Binding of IP₃ and Adenophostin A to the N-terminal of the IP₃ Receptor: Thermodynamic Analysis Using Fluorescence Polarization with a Novel IP₃ Receptor Ligand

Data Supplement

	Primer	Sequence						
	P1	CGGGATCCATGTCTGACAAAATGTCTAGT						
	P2	CGCGCTCGAGTCACTTTCGGTTGTTGTGGA						
	P3	CGGGATCCATGAAATGGAGTAACAAAG						
	P4	ATTACTTGGCAGCAGAGGTAGACCCTGACTTTGAGGAAGAATGCCTGGAGTTTCAGCCCTCA GTGGACCCTGATCAGG						
	P5	GATCAGGGTCCACTGAGGGCTGAAACTCCAGGCATTCTTCCTCAAAGTCAGGGTCTACCTCT GCTGCCAAGTAATGC						
B		(%) 100 Buint 100 Buint 100 S1+ S1-						

Supplemental Fig. 1. Preparation of plasmids encoding NT and IBC. Primers used to generate the plasmids encoding the IBC and NT (A). Specific ³H-IP₃ binding (0.25 nM) in TEM to the IBC with (S1⁺) or without (S1⁻) the S1 splice region (B). Results are means \pm S.E.M., $n \ge 4$.

Supplemental Fig. 2. Optimizing signal-noise for FP assay of ligand binding to IP₃R in CLM. Emitted fluorescence in the vertical (I_v) and horizontal (I_h) planes and anisotropy (A) were measured for the indicated concentrations of free FITC-IP₃ (A). Across a 16-fold range of FITC-IP₃ concentration, there is a linear relationship between fluorescence (I_v and I_h) and no significant difference in anisotropy. The results demonstrate that with an even lower concentration of FITC-IP₃ (0.125 nM) than used in our assays (0.5 nM), background fluorescence does not perturb measurements of A. Fluorescence in the vertical (I_v) and horizontal (I_b) planes from the indicated concentrations of NT in the absence of FITC-IP₃ (B). These results demonstrate that at the highest protein concentrations used in saturation binding experiments (Fig. 3A), the contribution from background fluorescence is <15% of the total signal (which derives largely from bound FITC-IP₃). Because this protein fluorescence is unrelated to FITC-IP₃, all measurements were corrected for the small background signal by measuring I_v and I_h from a parallel sample of protein without FITC-IP₃. The effects of protein (NT at the indicated concentrations) on the emitted fluorescence (I_v and I_h) from free FITC-IP₃ (0.5 nM) was measured in the presence of 10 μ M IP₃ (to ensure that FITC-IP₃ is displaced from all IP₃-binding sites) (C). Because quenching was the same in all planes, A was unaffected by increasing [NT]. This quenching effect does not therefore affect experimental measurements of A; no correction was therefore required.

Supplemental Fig. 3. Specific binding of ³H-IP₃ to the NT (\circ) and full-length IP₃R (\bullet) in TEM in the presence of the indicated concentrations of FITC-IP₃. The ³H-IP₃ concentrations used were 0.75 nM and 1 nM for the NT and full-length IP₃R, respectively. Results are means \pm S.E.M, n = 3.

Supplemental Fig. 4. Expression of N-terminal fragments of IP₃R1 and elution from heparin columns. Lanes were loaded with lysate (5 µg of protein) from untransformed bacteria (U) and bacteria expressing N-terminally His₆-tagged IBC and NT fragments of IP₃R1. Bands were detected with anti-His₆ antibody. Arrows denote the bands corresponding to the full-length constructs with the expected mass; double arrows show bands of lower molecular mass, which may be truncated versions or degradation products (A). Full-length IP₃R and its N-terminal fragments are retained on a heparin-agarose column in the presence of 0.25 M NaCl and are then eluted with 0.5 M NaCl (not shown). Bacterial lysates of IBC and NT in 0.25 M NaCl were passed over heparin-agarose columns and samples were collected from the flow-through fraction (labelled F) and after elution (labelled E) with 0.5 M NaCl. Fragments were visualised by immunoblotting with an anti-His₆ antibody. Whereas bands with the mobilities expected of the full-length fragments were retained on the heparin column, smaller fragments were collected entirely in the flow-through fraction). We conclude that the lower molecular mass proteins are unlikely to bind IP₃ because they do not bind to heparin (B). Representative blots of at least 3 independent experiments are shown. Molecular weight markers are shown on the left of each blot.

Supplemental Fig. 5. FITC-IP₃, IP₃ and adenophostin A binding to the IBC analysed by FP in CLM. FP experiment at 4°C using 0.5 nM FITC-IP₃ and showing corrected A as a function of increasing concentrations of the IBC (A). FP competition binding assay with FITC-IP₃ (0.5 nM), IBC (15 nM) and the indicated concentrations of IP₃ (B) or adenophostin A (C). Results are means \pm S.E.M., n = 3. Equivalent analyses with the NT are shown in Fig. 3.

Supplemental Fig. 6. Effects of temperature on adenophostin A binding in CLM. FP competition binding assays with FITC-IP₃ (0.5 nM) and adenophostin A and the NT (A, 80 nM) or IBC (B, 15 nM) at the indicated temperatures. Results are means \pm S.E.M., n = 3. Similar analyses for IP₃ are shown in Fig. 4, and the results are summarized in Table 4.

Supplemental Table 1 Thermodynamics of IP₃ and adenophostin A binding to the NT and IBC analysed without assuming that ΔC is zero.

From the effects of temperature on IP₃ and adenophostin A binding to the IBC and NT in CLM (Table 4, Fig. 4 and Supplemental Fig. 6), ΔG (equation 10) was determined and thereby ΔH , ΔC and ΔS (equation 11). -T ΔS is also shown for 296 K. Results are means \pm S.E.M., n = 3.

		ΔG kJ /mol (296 K)	ΔH kJ/mol (296 K)	ΔC J/mol.K	ΔS J/mol.K (296 K)	-ΤΔS kJ/mol (296 K)
ID	NT	-37.1 ± 0.2	-35.9 ± 1.4	319 ± 65	4.4 ± 4.6	-1.3 ± 1.4
113	IBC	-43.2 ± 0.2	-37.8 ± 0.2	-425 ± 72	18.1 ± 0.4	-5.4 ± 0.1
	NT	-43.5 ± 0.03	-30.9 ± 1.5	170 ± 196	42.6 ± 5.0	-12.6 ± 1.5
Adenophostin A	IBC	-49.4 ± 0.3	-18.7 ± 1.6	1026 ± 206	103.4 ± 5.2	-30.6 ± 1.5