Synthesis of (±)-Nosyberkol (Isotuberculosinol, Revised Structure of Edaxadiene) and (±)-Tuberculosinol

Nathan Maugel,[†] Francis M. Mann,[‡] Matthew L. Hillwig,[‡] Reuben J. Peters,[‡] and Barry B. Snider^{*,†}

Department of Chemistry MS 015, Brandeis University, Waltham, Massachusetts 02454-9110, and Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University,

Ames, Iowa 50011-3260

Experimental Procedures	S2-9
Comparison of the Spectral Data of Natural and Synthetic Nosyberkol (Isotubercule	osinol,
Edaxadiene) and Tuberculosinol	S10-17
Copies of ¹ H and ¹³ C NMR Spectra	S18-39

General Procedure. Reactions were conducted in flame- or oven-dried glassware under a nitrogen atmosphere and were stirred magnetically. The phrase "concentrated" refers to removal of solvents by means of a rotary evaporator attached to a diaphragm pump (15-60 Torr) followed by removal of residual solvents at < 1 Torr with a vacuum pump. Flash chromatography was performed on silica gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was performed using silica gel 60 F-254 pre-coated glass plates (0.25 mm). TLC Plates were analyzed by short wave UV illumination, or by dipping in vanillin stain (27 g of vanillin in 380 mL of EtOH, 50 mL of water and 20 mL of concentrated sulfuric acid) and heating on a hot plate or by spray with permanganate spray (5 g of KMnO₄ in 495 mL of water). THF was dried and purified by distillation from sodium/benzophenone. DIPEA and benzene were distilled from CaH₂. ¹H and ¹³C NMR spectra were obtained on a 400 MHz spectrometer in CDCl₃ with tetramethylsilane as internal standard unless otherwise indicated. Chemical shifts are reported in δ (ppm downfield from tetramethylsilane). Spectra recorded in CDCl₃ are referenced to residual CHCl₃ at δ 7.26 and the center peak of CDCl₃ at 77.00. Spectra in C₆D₆ are referenced to the C_6D_5H at δ 7.16 and the center peak of C_6D_6 at δ 128.06. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet) and br (broad). IR spectra were acquired on an FT-IR spectrometer and are reported in wave numbers (cm⁻¹). High resolution mass spectra were obtained using the following ionization techniques: chemical ionization (CI), electron impact (EI), electrospray ionization analyzed by quadrupole time of flight (QTOF). 3-[(2E)-2-Methyl-1-oxo-2-buten-1-yl]-2oxazolidinone (15) was prepared by the literature procedure.⁹

1-Ethenyl-6,6-dimethyl-cyclohexene (7). Following the literature procedure, ^{5b} 2,2dimethylcyclohexanone (2.0 g, 15.85 mmol) in 5 mL of THF was added over 30 min to a stirred solution of vinylmagnesium bromide (1.0 M in THF, 20.6 mL, 20.6 mmol) cooled in an ice bath under N₂. The ice bath was removed, and the solution was allowed to warm to 25 °C over 30 min and stirred for an additional 1 hr. The reaction was then quenched by slow addition of saturated aqueous NH₄Cl solution (20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3×15 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated to give 2.75 g (125%) of crude 1-ethenyl-2,2-dimethyl-cyclohexanol.

The entire crude 1-ethenyl-2,2-dimethyl-cyclohexanol was dissolved in 50 mL of benzene and anhydrous CuSO₄ (3.8 g, 23.8 mmol) was added. The suspension was heated at reflux with azeotropic removal of water using a Dean-Stark trap for 12 hr. The suspension was cooled to 25 °C, filtered through a pad of Celite (pentane) to remove CuSO₄, and concentrated at 50 °C and 200 Torr to give 1.9 g of crude 7. Distillation of crude 7 (35 °C, 0.8 Torr) gave 1.36 g (63%) of pure 7 as colorless oil: ¹H NMR 6.30 (dd, 1, J = 18, 11), 5.78 (t, 1, J = 4), 5.27 (d, 1, J = 18), 4.91 (d, 1, J = 11), 2.10-2.00 (m, 2), 1.63-1.56 (m, 2), 1.51-1.44 (m, 2), 1.06 (s, 6). The spectral data were identical to those previously reported.⁷

3-[[(1α,2β,8aα)-)-1,2,3,5,6,7,8,8a-Octahydro-1,2,5,5-tetramethyl-1-

naphthalenyl]carbonyl]-2-oxazolidinone (16) and 3-[[(1β,2α,8aα)-)-1,2,3,5,6,7,8,8a-

Octahydro-1,2,5,5-tetramethyl-1-naphthalenyl]carbonyl]-2-oxazolidinone (S1). To a stirred solution of oxazolidinone **15**⁹ (338.14 mg, 2 mmol) in 6 mL of CH₂Cl₂ at -78 °C under N₂ was added Me₂AlCl (2 mL, 1.9 M in hexanes, 3.8 mmol). The reaction was stirred for 10 min and diene **7** (272.4 mg, 2 mmol in 3 mL of CH₂Cl₂) was added over 5 min. The flask was sealed under N₂, transferred to a 4 °C cold room and stirred for 48 hr at which time the reaction was quenched at 0 °C by slow addition of 5 mL of aqueous 1 M HCl. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL). The combined organic layers were washed with brine, dried (MgSO₄), and concentrated. Flash chromatography of the residue (5:1 hexanes/EtOAc) afforded 330 mg (54%) of a 10:1 mixture of **16** and the endo isomer **S1**. Careful flash chromatography gave mixtures containing ~20:1 **16** and **S1** in more polar fractions: ¹H NMR 5.48 (br d, 1, *J* = 5), 4.50-4.30 (m, 2), 4.20-3.96 (m, 2), 3.51 (br d, 1, *J* = 13.4, H-8a), 3.06-2.74 (m, 1, H-2), 1.93 (ddd, 1, *J* = 18, 5, 5, H-3eq), 1.72 (br dd, 1, *J* = 18, 11, H-3ax), 1.60-1.46 (m, 2), 1.44-1.28 (m, 2), 1.28-1.12 (m, 2), 1.07 (s, 3), 1.06 (s, 3), 1.02 (s, 3), 0.77 (d, 3, *J* = 7.3); ¹³C NMR 178.6, 152.4, 144.7, 115.9, 62.0, 53.2, 45.8, 40.8, 37.5, 36.3, 30.9, 29.6 (2 C),

29.3, 28.8, 22.0, 16.5, 12.1; IR 1775, 1682, 1472, 1457, 1381, 1359, 1264, 1246, 1197; HRMS (EI) calcd for C₁₈H₂₇NO₃ (M⁺) 305.1991, found 305.1994.

Partial data for **S1**: 5.30 (br d, 1, *J* = 5), 3.35 (br d, 1, *J* = 13.4, H-8a), 2.28-2.21 (m, 1, H-2), 0.85 (d, 3, *J* = 7.3).

The above reaction was repeated several times with identical results, but in one run, the reaction of oxazolidinone **15** (338.14 mg, 2 mmol) in 6 mL of CH_2Cl_2 , Me_2AlCl (2 mL, 1.9 M in hexanes, 3.8 mmol) and diene **7** (272.4 mg, 2 mmol in 3 mL of CH_2Cl_2) for 60 hr afforded 163 mg (27%) of a 20:1 mixture of **16** and the endo isomer **S1**. The lower yield and greater selectively suggests that the endo isomer **S1** was selectively decomposed.

(1α,2β,8aα)-1,2,3,5,6,7,8,8a-Octahydro-1,2,5,5-tetramethyl-1-naphthalenemethanol (17). LiBH₄ (70 mg, 3.2 mmol) was added in three portions to a stirred solution of 16 (325.4 mg, 1.065 mmol) in 22 mL of 10:1 THF/MeOH cooled in an ice bath. The reaction was stirred for one hour, the ice bath was removed, and the reaction was stirred an additional hour, at which time the reaction was complete as indicated by TLC (10:1 hexanes/Et₂O). The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. Flash chromatography of the residue (5:1 hexanes/EtOAc) afforded 194 mg (82%) of a 20:1 mixture of **17** and the endo isomer **S2** as a colorless oil: ¹H NMR 5.45 (br d, 1, *J* = 5), 3.51 (dd, 1, *J* = 11, 6), 3.42 (dd, 1, *J* = 11, 6), 2.37 (br d, 1, *J* = 13), 1.88 (ddd, 1, *J* = 18, 5, 5), 1.83-1.73 (m, 2), 1.73-1.62 (m, 1), 1.62-1.50 (m, 2), 1.41 (br d, 1, *J* = 12.8), 1.28-1.14 (m, 2 including OH), 1.07 (s, 3), 1.06-0.96 (m, 1), 1.02 (s, 3), 0.88 (d, 3, *J* = 6.7), 0.52 (s, 3); ¹³C NMR 145.9, 115.9, 65.5, 40.9, 39.1, 37.8, 36.1, 31.7, 31.1, 29.7, 28.7, 27.5, 22.1, 14.9, 11.4; IR 3371, 2928, 1455, 1381, 1036; HRMS (EI) calcd for C₁₅H₂₆O (M⁺) 222.1984, found 222.1979.

(1α,2β,8aα)-1,2,3,5,6,7,8,8a-Octahydro-1,2,5,5-tetramethyl-1-

naphthalenecarboxaldehyde (6). Dess-Martin periodinane (291 mg 0.686 mg) was added in one portion to a solution of **17** (138.5 mg, 0.623 mmol) in 6 mL of CH₂Cl₂ at 25 °C. The

solution was stirred for two hours, at which time the reaction was complete as indicated by TLC (10:1 hexanes/Et₂O). Et₂O (6 mL), saturated aqueous Na₂SO₃ solution (3 mL), and saturated aqueous NaHCO₃ solution (1.5 mL) were added and the reaction was stirred for five min. The layers were separated and the aqueous layer was extracted with Et₂O (3×10 mL). The combined organic layers were washed with brine, dried (MgSO₄), and concentrated. Flash chromatography of the residue (hexanes) afforded 129 mg (94%) of **6** as an easily oxidized colorless oil: ¹H NMR 9.39 (s, 1), 5.50 (br d, 1, *J* = 5), 2.51 (br d, 1, *J* = 13), 2.03-1.92 (m, 1), 1.92-1.81 (m, 1), 1.81-1.68 (m, 1), 1.62-1.46 (m, 2), 1.46-1.37 (m, 1), 1.37-1.28 (m, 1), 1.28-1.14 (m, 1), 1.09 (s, 3), 1.09-1.01 (m, 1), 1.05 (s, 3), 0.81 (s, 3), 0.79 (d, 3, *J* = 6.1); ¹³C NMR 207.1, 143.7, 116.4, 52.1, 40.4, 38.0, 36.1, 32.5, 30.3, 29.5, 29.0, 28.5, 21.6, 16.0, 7.3; IR 2960, 2930, 1726, 1461, 1382.

A similar sequence starting with a 9:1 mixture of **16** and **S1** was reduced with LiBH₄ and the resulting mixture of alcohols was oxidized with Dess-Martin periodinane to give a comparable yield of a 9:1 mixture of **6** and $(1\beta,2\alpha,8a\alpha)$ -1,2,3,5,6,7,8,8a-octahydro-1,2,5,5-tetramethyl-1-naphthalenecarboxaldehyde (**9**). The partial spectral data of **9** as determined from the mixture are identical to those previously reported:⁶ ¹H NMR 9.68 (s, 1), 5.40 (br d, 1, *J* = 5), 2.28-2.01 (m, 3); ¹³C NMR 209.9, 145.2, 115.0, 50.1, 42.4, 41.8, 36.7, 30.8, 29.4, 28.9, 25.9, 22.6, 14.4, two carbons near 30.3 and 16.0 are obscured by **6**.

(1α,2β,8aα)-1,2,3,5,6,7,8,8a-Octahydro-1,2,5,5-tetramethyl-1-naphthalenyl)-but-3en-2-one (18). NaOMe (25% in MeOH, 226µL, 1.05 mmol) was added to a stirred solution of 6 (46 mg, 0.209 mmol) in acetone (243µL, 4.18 mmol) at 25 °C. The reaction was stirred for 20 hr and H₂O (4 mL) was added. The reaction was neutralized with conc H₂SO₄ and extracted with hexanes (3 × 10 mL). The combined organic layers were washed with brine, dried (MgSO₄), and concentrated. Flash chromatography of the residue (10:1 hexanes/Et₂O) afforded 32.5 mg (60%) of **18** as a colorless oil: ¹H NMR 6.62 (d, 1, *J* = 15.9), 6.03 (d, 1, *J* = 15.9), 5.51 (br d, 1, *J* = 5), 2.28 (s, 3), 2.14 (br d, 1, *J* = 14), 1.94 (ddd, 1, *J* = 18, 5, 5), 1.76 (br dd, 1, *J* = 18, 11), 1.62-1.45 (m, 4), 1.40 (br d, 1, *J* = 13), 1.28-1.14 (m, 1), 1.08 (s, 3), 1.02-0.92 (m, 1), 1.01 (s, 3), 0.79 (s, 3), 0.73 (d, 3, *J* = 6.7); ¹³C NMR 198.5, 158.0, 144.5, 129.3, 116.2, 43.4, 42.7, 40.5, 36.4, 36.0, 30.9, 29.4, 29.0, 28.0, 27.2, 21.7, 16.2, 10.0; IR 2959, 2930, 1676 (sh), 1620, 1455, 1383, 1356, 1254; HRMS (EI) calcd for C₁₈H₂₈O (M⁺) 260.2140, found 260.2129.

$(1\alpha,2\beta,8\alpha\alpha)$ -1,2,3,5,6,7,8,8a-Octahydro-1,2,5,5-tetramethyl-1-naphthalenyl)-butan-2-one (5). A solution of 18 (90 mg, 0.346 mmol) and EtOH (637 mg, 13.8 mmol) in 3 mL of THF was added to a solution of Li (48 mg, 6.91 mmol) in 60 mL of liquid NH₃ at -78 °C. The resulting solution was stirred for 10 min, the reaction was quenched by addition of solid NH₄Cl until the blue solution turned colorless, and the NH₃ was evaporated. The residual material was partitioned between Et₂O (20 mL) and H₂O (10 mL). The two layers were separated and the aqueous layer was extracted with Et₂O (3 × 10 mL). The combined organic layers were washed with brine, dried (MgSO₄), and concentrated to give a 1.5:1 mixture of ketone **5** and the saturated secondary alcohol.

The entire crude mixture of **5** and saturated alcohol was dissolved in 10 mL of acetone and cooled in an ice bath. Jones reagent was added until an orange color persisted. Isopropanol was added until a green color persisted and 10 mL of H₂O was added. The reaction mixture was extracted with Et₂O (3×10 mL) and the organic layers were combined, washed with brine, dried (MgSO₄), and concentrated. Flash chromatography of the residue (20:1 hexanes/Et₂O) afforded 82 mg (90%) of **5** as a colorless oil: ¹H NMR 5.43 (br d, 1, *J* = 5), 2.44-2.26 (m, 2), 2.17 (s, 3), 2.01 (br d, 1, *J* = 13), 1.84 (ddd, 1, *J* = 18, 5, 5), 1.80-1.62 (m, 4), 1.62-1.35 (m, 4), 1.26-1.12 (m, 1), 1.08-1.02 (m, 1), 1.06 (s, 3), 1.00 (s, 3), 0.80 (d, 3, *J* = 6.7), 0.64 (s, 3); ¹³C NMR 209.4, 145.7, 116.1, 40.7, 39.9, 37.5, 36.5, 36.0, 33.4, 31.4, 29.91, 29.88, 29.6, 28.9, 27.4, 22.1, 15.8, 14.9; IR 2931, 1717 (sh), 1456, 1382, 1357, 1163; HRMS (ESI) calcd for C₁₈H₃₀ONa (MNa⁺) 285.2194, found 285.2197.

 $(1\alpha,2\beta,8a\alpha)-\alpha$ -Ethenyl-1,2,3,5,6,7,8,8a-octahydro- α ,1,2,5,5-pentamethyl-1naphthalenepropanol (Nosyberkol, Isotuberculosinol, Revised Structure of Edaxadiene, 4). Ketone 5 (30 mg, 0.114 mmol) in 300 µL of THF was added dropwise over 10 min to a stirred solution of vinylmagnesium bromide (1.0 M in THF, 160µL, 0.16 mmol) cooled in an ice bath under N₂. The ice bath was removed and the solution was allowed to warm to 25 °C over 30 min

and stirring was continued for an additional 1 hr. The reaction was then guenched by slow addition of saturated aqueous NH₄Cl solution (2 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3×3 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. Flash chromatography of the residue (20:1 hexanes/EtOAc) afforded 29.2 mg (88%) of **4** as a colorless oil: ¹H NMR (CDCl₃) 5.92 (dd, 1, J = 17.3, 10.9, 5.43 (s, 1), 5.21 (d, 1, 17.3), 5.07 (d, 1, J = 10.9), 2.12 (br d, 1, J = 12.8), 1.85-1.65 (m, 3) 1.60-1.35 (m, 7), 1.35-1.15 (m, 2), 1.30 (s, 3), 1.05 (s, 3), 1.05-0.95 (m, 1), 1.00 (s, 3), $0.790 (d, 0.67 \times 3, J = 6.7), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.790 (d, 0.67 \times 3, J = 6.7), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.61 (s, 3); (C_6D_6); 5.78 (dd, 1, J = 17.3), 0.783 (d, 0.33 \times 3, J = 6.7), 0.783 (d,$ 10.4), 5.55 (s, 1), 5.18 (d, 1, J=17.3), 4.96 (d, 1, J=10.4), 2.25 (br d, 1, J=12), 1.85-1.75 (m, 3), 1.60-1.36 (m, 7), 1.35-1.22 (m, 2), 1.17-1.02 (m, 1), 1.14 (s, 3), 1.12 (s, 3), 1.09 (s, 3), 0.839 $(d, 0.67 \times 3, J = 7.3), 0.813 (d, 0.33 \times 3, J = 6.7), 0.71 (s, 3); {}^{13}C NMR (CDCl_3) (major, minor)$ (145.98, 146.00), (145.08, 145.03), (116.18, 116.13), (111.80, 111.83), (73.47, 73.49), 40.9, 39.6, 36.6, 36.0, (35.09, 35.07), 33.3, 31.6, 30.1, 29.8, 29.1, 27.6, 27.3, 22.2, (16.17, 16.19), (15.00, 14.98); (C₆D₆) (major, minor); (146.16, 146.21), 145.7, (116.88, 116.81), 111.5, 73.0, 41.3, 40.2, 37.0, 36.3, (35.48, 35.46), (33.70, 33.68), 32.1, 30.4, 30.1, 29.3, (28.31, 28.30), (27.68, 27.66), (22.62, 22.60), 16.5, (15.30, 15.33); IR 3404, 2931, 1457, 1381, 997, 919: HRMS (EI) calcd for $C_{20}H_{32}$ (M-H₂O⁺) 272.2504, found 272.2494. The ¹H and ¹³C NMR data in CDCl₃ are identical to those previously reported for nosyberkol (see Table S1).⁴ The ¹H and ¹³C NMR data in C_6D_6 are identical to those previously reported for edaxadiene (see Table S2).^{1a}

Ethyl (E)- and (Z)-3-Methyl-5-(1α,2β,8aα)-(1,2,3,5,6,7,8,8a-octahydro-1,2,5,5-

tetramethyl-1-naphthalenyl)-2-pentenoate (19 and S3). Triethyl phosphonoacetate (43.56 mg, 0.194 mmol) in 0.5 mL of THF was added dropwise to a suspension of NaH (60% in oil, 7.6 mg, 0.191 mmol) in 0.5 mL of THF in a resealable tube cooled in an ice bath under N₂. The reaction was stirred for 30 min and ketone **5** (10 mg, 0.038 mmol) in 1 mL of THF was added over five minutes. The ice bath was removed and the reaction was allowed to warm to 25 °C over 15 min. The reaction vessel was sealed under N₂ and placed directly in a 95 °C oil bath. The reaction was heated at 95 °C for 12 hr and then cooled to 25 °C. Saturated aqueous NH₄Cl solution (2

mL) was added and the reaction mixture was extracted with EtOAc (3×3 mL). The combined organic layers were washed with brine, dried (MgSO₄), and concentrated. Flash chromatography of the residue (toluene) afforded 1.5 mg, (12%) of **S3** followed by10.6 mg (84%) of **19**, both as colorless oils.

Data for **19**: ¹H NMR 5.68 (s, 1), 5.44 (br d, 1, J = 5), 4.15 (q, 2, J = 7), 2.18 (s, 3), 2.14 (br d, 1, J = 13), 2.10-1.97 (m, 2), 1.85 (ddd, 1, J = 18, 5, 5), 1.81-1.68 (m, 2), 1.64-1.44 (m, 4), 1.44-1.32 (m, 2), 1.28 (t, 3, J = 7), 1.25-1.15 (m, 1), 1.10-1.00 (m, 1), 1.06 (s, 3), 1.00 (s, 3), 0.82 (d, 3, J = 6.7), 0.63 (s, 3); ¹³C NMR 166.9, 161.3, 145.9, 116.2, 115.1, 59.4, 40.8, 39.8, 37.0, 36.1, 34.54, 34.45, 33.3, 31.5, 29.7, 29.0, 27.4, 22.2, 19.1, 16.1, 15.0, 14.3; IR 2932, 1717 (sh), 1648, 1456, 1381, 1224, 1146, 1052. The ¹H NMR and IR spectral data are identical to those previously reported.¹⁸

Data for **S3**: ¹H NMR 5.63 (s, 1), 5.44 (br d, 1, *J* = 5), 4.14 (q, 2, *J* = 7), 2.59 (ddd, 1, *J* = 12, 5, 5), 2.54 (ddd, 1, *J* = 12, 5, 5), 2.27 (br d, 1, *J* = 13), 1.89 (s, 3), 1.88-1.70 (m, 3), 1.64-1.34 (m, 6), 1.26 (t, 3, *J* = 7), 1.27-1.15 (m, 1), 1.08-0.98 (m, 1), 1.06 (s, 3), 1.02 (s, 3), 0.89 (d, 3, *J* = 6.7), 0.64 (s, 3); ¹³C NMR 166.2, 161.1, 146.1, 116.0, 115.8, 59.4, 41.0, 39.7, 37.3, 36.1, 34.9, 33.3, 31.6, 29.8, 29.0, 27.6, 27.0, 25.2, 22.2, 16.1, 15.1, 14.4; IR 2931, 1716 (sh), 1647, 1448, 1378, 1249, 1192, 1152, 1056.

(*E*)-3-Methyl-5-(1α,2β,8aα)-(1,2,3,5,6,7,8,8a-octahydro-1,2,5,5-tetramethyl-1naphthalenyl)-2-penten-1-ol (Tuberculosinol, 2). DIBAL-H (1.0 M in CH₂Cl₂, 65µL, 0.065 mmol) was added dropwise over 5 min to a stirred solution of **19** (7 mg, 0.021 mmol) in 0.5 ml of CH₂Cl₂ at -78 °C under N₂. The solution was stirred for 4 hr, at which time the reaction was complete as indicated by TLC (10:1 hexanes/EtOAc). Acetic acid (200 µL, 5 M in CH₂Cl₂) was added and the reaction was allowed to warm to 25 °C. 10% Aqueous tartaric acid (400 µL) and 400 µL of H₂O were added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 2 mL) and the combined organic layers were washed with saturated aqueous NaHCO₃, dried (Na₂SO₃), and concentrated. Flash chromatography of the residue (10:1 hexanes/EtOAc) afforded 5.6 mg, (92%) of **2**: ¹H NMR (CDCl₃) 5.47-5.39 (m, 2), 4.15 (s, 2), 2.17 (br d, 1, J = 13), 2.00-1.66 (m, 5), 1.70 (s, 3), 1.64-1.29 (m, 6), 1.27-1.14 (m, 1), 1.09-1.03 (m, 1), 1.06 (s, 3), 1.01 (s, 3), 0.82 (d, 3, J = 6.7), 0.62 (s, 3); (C₆D₆); 5.55 (s, 1), 5.43 (br t, 1, J = 6.5), 3.99 (d, 2, J = 6.5), 2.26 (br d, 1, J = 12), 1.95 (ddd, 1, J = 13.2, 12.8, 4), 1.87 (ddd, 1, J = 13.2, 12.8, 4), 1.85-1.80 (m, 2), 1.78-1.70 (m, 1), 1.60-1.45 (m, 4), 1.51 (s, 3), 1.45-1.23 (m, 3), 1.15 (s, 3), 1.15-1.05 (m, 1), 1.10 (s, 3), 0.82 (d, 3, J = 6.7), 0.70 (s, 3); ¹³C NMR (CDCl₃) 146.0, 141.0, 122.7, 116.1, 59.5, 40.9, 39.7, 36.9, 36.1, 34.9, 33.3, 32.7, 31.6, 29.8, 29.0, 27.4, 22.2, 16.5, 16.2, 15.1; (C₆D₆); 146.2, 139.2, 124.5, 116.8, 59.5, 41.3, 40.3, 37.3, 36.3, 35.3, 33.7, 33.1, 32.0, 30.1, 29.2, 27.8, 22.6, 16.50, 16.47, 15.3; IR 3346, 2930, 1455, 1381, 1000. The ¹H and ¹³C NMR data in C₆D₆ are identical to those previously reported for tuberculosinol (See Table S3).^{3a}

Table S1. Comparison of the Spectral Data of Natural and Synthetic Nosyberkol (Isotuberculosinol, Revised Structure of Edaxadiene, 4) in CDCl₃

nosyberkol (isotuberculosinol, revised structure of edaxadiene, **4**)

Natural **4**^a

Synthetic **4** as 2:1 mixture of diastereomers (major, minor)^b

Atom #	¹³ C	¹ H	¹³ C	¹ H
1	27.6	1.68	27.3 ^c	1.85-1.65
1		1.03		1.05-0.95
2	22.2	1.56	22.2	1.60-1.35
2		1.50		1.60-1.35
3	40.9	1.40	40.9	1.60-1.35
3		1.20		1.35-1.15
4	36.6		36.6	
5	146.0		(145.98, 146.00)	
6	116.2	5.43	(116.18, 116.13)	5.43
7	31.6	1.82	31.6	1.85-1.65
7		1.70		1.85-1.65
8	33.3	1.47	33.3	1.60-1.35
9	36.0		36.0	
10	39.7	2.11 (br d, 13.7)	39.6	2.12 (br d, 12.8)
11	30.6	1.35	30.1	1.60-1.35
11		1.28		1.35-1.15
12	35.1	1.45	(35.09, 35.07)	1.60-1.35
12		1.45		1.60-1.35
13	73.5		(73.47, 73.49)	
14	145.1	5.92 (dd, 17.3, 10.7)	(145.08, 145.03)	5.92 (dd, 17.3, 10.9)
15	111.8	5.20 (d, 17.3)	(111.80, 111.83)	5.21 (d, 17.3)
15		5.07 (d, 10.7)		5.07 (d, 10.9)
16	27.7	1.30 (s)	27.6 ^c	1.30
17	14.9	0.79 (d, 6.7)	(15.00, 14.98)	0.790 (d, 6.7), 0.783 (d, 6.7)
18	29.7	1.06 (s)	29.8	1.05
19	29.0	1.00 (s)	29.1	1.00
20	16.2	0.62 (s)	(16.17, 16.19)	0.61

^{a) 1}H and ¹³C NMR assignments from reference 4. ^{b)} Referenced to CHCl₃ at δ 7.26 and the center peak of CDCl₃ at δ 77.0. ^{c)} Assignments may be switched.

Table S2. Comparison of the Spectral Data of Natural and Synthetic Nosyberkol (Isotuberculosinol, Revised Structure of Edaxadiene, 4) in C_6D_6

nosyberkol (isotuberculosinol, revised structure of edaxadiene, **4**)

Natural 4^a

Synthetic **4** as 2:1 mixture of diastereomers (major, minor)^c

Atom #	^{13}C	¹ H	^{13}C ^{1}H	
1	27.53	1.894	(27.68, 27.66)	1.85-1.75
1		1.164		1.17-1.02
2	22.48	1.651	(22.62, 22.60)	1.60-1.36
2		0.957		1.35-1.22
3	41.15	1.481	41.3	1.60-1.36
3		1.359		1.35-1.22
4	36.13		37.0 ^d	
5	145.80		(146.16, 146.21)	
6	116.69	5.643	(116.88, 116.81)	5.55
7	31.84	1.920	32.1	1.85-1.75
7		1.920		1.85-1.75
8	33.53	1.580	(33.70, 33.68)	1.60-1.36
9	36.14		36.3 ^d	
10	40.07	2.346 (br d ^b , 12.4)	40.2	2.25 (br d, 12)
11	30.24	1.561	30.4	1.60-1.36
11		1.453		1.60-1.36
12	35.35	1.549	(35.48, 35.46)	1.60-1.36
12		1.473		1.60-1.36
13	72.90		73.0	
14	145.60	5.871 (dd, 17.3, 10.8))	145.7	5.78 (dd, 17.3, 10.4)
15	111.49	5.273 (d. 17.7)	111.5	5.18 (d, 17.3)
15		5.051 (d, 10.6)		4.96 (d, 10.4)
16	28.22 ^b	1.211 (s)	(28.31, 28.30)	1.12
17	15.20	0.909 (d, 7.1)	(15.30, 15.33)	0.839 (d, 7.3), 0.813 (d, 6.7)
18	29.97	1.239 (s)	30.1	1.14
19	29.22	1.186 (s)	29.3	1.09
20	16.42	0.806 (s)	16.5	0.71

^{a) 1}H and ¹³C NMR assignments from reference 1a. ¹H NMR peaks are referenced to the residual peak of C_6D_5H at 7.254. ^{b)} Corrected from typographical errors in reference 1a. ^{c)} Referenced to the residual peak of C_6D_5H at δ 7.16 and the center peak of C_6D_6 at 128.06. The ¹H NMR data correspond well except for a difference of about 0.09 due to a difference in referencing. ^{d)} Assignments may be switched.

		3 4 5 6 18 19 7 10 13		
	Natural 4 ^a		Synthetic 4	4 ^b
Atom #	^{13}C ^{1}H		^{13}C ^{1}H	
1	27.22	1.86	27.8	1.78-1.70
1		1.21		1.15-1.05
2	22.60	1.67	22.6	1.60-1.45
2		1.67		1.60-1.45
3	41.25	1.52	41.3	1.45-1.23
3		1.38		1.45-1.23
4	36.28		36.3	
5	146.2		146.2	
6	116.73	5.67	116.8	5.55
7	31.97	1.94	32.0	1.85-1.80
7		1.94		1.85-1.80
8	33.70	1.64	33.7	1.60-1.45
9	37.25		37.3	
10	40.31	2.37 (br d, 11.8)	40.3	2.26 (br d, 12)
11	35.35	1.66	35.3	1.60-1.45
11		1.50		1.45-1.23
12	33.05	2.06 (ddd, 13.2, 12.8, 4)	33.1	1.95 (ddd, 13.2, 12.8, 4)
12		1.99 (ddd, 13.2, 12.8, 4)		1.87 (ddd, 13.2, 12.8, 4)
13	139.2		139.2	
14	124.5	5.54 (br t)	124.5	5.43 (br t, 6.5)
15	59.41	4.10 (d, 6.5)	59.5	3.99 (d, 6.5)
16	16.39	1.63 (s)	16.47	1.51
17	15.28	0.92 (d, 6.8)	15.3	0.82 (d, 6.7)
18	30.04	1.27 (s)	30.1	1.15
19	29.15	1.22 (s)	29.2	1.10
20	16.43	0.81 (s)	16.50	0.70 (s)

Table S3. Comparison of the Spectral Data of Natural and Synthetic Tuberculosinol (2) in C_6D_6 20 11 12 2 11 1210 9 8 16 15 OH tuberculosinol (2)

 $^{a)}$ ¹H and 13 C NMR assignments from reference 3a. $^{b)}$ Referenced to the residual peak of C₆D₅H at δ 7.16 and the center peak of C₆D₆ at 128.06. The ¹H NMR data are identical except for a difference about 0.11 due to a difference in referencing.

Comparison of ¹H NMR Spectra of Synthetic and Natural Nosyberkol (Isotuberculosinol, Revised Structure of Edaxadiene, 4) in C₆D₆ at 700 MHz.

The spectrum above is pure synthetic material. The spectra on the following page shows the spectrum of natural material containing hexanes (reference spectrum provided) and silicone grease at about δ 0.3.

Comparison of Low Field Region of ¹H NMR Spectra of Synthetic and Natural Nosyberkol (Isotuberculosinol, Revised Structure of Edaxadiene, 4) in C₆D₆ at 700 MHz.

Comparison of High Field Region of ¹H NMR Spectra of Synthetic and Natural Nosyberkol (Isotuberculosinol, Revised Structure of Edaxadiene, 4) in C₆D₆ at 700 Hz. isotuberculosinol synthase product 1H, 700.13MHz, 25 °C, benzene-d6 www. nosyberkol / isotuberculosinol 1H, 700.13MHz, 25 °C, benzene-d6

.

NM8-32-11-2

NM8-33-1L2

Synthesis of Nosyberkol (Isotuberculosinol) and Tube	rculosinol Mauge	l, Snider, et al.	<u>S35</u>
	116 222 223 234 255 4	1111110087	н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3179.528 29192.602 2914.017 2772.802 2772.82 2716.410 2534.824 2234.980 1614.691 1517.032 1444.551	7740.519 7708.475 5968.157 4121.024 3989.031 3749.461 3631.965 3505.313 3346.617	FREQUENCY 16710.672 16194.909 14691.110 11656.807 11636.970 11636.970
	231. 232. 234. 239. 231. 231. 231. 231. 233. 231. 233. 233	77,000 76,000 29,095 39,082 37,298 37,298 34,130 34,130 34,130	PPM 1 166.232 161.101 146.142 115.958 115.761 77.319
	85. 73.6 55.9 55.9 55.9 55.5 55.5 55.5 55.5 55	329 534 59 59 59 59 59 59 59 79 59 79 59 79 59 79 59	HEIGHT 20.8 19.8 30.6 73.6 80.0 80.0
			T
		100 MHz	$\sum_{i=1}^{n}$
			CO ₂ Et
	······	<u> </u>	<u> </u>

