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1 Overview

We present a method for the identification of differentially-expressed miRNAs between
tumor and normal classes, and we compare this method to the simple t-statistic scores

that are often used for microarray data.

T-Statistic Approach
1. Take cube roots of the data.

2. Divide each patient’s miRNA measurements by the mean miRNA counts for that

patient. This is done in order to account for the large variation in total miRNAs
between different patients.

. Using the scaled data from the previous step, perform a paired two-sample t-test
for each miRNA. The resulting t-statistics are treated as scores for each miRNA.
(In fact, rather than ordinary t-statistics, modified t-statistics can be used, as is
done in the Significance Analysis of Microarrays package. The modified t-statistics
are obtained by adding a small constant to the denominator of the ordinary t-
statistic.)

. The t-statistics are used to form a ranked list of the most significant genes, and
the false discovery rate of this list is estimated by data permutations.

Our new approach is as follows:

Log-Linear Model Approach

1. Take cube roots of the data.

2. Fit a Poisson log linear model to the data, allowing a separate term for each

miRNA and each patient, as well as a term for each miRNA that captures the
difference in average expression between tumor and normal samples. Call the
latter term p; for miRNA 3.

. The differential-expression score for miRNA i is t; = Se’(’—;), where se(p;) is the

standard error of p;. A high |¢;| score indicates that the miRNA is differentially-
expressed between tumor and normal samples.



4.

The t; scores are used to form a ranked list of the most significant genes, and the
false discovery rate of this list is estimated by data permutations.

We also briefly present an overview of false discovery rate estimation. For a given
miRNA score cut-off, the false discovery rate (FDR) is the average number of miRNAs
with scores that are at or above the cut-off that are not truly differentially-expressed
between tumor and normal samples. If, at a given score cut-off, the FDR is 0.2, then
that means that we expect that 20% of the miRNAs with scores that exceed this cut-off
are, in fact, false positives. We estimate false discovery rates as follows (for both the
t-statistic approach and our proposed log-linear model):

False Discovery Rate Estimation

1.

Let (X,y) denote our data, where the matrix X is the miRNA count data, and y
is the list of labels for each of the 58 samples. Compute the scores of interest for
each miRNA; let ¢;(X,y) denote the score for miRNA 3.

. Create 500 new datasets of the form (X, y™*), where y* is obtained by shuffling the

tumor/normal labels for each patient at random. Note that none of the miRNAs
in these new data sets are differentially-expressed between “tumor” and “normal”,
because the tumor and normal class labels were created at random.

Compute the average number of miRNAs, across all 500 new data sets, with scores
|t;(X,y*)| that exceed the cut-off interest; call this quantity A.;-.

. Compute the average number of miRNAs in the real data set with scores |t;(X,y)|

that exceed the cut-off of interest; call this quantity Agctual-

For this cut-off value, the estimated false discovery rate is AA”“”

actual *

2 Log-Linear Model

Here,

we present in detail the log-linear model mentioned in the previous section. Let

X denote the 714 x 58 matrix of data, where the rows are the miRNAs and the columns

are the patients. Let Y be the matrix of cube rooted data, ¥;; =1+ X

1/3
i

The model is as follows:

Yij ~ Poisson(jj)
lOg Hij = ﬁz + Vi + pi(ljetumor - 1j€normal)

for i € {1,...,714} and for j € {1,...,58}, where i indexes the miRNAs (rows) and j
indexes the patient samples. Here, 1jciumor is an indicator variable that equals 1 if
sample j corresponds to a tumor, and equals 0 otherwise. We fit the model in two

steps:



1. We fit the following model:

Yi; ~ Poisson(pij;)
log iy = Bi+;

Let 3; and 4; denote the coefficients obtained by fitting this model.

2. Fixing the coefficients Bl and 4, obtained in the previous step, we fit the following
model:

Yij ~ Poisson(uij;)
IOg Hij = gz + :Yj + pi(ljetumor - 1j€normal)

So, our approach involves fitting two log linear models. We are modeling the counts
for each miRNA for each patient as Poisson random variables, and we are estimating
the logs of the means of these Poisson variables using a linear model. In this linear
model, we allow a separate term (;) for each miRNA (since different miRNAs have
different frequencies) and for each sample (v;) (since some samples have much higher
levels of all miRNAs). The p; term allows each miRNA to have different base levels
between tumor and normal tissue.

3 Results

3.1 Model Fit

In this section, we investigate how well the model in Section 2 fits the data.

Under the Poisson model Y;; ~ Poisson(u;j), it follows that E(Y;;) = Var(Y;;) =
tij- To see whether this holds for our data and the fitted model, we binned the 714 x 58
observations based on their value of fi;;, and we estimated the mean and variance of the
observations in each bin. The results can be seen in panel (a) of Figure 1. The mean
and variance of the observations within each bin are approximately equal, and they also
are nearly equal to the mean value of fi;; within each bin.

In order to see how closely the estimate for u;; fits the data, we can also make a
scatterplot of fi;; against Y;; for all ¢ and j. The results are shown in Figure 1, panel
(b). The points roughly follow the 45 degree line, which is expected if the model fits well.

Panel (c) of Figure 1 shows a histogram of the scaled residuals. They are approxi-
mately symmetric around zero.

Note that these analyses were also performed after the model in Section 2 was fit
to the raw (rather than the cube rooted) data. The model fits the raw data extremely



poorly.

Figure 2 shows that the column means of the cube rooted data are roughly propor-
tional to the sample-specific terms in the model proposed in Section 2. In other words,
the standardization for each sample that we perform using our proposed model is not
drastically different from the standardization that is performed using the t-statistic
approach.

3.2 Identification of Significant miRNAs

To assess the “significance”, or extent of differential expression, of each miRNA, we
use the p; terms obtained by fitting the model in Section 2. The score for miRNA 1
ist; = %, where the denominator is estimated by bootstrapping tumor/normal pairs.

Note that the scores obtained using the log linear model that we propose in Section 2
are not drastically different from those obtained using the standard t-statistic approach,
as shown in Figure 3.

False discovery rates were estimated as discussed previously, and the results are
given in the main paper.
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Figure 1: Panel (a): Mean and variance of observed data, binned by value of fi;;. Mean
and variance are approximately equal, as expected under Poisson model. Panel (b):
Yi;j vs. fi;j; the points lie approximately on the 45-degree line. Panel (c): Histogram of
the scaled residuals from the Poisson model. Residuals are roughly symmetric around
Zero.



Gamma vs. Column Means
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Column Means

Figure 2: We compare the column means for the cube rooted data to the ~y; terms
obtained in the model in Section 2. They are roughly proportional to each other. This
means that scaling the cube rooted samples by their means is roughly equivalent to
removing the sample-specific effects via a log linear model.

T-Statistics vs. Log-Linear Model Scores
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Figure 3: Scores obtained using the log linear model are highly correlated with those
obtained using t-statistics.



