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In these supplementary materials, notation is taken from the main text
of the article.

1 A nonparametric estimator for ()

The weights of the contributions to (4.1) and (4.3) from the article are ex-
plicitly dependent of ¢, which can enter through a time-dependence both in
the misclassification rates and in the proportion of the cause-specific base-
line hazards, £(t). The method itself thus makes no restriction whatsoever on
£(t), and the value of £ may indeed differ for all observations. However, for
the analysis all £(¢;) values need to specified, and unless these are known to
some (often unrealistic) level of detail, they need to be estimated. The main
text proposes the use of a constant value for £, which is practical since it is
easy to calculate, and which captures the most coarse feature of a possible
time-dependence: the average value, averaged over the observation density.
However, as Klein (2006) points out, for many settings the true £(t) will
vary strongly over time, for example when one cause is dominant in younger
infants and the other in older infants (as is the case for ALRI in Gambia,
Jaffar and others, 1997). To address this issue, we introduce in section 4.1
a simple parametric estimation procedure using a piecewise constant model
for £(t). While the calculations there remain simple, it already constitutes a
strong improvement in flexibility and it protects against overfitting the data.

Nevertheless, to justify such simplifying assumptions on £(t) (or to avoid
oversimplifying assumptions), we now introduce a kernel-weighted version
of the full log-likelihood log(L*) (derived later, in section 2). This allows
nonparametric smoothed estimation for £(¢) under Hy. The kernel-weighted
log-likelihood [*™ is defined by introducing a Gaussian kernel in log(L*) and
is up to a constant equal to:
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Here, we used counting process notation where N¢;(t) is equal to 0 until
time t;, at which it becomes 1 if individual 7 undergoes an event, otherwise
it remains zero. Similarly, Ny;(t) (Nyi(t)) is zero until individual ¢ suffers a
type 1 (0) failure, after which it becomes one.

Since we use a Gaussian kernel, each observation contributes at each
timepoint ¢, but its contribution is downweighted by the factor in the first
line as the distance between t and t; grows. For an event time t; dN¢;(t;)
and either dNy;(t;) or dNy;(t;) will be different from 0 (and equal to 1), with
the second and third line deciding what its unweighted contribution will be.

To obtain a smoothed estimate of £(t), the function ;™ () needs to be op-
timized with respect to & at any timepoint £. This can be done by a Newton-




Raphson routine where the estimator (4.4) provides the starting value. The
search for an optimal value for the bandwidth h lies outside the aims of this
paper, but one can use practical expectations (e.g. to capture a yearly fluc-
tuation one needs a bandwidth of only a few months) recognizing it is best
to base the estimate at each point in time on at least 10 not severely down-
weighted observations of each type. By varying the bandwidth one should be
able to get an idea of what an appropriate value might be. We further pro-
pose that if a simple parametric shape is indicated, one uses this in the test
statistic, rather than the smoothed values. This will make the final analysis
less difficult to understand and thus hopefully more acceptable.

To illustrate the use of the estimator we performed a small simulation
study, generating data on 20,000 individuals using a 4 year accrual period
with maximum follow-up of 4.5 years. Events were generated using a con-
stant hazard of 0.3. The true event types were determined from a bernoulli-
experiment, where the probability of a type 1 event had the sinusoidal shape
0.5+sin(27t) /5, implying exp(—£(¢)) = (0.5 — sin(27t)/5) / (0.5 + sin(27t)/5).
The observed event type was then obtained by misclassifying at a rate p; =
0.6 and py = 0.1. Since the estimation procedure is derived under the null
no treatment effects were included. Figure 1 shows in full line the true
exp(—£(t)) and in dotted line the smoothed estimator of exp(—£(t)) using
a bandwidth of h = 0.5 years. Overall, the estimator follows the true value
closely and is at least able to identify the main trends. Larger bandwidths
smear out effects causing the wave pattern to disappear, while smaller band-
widths cause the estimate to be unstable. Especially on the right hand side a
large boundary effect is seen. Optimization of kernel shapes and parameters
is a technical issue which falls beyond the scope of this discussion.
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Figure 1: Illustration of the fit from simulated data with a sinusoidal pattern.



2 Derivation of equation (4.4) from the arti-
cle

Later stages of the article use the simplifying assumption 3’, that the rela-
tive cause-specific baseline hazard exp(—¢) is constant over time. To obtain
a consistent estimator for £ we cannot use the partial likelihood L, defined in
the main text, since it conditions on the observed type of event, hence losing
all information concerning the contrast between the two cause-specific haz-
ards, and that is exactly governed by &. We therefore use an 'unconditional’
or ’full’ likelihood L*, based on the observation of three types of events all
occurring with their own probability. We define these probabilities under the
null, assuming any additional censoring is non-informative. We introduce
the notation h(t) = hi(t) + ho(t).

The first type of event is the observation of a type 1 failure. The likelihood
of such an event occurring at a time ¢; is the sum of two densities. First, we
look at the probability of a type 1 event being observed as type 1. This is
the probability of event-free survival up to ¢; times the hazard of an event
happening at t; times the probability of the event being of type 1 times
the conditional probability no misclassification occurs. Second, there is the
likelihood of a type 0 event being observed as type 1. This is the probability
of event-free survival up to t; times the hazard of an event happening at
t; times the probability of the event being of type 0 times the conditional
probability misclassification occurs. More formally, we have:
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For ease of interpretation, the order of the terms matches the explanation
above.

The second type of event is the observation of a type 0 failure. The likeli-
hood of this type of event is assembled in a manner similar to the probability
above:
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The third type of event is the occurence of an administrative censoring
at tz
121
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The full likelihood L* is then:
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L* factorizes into parts containing the parameter of interest (§) and parts
not containing &:
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To maximize L* w.r.t. £, we only need to maximize the log of the second
and third line. To do this elegantly, we first assume constant misclassification
rates and rewrite the last three factors:
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The expressions in the exponents are the numbers of observed events of
each type, Op and O:
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This becomes:
log(L*) o< —(Op+0y) log(1+e_5)+01 log(l—p1+6_§p0)+00 log(e_f(l—po)erl)

from which:
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This simplifies to:
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The estimator for e~ now becomes:
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This expression can also be derived in an intuitive manner. We know that
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Under the null this can intuitively be estimated by looking at the proportion
of the true number of people who failed for each type:
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Because of the misclassification we cannot use the true J;, but base our
estimate on the observed F; instead. A naive approach ignoring the misclas-

sification uses:
> Gl —F)
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We can however incorporate the misclassification in the same way as in the
score statistic by using weights based on the misclassification probabilities:
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This reduces to the naive estimator (2.1) if there is no misclassification (the
probabilities become 0 and 1). By introducing the explicit expressions for
the conditional probabilities this becomes:
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Since the probability that an event of a certain observed type is truly (not)
of that type depends on &, e~¢ itself enters the expression. After replacing
e~¢ throughout by its estimator, and by assu£n\ing constant py and p; the
expression resolves into a simple equation for e=¢:
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which is the same as from the previous derivation.

It should be understood that this estimator is asymptotically unbiased
only under the null. It can also yield meaningless results, for example when
po = p1 = 0.5. The cause-of-death diagnosis is then completely random,
and the estimator is identically -1, in sharp contrast with its interpretation
as hazard ratio. Note also that asymptotically one expects Oy = O; here,
making the expression ill-defined at 0/0. Of course one cannot expect to be
able to estimate £ here, since absolutely no information on cause-of-death is
available. However, other cases may also yield negative estimates. One can




show this occurs when the observed number of type 1 failures is higher or
lower than both the number of type 1 failures one would observe if all failures
were truly type 1 and the number one would observe if all failures were truly
type 0. This makes sense since these two cases are the most extreme ones one
would expect at a given pg, p; and Oy + O; (asymptotically, thus ignoring the
play of chance). Of course, in practice and at finite sample sizes this condition
may be fulfilled if purely by chance an extreme number of misclassifications
occur, but in practical settings with not too small numbers for each true
failure type this will rarely occur.

3 Derivation of the asymptotic noncentrality
parameter u

We first note that the proof of the asymptotic normal distribution relies
on the martingale central limit theorem (e.g. Andersen and Borgan (1985)).
Here we focus only on deriving the asymptotic noncentrality parameter pu
refered to in the main text (using assumption 3’). This derivation will be
done in counting process notation, using four processes:
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with j € {0,1} denoting the treatment group. We can decompose each
counting process into a compensator and a martingale:

dNyo(t) = Yi()(pr(6)e?™ + (1 = po(t))e*)hi(t)dt + dMyo(t)
dNoo(t) = Yo(t)(pr(t) + (1 = po(t))e™*)hy(t)dt + dMoo(t)
ANy (t) = Yi(t)((1 = pi(t)e®™ + po(t)e )y (t)dt + d My (t)
dNoi(t) = Yo(t)(1 —pi(t) + po(t)e )ha(t)dt + d Moy (t)

where Y;(t) denotes the number at risk at time ¢ in group j, and Yy(t) +
Yilt) = Y (2).

We start the derivation from the counting process expression for the test
statistic U:
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By inserting the decomposition, we can rewrite this:
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In this we can introduce the contiguous alternative:
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For the test statistic we then find:
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The first line of the test statistic converges to 0 when n goes to infinity, as
does the term with o(n~/2) and the second line of the predictable variation.

Further assuming that g¢(¢) is constant and equal to 1, the standardized
Tn/n1/2

T'n/nl/2>

test statistic \/ can thus be shown to be an asymptotically standard

normal random variable plus an additional term

¢ (wopr + wi (1~ py)) " so(t)sa (1) 12

4 Simplified test statistic for more realistic
settings

Although the adapted logrank test in itself relies only on a limited amount of
assumptions, some were made to simplify the expression for the test statistic.
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Although these simplifying assumptions are sometimes biologically implau-
sible, one must keep in mind that applications at the design stage require
simple assumptions. Imposing a more elaborate structure requires more and
more detailed knowledge which is not always available in advance. Neverthe-
less, for the adapted test to be practically feasable we should accommodate
more complex situations, balancing the simplicity of modelling, calculating
and interpreting with the desire to fully mimic the reality. Some simple ex-
tensions may accommodate very strong and well known deviations from the
simplest case, while supporting the need for a parsimonious description of
the reality.

4.1 Varying the baseline hazard ratio

Assumption 3’, of a constant hazard ratio £ between the two failure types,
seems unreasonable in some settings (e.g. Klein, 2006 criticizes this point
relating to the paper by Goetghebeur and Ryan, 1990, although there as
well extensions are rather straightforward). Very often one failure type is
common at a young age or at the onset of a disease, while other failure
types dominate later ages or progressed stages of the disease. For example,
in the Gambian setting malaria mortality is seen to increase from neonates
over post-neonates to children between 1 and 4 years of age (Jaffar and
others, 1997). ALRI mortality on the other hand peaks in post-neonates
and diminishes thereafter. Since a complete specification of £ as a function
of time is infeasible, we model these variations through a piecewise constant
model for £&. This already constitutes a major improvement in flexibility,
without unnecessary complicating the model. We assume two regimens with
a change point t., which is either known from biological considerations or
estimated from the data, e.g. by maximizing a partial likelihood.
The proportionality function becomes:

o (13 ) = €0 = + 1> )6

where [ is the usual indicator function. The standardized score statistic then
becomes:
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where w; is now defined differently from before:
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Note that the explicit separation into two sums in equation (4.1) is not
necessary under this definition.

Expression (4.1) can again be expressed in terms of quantities used in
weighted logrank tests. The first term in both the numerator and denom-
inator refers to two cause-specific weighted logrank tests that use everyone
in the study in their risk set but which only use events before .. The sec-
ond term consists of two cause-specific weighted logrank tests that only use
persons at risk at time t., and only use events after t.. So the test statistic
is now a weighted logrank test consisting of four contributions instead of
two: one for each cause before t., and one for each cause after t.. Again,
if constant misclassification rates are assumed, one can use quantities from
standard logrank tests.

In this setting, both & and & may have to be estimated. For &; this
is done in the same way as before, but based only on failures before t..
Assuming constant misclassification probabilities, this becomes:

i O1p1 — Op(1 —p1)
Oopo — 01<1 - po)

where Oy and O; now denote the number of events observed as type 0 and
type 1 respectively, before time .. Estimation of & is done through:
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where Of and O] now have to be interpreted as the number of failures per
type after t..

4.2 Varying the misclassification probabilities

Although the derivation of the score statistic in no way restricts the time-
evolution of the misclassification probabilities, it is only under the assumption
of constant probabilities that it reduces to the elegant statistic (4.5) from the
article. While we prefer this to promote the acceptance of the new test, in
many settings this constancy is violated. This may result from a learning
process or a sudden change in diagnostic method, but it may also result
from an evolution in the cause-of-death structure (Maude and Ross, 1997).
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The rise in mortality during and after the rainy season seen in Jaffar and
others (1997) is most pronounced in malaria. Since a well known overlap
exists between symptoms of malaria and ALRI (e.g. Redd and Bloland, 1992;
O’Dempsey and others, 1993), a higher proportion of malaria in the deaths
from other causes than ALRI would make the misclassification rates go up,
resulting in a seasonal change in misclassification probabilities.

To implement certain effects of time-varying misclassification probabili-
ties without complicating the test statistic too much, we can allow for piece-
wise constant misclassification probabilities with one known changepoint ..
The misclassification probabilities are named py and p; before time t., and
Py and p after ¢..

Since we made no assumption concerning the time-dependence of the
misclassification probabilities in the derivation of the score statistic, equa-
tions (4.1) and (4.3) from the main text still hold. It is therefore easy to see
that the test statistic takes exactly the same form (4.1) as in the previous
extension (piecewise constant hazard ratios):

> wilty, FB)(Zi — Zi) + 2 wilts, Fi)(Zi — Zy)

+ 2 wilti, F)
7,0121
ti>te

1:C;=1 :C;=1
( > Z3/ nz) — 7}
JER;

™ H<te ti>te
VA4l ~
> wiltn, F) || X Z3ni | — ZF

ICZZI ]ER'L

t;<tc
Again the weighted logrank test consists of four terms, one for each cause of
death before and after the change point t.. However, the weights w; are now
defined differently from (4.2):
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A new estimator for £ can be derived from the full likelihood, which
leads to a fourth degree polynomial equation for which the solution is rather
complicated. It is however possible to use equation (4.4) from the main text,
using only the data up to time t.. This may then be extended by using
the equation on the data after time ¢. (of course with the apropriate values

py and p) to get a second estimate ¢—¢. The two estimates can then be
averaged, yielding an (under the null) asymptotically unbiased estimate of
¢. Finally, we note that estimators can also be derived for situations with
rapidly fluctuating misclassification probabilities.
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4.3 More than one diagnostic method

The use of different diagnostic methods for different deaths is closely related
to the previous topic and will occur in reality. In the Gambian setting most
deaths will occur at home, but at least a small number will occur in hospital
allowing for more exact determination of the underlying cause. For these ob-
servations, the misclassification probabilities will be much smaller and they
should receive a different weight factor. This is essentially the same problem
as before and the solution is therefore identical. If we only consider two diag-
nostic methods, the adapted logrank test becomes a weighted sum consisting
of four terms, one for each cause-of-death at each diagnostic method. For
ease of explanation, we ignore possible differences in cause-specific hazards
related to the different settings using the different diagnostic methods.

We introduce a binary diagnosis indicator K;. As before, the general
adapted test statistic based on equations (4.1) and (4.3) from the main text
still holds, and we can now assume constant misclassification probabilities
depending on K;. When K; = 0 the misclassification probabilities are py
and p;, when K; = 1 the misclassification probabilities are p{, and p}. The
standardized test statistic now becomes

> wil Ky F)(Zi — Zi) + 32 wi(Ki, F)(Zi — Zy)
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4.4 Introducing missing failure types

Problems with diagnosis may not only lead to misclassified causes-of-death,
but also to failure in assigning a cause-of-death. Goetghebeur and Ryan
(1990) used techniques similar to ours to correct logrank tests for missing
causes-of-death. Since the same model assumptions are used by and large,
only a minor extension of the partial likelihood is needed to integrate both
problems. However, the model for the missingness depends strongly on the
mechanism which induces it. We assume the probabilities of missingness to
be equal among both treatment groups but different for the two causes of
death. In reality, they can depend on the treatment if this induces or masks
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symptoms leading to a significantly more complex expression. In any case,
the equality between treatment groups can be used as an approximation.

Notation is slightly changed to support the extra complexity. The prob-
ability of a missing cause-of-death is p}(t), with i the true cause-of-death (0
or 1, as before). If a cause-of-death is assigned, the probability of misclassi-
fication becomes pi"(t), depending on the true failure type i. We name the
misclassification indicator M (0 if the true failure type is observed, 1 else),
and the 'unknown’ indicator U (0 if a failure type is assigned, 1 else). After
including the intensity processes for the missing data in the partial likelihood,
the form of the score statistic (4.1) from the article is preserved:

U;=0 U;=0

The weights w; depend on the event time ¢; and the observation type for
individual ¢ (now type 0, 1 or unspecified) indicated in the superscript:
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The contributions of observations with a specified failure type are different
from before, where leaving a cause-of-death unspecified was not possible.
Also, an extra term deals with the information contributed by observations
without a specified failure type. The weights reflect the probability that an
observation of a given type at a given time is truly a type 1 failure.

The variance of the test statistic becomes
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Assuming constant p?, p} and p? (i=true failure type), we introduce the

notation
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Under the null, ¢ can be estimated through the equation

1—A 1-B 1-C
0=01——4+0)———+0,———
"Atet " "Byt C+es
which reduces to a standard quadratic equation, where the negative square
root of the discriminant should be used.
The test statistic now becomes an easy-to-implement weighted logrank
test consisting of three terms:
B WOy + w' TP + w" T (4.5)
(wO)? Vg + (w2 4 (w)2Vy) 2 '

n

Here, T}, 77" and 7' are the numerators of the standard logrank tests com-
paring the number of failures of type 0, type 1 and unspecified type respec-
tively between treatment groups, while Vi*, V/* and V! are the squares of
the denominators of the respective tests.

5 Sensitivity to misspecification of p; and p,

5.1 Summary

As shown in the main paper, the corrected cause-specific analysis outper-
forms both the naive cause-specific and the all-cause analysis. However,
these conclusions are based on asymptotic results assuming the misclassifica-
tion probabilities are exactly known. Except for some very specific examples
this will rarely be the case. This section aims to give a sense of the degree
of uncertainty which can be allowed on the knowledge of py and p, so that
the adapted test remains a viable alternative for the all-cause analysis. We
will refer to the problem of assigning the wrong cause-of-death as misclassi-
fication, while we will refer to the problem of using the wrong probability of
misclassification as misspecification.

From a practical point of view two situations can arise. In the first one
the goal is to analyse a given data set and we need to know what the impact
of misspecification is on the power of the analysis. The second situation con-
cerns the design stage, where one computes the needed sample size through
formula (5.1) (main text) using misspecified misclassification probabilities.
One can then wonder in what power the miscalculated sample size combined
with an analysis based on misspecified probabilities results.

The impact of misspecification of py and p; is assessed by means of simu-
lations, using 1000 simulation steps for over 900 realistic settings, leading to
a standard error on the estimated power of less than 1.6%. Sample sizes are
calculated using formula (5.1) from the main text. Throughout we will as-
sume the failures under study are detrimental, and the anticipated treatment
effect is to lower their hazard. Formula (5.1) is then slightly conservative.

For the first situation misspecification of p; indeed leads to a loss of
power when using the adapted method. However, even with moderate to
large misspecification (up to 20%) this loss is smaller than or of the same
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magnitude as the excess power which results from using the conservative
sample size formula (5.1). Misspecification of py, has no influence on the
power, because of the estimate used for £&. When introducing this estimate
into the test statistic, the explicit dependence on py disappears. This makes
sense, since knowledge of py, of the number of events for each cause and of £
completely determines py.

For the second situation simulation followed the same approach as before,
only now the sample sizes were based on the misspecified py and p;, as they
would be when considering use of the adapted statistic in the design of a
study. Formula (5.1) then yields sample sizes which may be either too high
or too low, leading to deviations in resulting power in both directions. Al-
though the size of these deviations can be larger than 10%, combined with a
conservative sample size formula they are expected to be between -10% and
+5% if the misspecification of p; is kept below 20% and the misspecification
of py is kept below 6%.

Throughout all this, the type I error rate is controlled, a theoretical result
which is confirmed by simulation.

It appears that the setting (defined by &, pp and py) has more impact
than the size of the misspecification itself. In a typical setting as the Gam-
bian one (py small, p; large and cause-specific hazard for event of interest
low) misspecification of py has a larger effect, but the misspecification itself
is expected to be smaller, resulting in a smaller impact. We found that over-
estimation of p; is probably to be prefered to underestimation. This leads
to conservativeness however, meaning that the sample will be larger than
strictly necessary, and thus to inefficiency.

5.2 Design of the simulation study

The adapted test uses various quantities, of which some are assumed to be
known in advance and some can be estimated. These quantities are:

e p;: the probability of misclassifying an event of interest as a competing
risk

e po: the probability of misclassifying a competing risk as an event of
interest

e ¢: log of the cause-specific baseline hazard ratio (log of the ratio of the
hazard for the event of interest and the competing risk, in the control

group)

In practical settings one often relies on previous research to estimate the
misclassification probabilities p; and pg. In rare cases, this may also be the
case for &. In this sensitivity analysis, we assume £ needs to be estimated from
the data at hand. Therefore, the misclassification probabilities are the only
parameters which may be misspecified (apart from model misspecification)
and are the only parameters studied here.

In the sensitivity analysis, we take as input all combinations with param-
eters taken from the following possibilities:
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Table 1: Input values for the sensitivity analysis.

¢ po (%) p (%)
10 20 40 60 80
log 2:0059 15 20 10 60 80
20 20 10 60 80
10 20 40 60 80
0 15 20 40 60 80
20 20 10 60 80
10 20 10 60 80
log 20275 15 20 40 60 80
20 20 40 60 80

e p;: is taken to be high: (20, 40, 60, 80) (%)
e po: is taken to be low: (10, 15, 20) (%)

e {: three cases are studied: rare event of interest, equal occurrence, rare

: e 0.0059 0.0275
competing risk: (log o oas» 0, log 0_0059)

The input values for ¢ are based on the expected hazards for the event of
interest and the competing risks in the setting described by Jaffar and others
(2003). Tt is unlikely that the cause-of-interest is assigned by mistake, and
more often the cause-of-interest is not recognized if present.

We generate data from the various combinations of these numbers, using
0.0059 and 0.0275 as the cause-specific hazards for the event of interest and
the competing risks, or vice versa. The ’equal occurrence’ case uses hazards
of 0.01 for both event types. We assume constant cause-specific hazards,
with staggered accrual over 4 years followed by an extra follow-up period of
half a year (roughly approximating the trial described in Cutts and others,
2005). The treatment effect is taken from the article by Jaffar, and entails a
reduction of the cause-specific hazard with 31.5%.

We assume the analysis of the generated data may use wrong misclassifi-
cation probabilities. The difference between the value used for analysis and
the true simulation value is chosen from two vectors:

e Ap;: large misspecification is possible: (-18, -9, 0, 9, 18) (%)
e Apg: the misspecification is somewhat smaller: (-6, -3, 0, 3, 6) (%)

At all combinations of input parameters, all possible combinations of mis-
specifications are used. For each unique combination of input and analysis
quantities (in total 3x4x3x5x5=900 combinations) 1000 simulations are done.
The sample size for each simulation is determined from the sample size for-
mula (5.1), and is therefore unique to each combination of input parameters.
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From these simulations, we estimate the power to detect the treatment
effect at a 5% significance level as the rejection rate of the null hypothesis.

When designing methods aiming to gain power, one should be careful not
to inflate the type I error rate. We illustrate that for our method the type I
error rate is controlled, even under misspecification of the model parameters.
When this implies that £ needs to be estimated, this follows theoretically
by noting that the &-estimator is a consistent estimator under the null. By
applying a Slutsky-like approach to the test statistic one can show that the
statistic’s asymptotic distribution under the null is the same regardless of
whether the used ¢ was known or estimated. Thus, asymptotically the type
I error rate is not inflated when estimating £&. The type I error rate under
misspecification of py and p; is discussed in the following sections.

5.3 Results for misspecification in the analysis

Effects on type I error rate at finite samples are shown by simulation un-
der the null (¢=0). We used 10,000 simulations at each of the 900 settings
discussed above. The minimum observed rejection rate was 4.54%, the maxi-
mum was 5.62% which illustrates that the rejection rate is not increased. Fig-
ure 2 compares the observed distribution of rejection rates with the expected
distribution using 10,000 simulation steps if the 5% a-level is respected in
each simulation setting. The figure shows no shift in location, indicating the
type I error rate is generally not increased, and shows no increased dispersion,
indicating all simulations have the same rejection rate, i.e. 5%.

Observed vs. expected rejection rate at «=0.05
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Figure 2: Histogram of the empirical rejection rates and comparison with
expectation under a controlled type I error rate, for various settings faced
with masspecified py and py at the analysis stage.

We can measure powerloss due to misspecification of py and p; in two
ways. The first one estimates the powerloss, comparing the analyses with
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and without misspecification. The second one takes the conservativeness of
the used sample size formula into account, meaning that the power actually
obtained with the calculated sample size is higher than the power that was
asked for. The size of this conservativeness depends on the setting, but is
easily in the range of some percentage points, and can therefore procure a
buffer against the powerloss due to misspecification. The second method
compares the obtained powers to the desired level of 80%.

The first method provides insight in the impact of misspecification, telling
us what the true resulting loss of power is. This may be important when
considering whether or not to invest in a pilot study to estimate py and p;.
The second method on the other hand has more practical implications, telling
us whether or not a study planned using the proposed sample size formula
will attain the desired power. It can also be used to determine what level of
misspecification is acceptable, in the sense that it will not adversely affect
the power once combined with the proposed sample size formula.

5.3.1 Comparison to analysis without misspecification

We first compare the power for the analyses with and without a given mis-
specification. Figure 3 shows the estimated cumulative density of the pow-
erloss induced by the misspecification, in black when ¢ is estimated from the
data, in red when it is known.

ECDF for powerloss
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Figure 3: Cumulative distribution of the difference in power between an anal-
ysis based on the correct pg and py and an analysis when these are misspecified
by Apy and Apy. The black curve is for an analysis estimating &, the red for
an analysis with exact knowledge of &.

When ¢ is estimated (black) the powerloss exceeds 5% in just under 20%
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of the cases, but exceptions may yield a powerloss of up to 13%. A number of
simulations yield a powerloss of zero, these are mainly simulations with Apy
and Ap; equal to zero. Exact knowledge of £ seems to lower the impact of
misspecification (the impact being at least 5% in less than 10% of the cases -
red curve), although a small number of extreme powerlosses are still present.
Similar conclusions are drawn from the boxplots in figure 4. The appearance
of less datapoints in the righthand boxplot is due to overlap coming from
independence of py when estimating &.
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Figure 4: Powerloss with & known in advance (0) or estimated (1).

We conclude that knowing & reduces the impact of misspecification on
power. However, we assume that in most cases £ is unknown and focus on
the case where £ is estimated.

Our true interest lies in the connection between misspecification and pow-
erloss. We therefore build two regressions models linking the two: one model
containing all five parameters (¢, true py and p; and Apy and Ap;) and one
model pruned by backwards elimination based on p-values. For all parame-
ters quadratic effects will be considered, since we expect that overestimating
the misclassification by 10% has a similar effect as underestimating by 10%.

We first report the first model, based on the data where ¢ is estimated
(po, p1, Apo, Ap;y are all expressed as probabilities, between 0 and 1):

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 4.336e-03 8.184e-03 0.530 0.596316

xi -1.278e-03 3.423e-04 -3.733 0.000201 **x
true pl 2.410e-02 1.093e-02 2.206 0.027664 *
true po 7.044e-02 1.100e-01 0.640 0.522168
delta pl -4.404e-02 3.380e-03 -13.029 < 2e-16 **x
delta pO -3.604e-05 1.014e-02 -0.004 0.997165
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xi~2 -6.346e-04 3.852e-04 -1.648 0.099795 .

tpl~2 -6.524e-02 1.076e-02 -6.066 1.94e-09 x*x*x
tp0~2 -2.138e-01 3.650e-01 -0.586 0.558148
dpl~2 -1.429e+00 3.174e-02 -45.023 < 2e-16 *x*x*
dp0~2 6.475e-03 2.857e-01 0.023 0.981920

The second (reduced) model looks like this:

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.008744 0.002448 3.572 0.000373 *xx*xx

xi -0.001278 0.000342 -3.736 0.000199 *x*x
true pl 0.024098 0.010916 2.208 0.027525 =*

delta pl -0.044039 0.003377 -13.041 < 2e-16 *x*x
tpl~2 -0.065240 0.010745 -6.071 1.87e-09 *x*x
dpl~2 -1.429031 0.031712 -45.063 < 2e-16 x*x

The model is much reduced. There is no significant effect of the misspec-
ification of py whatsoever (further investigation showed that py did have a
quadratic effect when ¢ is exactly known). Misspecification of p; has a strong
effect, with a quadratic trend as expected. There is also a quadratic effect
of the true p; itself. The effects of Ap; are the same whether or not Apg is
in the model. It may be noted that although it would be interesting to see
if any interactions occur, this would make the model more complicated and
it would cloud the general features we are mainly looking for.

For a more quantitive view of the effect of misspecification we use the
complete model to estimate the powerloss, for example at Ap; = 20% and
Apy = 0% in the Gambian setting (§ = —1.539, po = 0.1, p; = 0.6). The
powerloss due to misspecification then becomes 6.5%. Although this is a
significant reduction of the power, we have to keep in mind that the used
misspecification is quite large. If we reduce Ap; to 10% for example, the
expected powerloss is only 1.8%. Furthermore, the power which is gained by
using this method (in comparison to all-cause analyses) is in general larger
for the problems we focus on. This means that even under considerable
misspecification the method is still favourable compared to others.

Finally, we illustrate the loss of power as estimated by the first model,
by plotting it against Ap; for £ equal to -1.539, 0 and 1.539 (figure 5). We
assume Apy = 0%, p1 = 60% and pg = 10%. The figure shows the quadratic
dependence, and an almost complete overlap between £ equal to 0 and equal
to -1.539. Extrapolating, when Ap; is -30%, the analysis loses about 12%
power, when it is +30% the analysis loses about 14% power.

5.3.2 Comparison to prespecified power of 80%

We now wonder if the conservativeness of the proposed sample size formula
is enough to counter the powerloss due to possible misspecification. The
cumulative density of the power minus 0.8 is plotted for both an analysis
with estimation of £ and one with exact knowledge of & (figure 6).
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Figure 5: Loss of power due to misspecification of p1 at various values for &.
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Figure 6: Cumulative distribution of the difference between the prespecified
power of 80% and the power of an analysis based on py + Apy and p; + Ap;
(misspecified). The black curve is for an analysis estimating &, the red for
an analysis with exact knowledge of &.

Compared to figure 3, the distributions are shifted some 7% to the right,
illustrating the conservativeness of the sample size formula. For £ estimated,
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the power drops below 80% in a little less than 20% of the cases, but there
are still some exceptions where the power is as low as 70%.

When € is known in advance, the power is lower than 80% in only 10%
of the cases but exceptions again go as low as 70%. The difference between
knowing and estimating ¢ is still distinct (confirming the smaller impact of
misspecification when £ is known in advance), but smaller than before.

As before, we build two regression models:

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 3.733e-02 9.765e-03  3.823 0.000141 *xx*
xi 8.040e-03 4.084e-04 19.685 < 2e-16 **x
true pl 6.796e-02 1.304e-02 5.213 2.31e-07 ***
true pO 1.510e-01 1.313e-01 1.150 0.250321
delta p1 -4.404e-02 4.033e-03 -10.920 < 2e-16 **x*
delta pO -3.604e-05 1.210e-02 -0.003 0.997624
xi~2 1.193e-04 4.596e-04 0.260 0.795258
tpl~2 -1.310e-01 1.283e-02 -10.208 < 2e-16 **x
tp0~2 -5.172e-01 4.356e-01 -1.187 0.235374
dpl~2 -1.429e+00 3.787e-02 -37.733 < 2e-16 **x
dp0~2 6.475e-03 3.408e-01 0.019 0.984847

Pruning the model based on the p-values leads to a more concise model:

Coefficients:
Estimate Std. Error t value Pr(>lt|)
(Intercept) 0.0476859 0.0029175 16.345 < 2e-16 ***

xi 0.0080401 0.0004077 19.723 < 2e-16 **x*
true pl 0.0679645 0.0130116  5.223 2.19e-07 **x*
delta pil -0.0440385 0.0040253 -10.941 < 2e-16 **x
tpl~2 -0.1309995 0.0128083 -10.228 < 2e-16 **x*
dpl~2 -1.4290310 0.0377996 -37.805 < 2e-16 **x*

Again, no significant effect of misspecification of py appears in the model
(when ¢ is known, this effect is borderline significant). Interestingly, the
intercept shows that globally the conservativeness of the sample size formula
leads to a power which is about 4% higher than expected. When the event
of interest occurs less frequently than the competing risk (as in the Gambian
setting) this conservativeness can be 1% lower, when it occurs more often this
can be 1% higher. The strength of the conservativeness as a buffer against
powerloss due to misspecification therefore depends on the precise setting.

We now use the first model to illustrate the impact of the misspecification.
In the Gambian example, a misspecification of 20% of p; leads to a power
which is 3.7% lower than the anticipated 80%. We now plot the power against
Ap; for £ equal to -1.539, 0 and 1.539, assuming Apy = 0%, p; = 60% and
po = 10% (figure 7). As a reference, the powers for a naive cause-specific
and an all-cause analysis using the same sample size are shown (respectively
71.9% and 67.2%). The higher power for the naive analysis illustrates its
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higher asymptotic efficiency, relative to the all-cause analysis (section 5.2 of
the main text). A misspecification of over 20% is needed to make the powers
for the two cause-specific analyses comparable, and well over 30% to make
the all-cause analysis a viable alternative.
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Figure 7: Power after misspecification of py at various values for &.

We generally conclude that our adapted cause-specific test is a strong
alternative for a standard all-cause analysis, even under severe misspecifica-
tion of the misclassification probabilities. To protect the power of the study
however, the use of the conservative sample size formula is recommended.

5.4 Misspecification at the design stage

The sensitivity analysis so far does not mimic a realistic course for a study.
Indeed, sample size calculations were based on the true parameters, while in
real life the statistician only has access to the possibly misspecified estimates
of those parameters. It would therefore make sense to use these to determine
the sample size, thus giving a more complete and realistic view of the impact
that misspecification has on a study, from design to analysis.

The simulation study of this effect uses the same set-up as before, only
now the sample size is determined from the misspecified probabilities. The
resulting variation in sample sizes (at a given &, po, p1-combination), was large
enough to lead to differences of up to 41% for the power of the all-cause
analysis. Variations decreased with increasing £ and p;, while the effect of py
was less pronounced. Similar effects on the power of the naive cause-specific
analysis were observed for £, effects of py and p; were less pronounced.
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To assess the control of the type I error rate simulations were performed
under the null. The conclusions are similar to those for misspecification at
the analysis stage: no increase in type I error rate is detected. As a matter
of completeness, figure 8 shows the comparison between the distribution of
the empirical and the expected rejection rate.

Observed vs. expected rejection rate at «=0.05
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Figure 8: Histogram of the empirical rejection rates and comparison with
expectation under a controlled type I error rate, for various settings faced
with misspecified py and p; at the design stage.

For the impact on power, we first look at the estimated cumulative density
function for the difference in power between the analysis using a correct and
a misspecified pg and p; (figure 9). This difference is now much more widely
distributed than in figure 3: around 30% of the simulations show a difference
which is smaller than -10%, while around 30% of the simulations show a
positive difference, even up to 10%.

Knowledge of ¢ reduces the impact of the misspecification roughly in the
same way as before. This can also be seen on the boxplot (figure 10). From
now on we focus on the setting where £ is estimated.

As before we build regression models for the difference in power. All
parameters (£, po, p1 and the amounts of misspecification) were significantly
present, but only for £, p; and Ap; the dependence showed a quadratic trend.
For the misclassification of py the quadratic trend is borderline significant.

Estimate Std. Error t value Pr(>|tl|)

(Intercept) -0.031670 0.026034 -1.216 0.224125
dssi 0.004212 0.001089 3.868 0.000118 *xx*
dss2 0.157491 0.034758 4.531 6.67e-06 *xx*
dss3 0.190668  0.349996 0.545 0.586048
dss4 0.195851 0.010753 18.214 < 2e-16 **x
dssb 0.371735 0.032258 11.524 < 2e-16 *x*x*
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Figure 9: Cumulative distribution of the difference in power between an anal-
ysis based on and designed through the correct po and py and an analysis when
these are misspecified by Apg and Ap,. The black curve is for an analysis
estimating &, the red for an analysis with exact knowledge of €.
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Figure 10: Comparison of power differences with & known in advance (0) or
estimated (1).

dss12 -0.003456 0.001225 -2.820 0.004902 *x
dss22 -0.218998 0.034215 -6.401 2.50e-10 *x*x
dss32 -0.360656 1.161288 -0.311 0.756204
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dss42 -1.822911 0.100974 -18.063 < 2e-16 *x*x
dssb2 -1.384933 0.908766 -1.524 0.127872

Or pruned:

Estimate Std. Error t value Pr(>|tl|)

(Intercept) -0.026649 0.009477 -2.812 0.005032 *x
dssl 0.004212 0.001089  3.867 0.000118 x*x*x*
dss2 0.157491 0.034766 4.530 6.70e-06 x*x*x*
dss3 0.082471 0.033531 2.460 0.014102 *

dss4 0.1956851  0.010755 18.210 < 2e-16 x*x
dssb 0.371735 0.032266 11.521 < 2e-16 **x*
dss12 -0.003456 0.001226 -2.820 0.004912 *x
dss22 -0.218998 0.034223 -6.399 2.52e-10 **x
dss42 -1.822911 0.100998 -18.049 < 2e-16 **x

We can again illustrate the loss of power by plotting it against Ap; for £
equal to -1.539, 0 and 1.539 (figure 11), assuming Apg = 0%, p; = 60% and
po = 10%. Although the figure is quite similar to figure 5 the powerloss is
clearly much greater, with losses of up to 25%. Also, the asymmetry is now
reversed, showing a larger powerloss at underestimation of p;. This is caused
by the larger sample sizes that are used at the right hand side of the figure
(see also figure 13).

Figure 12 compares the final power to the prespecified level of 80%, show-
ing that only in around 40% of the cases the power falls below 80%.

Powerloss due to misspecification of p_1 - design stage
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Figure 11: Loss of power due to misspecification of py at the design stage at
various values for &.
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Figure 12: Cumulative distribution of the difference between the prespecified
power of 80% and the power of an analysis based on and designed through
po + Apo and p1 + Apy (misspecified). The black curve is for an analysis
estimating &, the red for an analysis with exact knowledge of €.

We now build a linear regression model for the difference between the
power and 80%.

(Intercept)
dssi
dss2
dss3
dss4
dssb
dss12
dss22
dss32
dss4?2
dssb2

Or pruned:

(Intercept)
dssi
dss?2
dss4
dssb

Estimate
0.085751
.014269
.041822
.232693
.176266
.371735
.003163
.131568
.678457
.476558
.384933

Estimate
0.064750
-0.014269
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Std.
0.

O O, OO O O O O o

Std.

O O O O O

025689
.001075
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.345359
.009549
.031831
.001209
.033762
.145905
.080706
.896728

.007926
.001075
.034307
.009552
.031840
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dssl12 -0.003163 0.001209 -2.615 0.009064 *x
dss22 -0.131568 0.033771 -3.896 0.000105 *x*x
dss42 -1.476558 0.080729 -18.290 < 2e-16 **x

Again we find all dependencies to be quadratic, except for pg. A re-
markable distinction with misspecification in the analysis alone is that here
misspecification of py has an even stronger influence than misspecification of
p1, where before it had none.

What we are most interested in here is the size of the powerloss, and more
specifically whether or not the conservativeness of the sample size formula
is enough to counter this. First we look at the effect of misspecifying p;
as before (figure 13). As a reference, the powers for a naive cause-specific
and an all-cause analysis using the same sample size are shown (respectively
71.9% and 67.2%). For good interpretation, one should realize these powers
depend on the sample sizes which in turn depend on Ap;, as shown in the
bottom part of the plot.
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Figure 13: Power in function of Apy, the misspecification of p1 at the design
stage, at various values for &, with indication of sample sizes as calculated
through formula (5.1) from the main text.

We now see that the naive cause-specific analysis obtains a similar (or
even higher) power when we overestimate p; by more than 15%. The all-
cause analysis obtains a similar (or even higher) power when we overestimate
it by more than 20%. At this point, the sample size has risen to more than
120,000, the level derived from the ARE’s in section 5.4 of the main text.

Looking further into the Gambian setting, we get a power of 83.77%
if p; is underestimated by 20%. When we additionally underestimate po
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by 5%, we even gain power and get 85.28%. Of course, this doesn’t come
without a price: the sample size calculation yields a larger number making
the study more costly (e.g. when the Ap; is -20%, the sample size used is
61,285, when Ap; is +20% it is 121,311). Also, the power doesn’t always go
up. To illustrate this, we plot the power expected from the full model as a
function of misspecification size in figure 14. By extrapolating it appears that
misspecifying pg by 10% and p; by 30% always has a negative impact on the
power, although the severity depends on the direction of the misspecification.
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Figure 14: Power as a function of py and p; misspecification for the Gambian
example.

5.5 Conclusions

The setting (defined by &, py and ppy) has more impact than the misspecifi-
cation itself it appears. In a typical setting as the Gambian one (py small,
p1 large and cause-specific hazard for event of interest low) misspecification
of pp has a larger effect, but the misspecification itself is of course expected
to be smaller, resulting in a smaller impact. From the models we found that
overestimation of p; is probably to be prefered to underestimation (positive
coefficient for the main effect of the misspecification). This leads to con-
servativeness however, meaning that the sample will be larger than strictly
necessary.
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5.6 Unadressed issues

This sensitivity analysis focussed on the impact on power of the misspecifica-
tion of misclassification probabilities. Although this was assessed at various
levels of event versus competing risk occurrence, the sensitivity to relative
occurrence ¢ itself was not part of the analysis. This is irrelevant if one
estimates &, but it may be important if £ is prespecified by the analyst.

A further issue may be model misspecification. We only adressed the case
where the proportionality holds, where both event types are independent,
where there are no additional parameters influencing the survival rates. In
reality most of these assumptions will at best be approximately true, and
it can be useful to see how the power of the test reacts to such deviations.
However, extensions of the theory exist which allow some assumptions to be
relaxed to some extent. Although this may resolve the issue it opens up new
ways in which the analyst may misspecify the model, and thus new possible
issues for a more thorough sensitivity analysis.

A final issue is the use of the conservativeness of the sample size formula
in adressing sensitivity issues. We stated before that using sample size for-
mula (5.1) leads to a conservative view on sample size, leading to a higher
power than anticipated. This increase in power counteracts the powerloss
due to any reasonable misspecification of the misclassification probabilities.
However, it is clear that the tendency towards conservativeness of the sam-
ple size formula depends on input parameters (such as &, pp and p;). In
this sense, the general conclusion that combined use of the adapted statistic
and the sample size formula leads to the expected power, even under mild
misspecification of py and py, could itself be subject to a larger sensitivity
analysis, mainly using more variation in &.
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