(11)
N(3)-C(a6)-C(m4)	127.3(5)	C(93)-C(92)-C(91)	113.0(11)
N(3)-C(a6)-C(b6)	108.4(5)	C(92)-C(93)-C(94)	109.8(12)
C(m4)-C(a6)-C(b6)	124.2(5)	C(95)-C(94)-C(93)	111.5(13)
N(4)-C(a7)-C(m4)	127.0(5)	$\rm C(100)-Cl(1)-Cl(2)$	34.5(9)
N(4)-C(a7)-C(b7)	108.6(5)	C(100)-Cl(2)-C(83)#1	164(3)
C(m4)-C(a7)-C(b7)	124.4(5)	C(100)-Cl(2)-C(84)#1	155(2)
N(4)-C(a8)-C(m1)	125.3(5)	C(83)#1-Cl(2)-C(84)#1	35.5(6)
N(4)-C(a8)-C(b8)	109.7(5)	m C(100)- m Cl(2)- m Cl(1)	33.7(9)
C(m1)-C(a8)-C(b8)	124.8(5)	C(83)#1-Cl(2)-Cl(1)	139(2)
C(a8)-C(m1)-C(a1)	124.3(5)	C(84)#1-Cl(2)-Cl(1)	170(2)
C(a8)-C(m1)-C(1)	117.4(5)	Cl(1)-C(100)-Cl(2)	111.8(17)

Table S16. Continued

atom	U_{11}	U_{22}	U_{33}	U ₂₃	U_{13}	U_{12}
Fe	0.0371(4)	0.0322(4)	0.0419(4)	-0.0132(3)	0.0050(3)	-0.0048(3)
Cl	0.0433(7)	0.0357(6)	0.0673(9)	-0.0167(6)	0.0150(6)	-0.0081(5)
N(1)	0.038(2)	0.040(2)	0.036(2)	-0.0157(17)	0.0042(16)	-0.0050(17)
N(2)	0.036(2)	0.038(2)	0.050(2)	-0.0183(19)	0.0009(18)	-0.0031(17)
N(3)	0.042(2)	0.033(2)	0.041(2)	-0.0142(17)	0.0031(17)	-0.0077(17)
N(4)	0.040(2)	0.039(2)	0.042(2)	-0.0147(18)	0.0063(17)	-0.0053(18)
C(b1)	0.043(3)	0.041(3)	0.054(3)	-0.021(2)	0.003(2)	-0.001(2)
C(b2)	0.055(3)	0.053(3)	0.053(3)	-0.030(3)	0.006(3)	0.000(3)
C(b3)	0.067(4)	0.055(4)	0.053(3)	-0.022(3)	-0.014(3)	-0.001(3)
C(b4)	0.059(4)	0.046(3)	0.067(4)	-0.022(3)	-0.018(3)	-0.001(3)
C(b5)	0.077(4)	0.042(3)	0.054(3)	-0.016(3)	0.004(3)	0.014(3)
C(b6)	0.079(4)	0.038(3)	0.050(3)	-0.018(2)	0.005(3)	0.006(3)
C(b7)	0.057(4)	0.087(5)	0.057(4)	-0.042(4)	-0.010(3)	0.002(3)
C(b8)	0.062(4)	0.081(5)	0.047(3)	-0.027(3)	-0.008(3)	0.022(3)
C(a1)	0.040(2)	0.031(2)	0.040(2)	-0.0087(19)	0.004(2)	-0.0025(19)
C(a2)	0.048(3)	0.045(3)	0.046(3)	-0.021(2)	0.005(2)	-0.002(2)
C(a3)	0.052(3)	0.043(3)	0.047(3)	-0.017(2)	-0.008(2)	0.003(2)
C(a4)	0.040(3)	0.037(3)	0.050(3)	-0.015(2)	-0.010(2)	-0.005(2)
C(a5)	0.048(3)	0.041(3)	0.045(3)	-0.015(2)	0.004(2)	0.000(2)
C(a6)	0.056(3)	0.035(2)	0.049(3)	-0.019(2)	0.014(2)	-0.013(2)
C(a7)	0.040(3)	0.053(3)	0.042(3)	-0.016(2)	0.003(2)	-0.006(2)
C(a8)	0.041(3)	0.051(3)	0.040(3)	-0.018(2)	-0.003(2)	0.003(2)
C(m1)	0.042(3)	0.039(3)	0.044(3)	-0.010(2)	0.005(2)	-0.004(2)
C(m2)	0.064(4)	0.063(4)	0.045(3)	-0.023(3)	-0.003(3)	0.007(3)
C(m3)	0.043(3)	0.038(3)	0.061(3)	-0.016(2)	0.000(2)	-0.002(2)
C(m4)	0.038(2)	0.041(3)	0.048(3)	-0.019(2)	0.004(2)	-0.015(2)
C(1)	0.041(3)	0.040(3)	0.048(3)	-0.012(2)	0.003(2)	0.002(2)
C(2)	0.047(3)	0.043(3)	0.053(3)	-0.015(2)	0.005(2)	-0.004(2)
C(3)	0.043(3)	0.048(3)	0.068(4)	-0.008(3)	0.003(3)	0.003(2)
C(4)	0.054(4)	0.052(4)	0.043(4)	-0.014(3)	-0.002(3)	0.004(3)
C(5)	0.062(5)	0.065(5)	0.046(5)	-0.012(4)	-0.008(4)	0.009(4)
C(6)	0.076(6)	0.042(5)	0.063(5)	-0.004(4)	0.001(4)	0.009(4)
C(13)	0.060(4)	0.057(4)	0.066(4)	-0.022(3)	-0.008(3)	0.016(3)
C(14)	0.135(8)	0.048(4)	0.070(5)	-0.021(3)	-0.041(5)	0.034(4)

Table S17. Anisotropic Displacement Parameters $(Å^2)$ for $[Fe(THexP)(Cl)]^a$

atom	<i>U</i> 11	Um	Uaa	Uaa	U_{12}	<i>U</i> 19
C(15)	0.117(8)	0.080(6)	0.115(8)	-0.024(6)	0.011(6)	0.007(6)
C(16)	0.076(7)	0.250(19)	0.124(9)	-0.080(11)	-0.012(6)	-0.009(9)
C(17)	0.092(7)	0.126(10)	0.127(0)	-0.090(9)	-0.036(8)	0.032(7)
C(18)	0.123(11)	0.110(10)	0.30(2)	-0.007(12)	-0.091(13)	-0.002(8)
C(19)	0.058(3)	0.050(3)	0.052(3)	-0.026(3)	0.015(3)	-0.023(3)
C(20)	0.055(3)	0.061(4)	0.048(3)	-0.025(3)	0.010(3)	-0.016(3)
C(21)	0.060(4)	0.074(4)	0.045(3)	-0.029(3)	0.003(3)	-0.005(3)
C(22)	0.091(6)	0.155(10)	0.067(5)	-0.061(6)	0.029(4)	-0.041(6)
C(23)	0.146(11)	0.217(16)	0.103(8)	-0.111(10)	0.042(8)	-0.041(11)
C(24)	0.16(2)	0.30(4)	0.14(2)	-0.13(3)	-0.035(18)	0.09(3)
C(240)	0.094(17)	0.109(19)	0.050(11)	-0.034(12)	0.013(10)	-0.014(14)
C(80)	0.060(8)	0.041(7)	0.030(6)	-0.008(5)	0.006(5)	0.005(6)
C(81)	0.050(7)	0.078(9)	0.069(8)	-0.048(8)	-0.001(6)	-0.008(6)
C(82)	0.094(12)	0.104(13)	0.084(11)	-0.067(10)	-0.022(9)	0.009(10)
C(83)	0.122(17)	0.117(17)	0.086(12)	-0.056(12)	-0.017(11)	-0.004(13)
C(84)	0.16(2)	0.20(3)	0.088(14)	-0.094(18)	0.051(14)	-0.12(2)
C(85)	0.13(2)	0.12(2)	0.102(17)	-0.031(14)	0.042(15)	0.010(15)
C(90)	0.069(10)	0.054(9)	0.053(9)	-0.008(8)	0.011(7)	-0.008(7)
C(91)	0.080(10)	0.062(8)	0.055(8)	-0.017(6)	0.007(7)	-0.012(7)
C(92)	0.099(11)	0.080(10)	0.046(7)	-0.036(7)	0.004(7)	-0.032(8)
C(93)	0.090(11)	0.112(14)	0.049(8)	-0.036(8)	-0.003(7)	-0.015(10)
C(94)	0.101(12)	0.070(10)	0.064(9)	-0.029(8)	0.003(8)	-0.028(9)
C(95)	0.089(14)	0.29(4)	0.090(14)	-0.12(2)	0.018(11)	-0.022(18)

Table S17. Continued

^{*a*}The estimated standard deviations of the least significant digits are given in parentheses. The anisotropic displacement factor exponent takes the form: $-2 \pi [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]$.

atom	<i>x</i>	<i>y</i>	2	U(eq)
H(b1)	0.6818	0.0227	0.4234	0.054
H(b2)	0.5855	0.1105	0.2877	0.061
H(b3)	0.2025	0.4264	0.1612	0.069
H(b4)	0.0567	0.5509	0.2148	0.067
H(b5)	0.0660	0.6702	0.4741	0.071
H(b6)	0.2270	0.6321	0.5849	0.066
H(b7)	0.5885	0.3017	0.7180	0.075
H(b8)	0.6729	0.1330	0.6886	0.077
H(1a)	0.6938	-0.0286	0.5532	0.053
H(1c)	0.6778	-0.0029	0.6369	0.053
H(2a)	0.8615	0.0997	0.5091	0.057
H(2c)	0.8471	0.1219	0.5939	0.057
H(3a)	0.9527	-0.0764	0.5704	0.083
H(3c)	1.0280	0.0023	0.6039	0.083
H(4a)	0.8440	-0.1478	0.6922	0.060
H(4c)	0.8956	-0.0576	0.7256	0.060
H(5a)	1.1111	-0.1405	0.7296	0.072
H(5c)	1.0148	-0.2277	0.7864	0.072
H(6a)	1.1563	-0.3119	0.7128	0.097
H(6c)	1.1033	-0.2224	0.6286	0.097
H(6d)	1.0084	-0.3105	0.6863	0.097
H(41a)	0.9373	-0.1742	0.5839	0.065
H(41b)	0.8712	-0.1767	0.6691	0.065
H(51a)	1.0726	-0.2943	0.6770	0.058
H(51b)	1.1476	-0.1828	0.6462	0.058
H(61a)	1.1594	-0.2638	0.7884	0.105
H(61b)	1.0029	-0.2562	0.7958	0.105
H(61c)	1.0784	-0.1447	0.7649	0.105
H(13a)	-0.0583	0.6008	0.3095	0.074
H(13b)	-0.0500	0.6397	0.3869	0.074
H(14a)	0.1251	0.7515	0.3083	0.103
H(14b)	0.0682	0.7310	0.2318	0.103
H(15a)	-0.0576	0.8599	0.3182	0.129
H(15b)	0.0047	0.9051	0.2282	0.129

Table S18. Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for $[Fe(THexP)(Cl)]^a$

atom	x	y	2	$U(\mathrm{eq})$
H(16a)	-0.2113	0.7794	0.2729	0.175
H(16b)	-0.1481	0.8208	0.1833	0.175
H(17a)	-0.2921	0.9623	0.2599	0.152
H(17b)	-0.2148	1.0122	0.1748	0.152
H(18d)	-0.4497	0.9817	0.1725	0.286
H(18e)	-0.3958	0.8554	0.1875	0.286
H(18f)	-0.3519	0.9530	0.1072	0.286
H(19a)	0.5150	0.4735	0.6928	0.061
H(19b)	0.4081	0.5738	0.6510	0.061
H(20a)	0.3500	0.3658	0.7708	0.063
H(20b)	0.2405	0.4630	0.7272	0.063
H(21a)	0.4363	0.4777	0.8349	0.069
H(21b)	0.3386	0.5818	0.7859	0.069
H(22a)	0.1579	0.4850	0.8554	0.117
H(22b)	0.2556	0.3814	0.9044	0.117
H(23a)	H0.1900	0.4751	0.9892	0.168
H(23b)	H0.3408	0.4938	0.9679	0.168
H(24a)	0.2331	0.6540	0.9713	0.290
H(24b)	0.1329	0.6509	0.9043	0.290
H(24c)	0.2832	0.6710	0.8798	0.290
H(24d)	0.0980	0.4444	1.0193	0.124
H(24e)	0.0579	0.5609	0.9493	0.124
H(24f)	0.1339	0.5585	1.0283	0.124
H(80a)	0.3989	0.3539	0.1451	0.055
H(80b)	0.5152	0.2596	0.1823	0.055
H(81a)	0.3715	0.1193	0.2105	0.071
H(81b)	0.2484	0.2093	0.1846	0.071
H(82a)	0.3129	0.2646	0.0489	0.102
H(82b)	0.4488	0.1905	0.0711	0.102
H(83a)	0.3257	0.0993	0.0172	0.123
H(83b)	0.3326	0.0297	0.1125	0.123
H(84a)	0.1362	0.0273	0.0652	0.159
H(84b)	0.1271	0.0839	0.1329	0.159
H(85a)	-0.0245	0.1488	0.0448	0.186
H(85b)	0.0809	0.1884	-0.0278	0.186
H(85c)	0.0689	0.2438	0.0418	0.186

Table S18. Continued

atom	x	y	2	$U(\mathrm{eq})$
H(90a)	0.3840	0.1554	0.2223	0.074
H(90b)	0.2854	0.2616	0.1766	0.074
H(91a)	0.4685	0.3671	0.1150	0.080
H(91b)	0.5678	0.2624	0.1616	0.080
H(92a)	0.4742	0.1576	0.0879	0.084
H(92b)	0.3881	0.2685	0.0371	0.084
H(93a)	0.6690	0.2531	0.0317	0.097
H(93b)	0.5756	0.3547	-0.0257	0.097
H(94a)	0.5733	0.1314	-0.0302	0.090
H(94b)	0.5010	0.2409	-0.0940	0.090
H(95a)	0.6932	0.1888	-0.1526	0.213
H(95b)	0.7771	0.1977	-0.0801	0.213
H(95c)	0.7051	0.3075	-0.1436	0.213

Table S18. Continued

 $^{a}U(eq)$ is defined as one third of the trace of the orthogonalized \mathbf{U}_{ij} tensor. The estimated standard deviations of the least significant digits are given in parentheses.