Supplementary Material

1:2 Host:Guest Binding when Host is Transparent

In the case that the host is transparent and the guest has an absorbance at the observed wavelength, a titration is usually performed by keeping $[G]_t$ constant and incrementally increasing $[H]_t$. As a result, eqn 23 is simplified to eqn S1. By substituting eqns 19-20 into eqn S1, eqn S2 is obtained.

$$A = \varepsilon_{\rm G} b[G] + \varepsilon_{\rm HG} b[{\rm HG}] + \varepsilon_{\rm HG2} b[{\rm HG}_2]$$
(S1)

$$A = \varepsilon_{\rm G} \operatorname{b}[\mathrm{G}] + \frac{\varepsilon_{\rm HG} \operatorname{b} K_1[\mathrm{G}] + \varepsilon_{\rm HG2} \operatorname{b} K_1 K_2[\mathrm{G}]^2}{1 + K_1[\mathrm{G}] + K_1 K_2[\mathrm{G}]^2} [\mathrm{H}]_t$$
(S2)

The script for the curve fitting thus becomes:

a=K1*K2; b=K1+2*K2*K1*x-K1*K2*Gt; c=1+K1*x-K1*Gt;

y=E0*G + Ht*(E1*K1*G+E2*K1*K2*G*G)/(1+K1*G+K1*K2*G*G)

where K1, K2, E0, E1, E2, Gt, x, and y represent K_1 , K_2 , $\varepsilon_G b$, $\varepsilon_{HG} b$, $\varepsilon_{HG2} b$, $[G]_t$, $[H]_t$, and absorbance (*A*), respectively. Parameters E0 and Gt ($\varepsilon_G b$ and $[G]_t$, respectively) are known, although ε_G is again treated as slightly adjustable. Values for x and y are read from a standard data file by the program. Given a set of estimated initial values for K1, K2, E1, and E2, the program iteratively determines the parameter values that best fit the experimental data.