
BIOINFORMATICS Vol. 00 no. 00 2010
Pages 1–2

TRStalker: an Efficient Heuristic for Finding Fuzzy
Tandem Repeats - Supplementary materials
Marco Pellegrini 1, M. Elena Renda 1 and Alessio Vecchio 2

1CNR, Istituto di Informatica e Telematica, Via Moruzzi 1, 56124 Pisa (Italy).
2 Univ. di Pisa, Dip. Ingegneria dell’Informazione, Via Diotisalvi 2, 56122 Pisa (Italy).
Received on ; revised on ; accepted on

Associate Editor:

1 PSEUDOCODE OF TRSTALKER
The high level pseudocode of the TRStalker algorithm is reported in
Figure 1, where each function embodies one of the functionalities
described in the main paper.
At step 2., the functionblock(Y) splits the input sequenceY
into n blocks Yj , 1 ≤ j ≤ n, of predefined length. For each
block Yj , at step3. functionfindGappedQGrams(Yj) (see Sec-
tion 3.5 in the paper) records for each occurrence of a gapped
q-gramP i in Y its distancesK′ to the next 5 occurrences (candi-
date periods) and its starting positioni in Y . Furthermore, function
updateWeight(k, i) (step6.) increments the weightw(k) of peri-
odsk ∈ K′ by applying two weighting techniques: the anti-smear
weighting and the multiplicity weighting (see Section 3.6 in the
paper).
The function posDensity(K) (step 9.) computes the density
of probes that contribute to each candidate period (see Sec-
tion 3.7 in the paper), and the cuts off for position with low
density, returning those candidates with higher density. Function
getTopPeriods(eK, L) (step10.) ranks the periods byweighted
frequency and returns only the topL positions (forL = 50 in our
experiments) in the seteKL.
For each candidate pair(k, i), functionsgetTR() (step12.) and
verifyTR() (step13.) compute a candidate TR and verify whether
there is a tandem repeatt of periodk starting in positioni accor-
ding to the definition of TR (NTR or Steiner-STR - see Section 3.2
in the paper), and if sot is added to the setT . Finally, for each
candidate TRt ∈ T the functionmaximal() verifies whethert
is included in a longer TR, and possibly removet from T , while
minp() for TRs in the same position and length but different period
maintain only the TR with shorter period. The procedure returnsT

as result. During the visualization phase, the elements ofT can be
listed according to different properties of the TR found (e.g. initial
position, final position, repeating unit size, number of repetitions,
total length, absolute divergence, mean divergence, etc..)

Let Y be the input string:
1. L = 50, K, T = {}
2. for each Yj block(Y)
3. for each P i in findGappedQGrams(Yj)
4. K′ = periods(P i)
5. for each k in K′

6. w(k) = updateWeight(k, i)
7. if !((k, i) ∈ K)
8. K = K ∪ (k, i)

9. eK = posDensity(K)

10. eKL = getTopPeriods(eK, L)

11. for each (k, i) in eKL

12. t = getTR(k, i)
13. if verifyTR(t)
14. T = T ∪ t

15. for each t ∈ T

16. if (!maximal(t) || !minp(t))
17. T = T \ t

18. return T

Fig. 1. TRStalker algorithm scheme.

2 RUNNING TIME OF TRSTALKER
The running time of the algorithm has been analyzed to evaluate the
cost associated with the different activities. The evaluation has been
performed by using a JVM profiler that measures the time spent
within the methods implementingi) the localization of gapped q-
grams within the sequence,ii) anti-smear weighting of distances,
iii) multiplicity weighting, iv) computation of positional density,
andv) validation of TRs.

Localization of gapped q-grams 0.25%
Anti-smear weighting 18.49%
Multiplicity weighting 0.13%
Computation of positional density 2.42%
Validation 77.63%
Other 1.08%

Table 1. Percentages of time spent within the different activities.

c© Oxford University Press 2010. 1

Pellegrini et al

 0

 200

 400

 600

 800

 1000

 1200

 1 1.5 2 2.5 3 3.5 4

R
un

ni
ng

 ti
m

e
(s

)

Level of parallelism

(a) Running time

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 1.5 2 2.5 3 3.5 4

S
pe

ed
up

Level of parallelism

(b) Speedup

Fig. 2. Running time and speedup achieved by parallel execution of the
algorithm on a four cores CPU (Intel Core i7 860 - 2.8 GhZ) whenana-
lyzing 50 sequences of length 4000bp (each sequence contains an implanted
Steiner-TR with motif length equal to 50bp and repeated eight times).

Table 1 reports the amount of time dedicated to the previous five
activities (the values are the average over ten executions of the algo-
rithm). The experimental evaluation has been carried out byusing
synthetic sequences of length 4000bp and containing an implan-
ted Steiner-TR with motif length equal to 50bp and repeated eight

times. The amount of substitutions, insertions and deletions is equal
to 10% of the motif length each. The hardware used to run the expe-
riment has the following characteristics: CPU Intel Core i7860 -
2.8 GhZ, RAM 4 GB, Linux Operating System, Java HotSpot 64-bit
Server VM 1.6.0.

The current implementation of TRStalker, despite being notyet
fully optimized, includes a parallelized execution of the algorithm,
that reduces the execution time by exploiting multi-core architec-
tures of current CPUs. Parallelization is implemented at the level
of q-gram shapes: for every shape a different thread of execution
is used, then the results are merged. This rather simple technique
provides the speedup depicted in Figure 2(b) and scales reasona-
bly considering the number of cores of current CPUs (the absolute
running time is shown in Figure 2(a)). For long sequences a further
level of parallelization can be introduced by analyzing separately
the blocks a sequence is divided into. This second techniquecould
be useful to reduce the running time on architectures with higher
degree of parallelism (such as clusters).

2

