
Supplementary Materials

Section 1

We extend these methods to the continuous exposure case. We define the potential

outcome Y (X) as the outcome under exposure level X, and assume the causal exposure

effect of interest is

T (X) = g(E(Y (X)|X), E(Y (0)|X)).

This parameter relates the outcome for subjects with exposure level X to what their

outcomes would be if X = 0. Note that this effect depends on the amount of exposure

(X), as it should. Confounding is then quantified by

∆(X) = T (X)− Tm(X),

where Tm(X) = g(E(Y obs|X), E(Y obs|X = 0)) is the marginal effect of X units of

exposure. Similarly, the non-linearity effect is quantified by

∆nl(X) = Tc(X)− T (X),

where Tc(X) = g(E(Y obs|X, Z), E(Y obs|X = 0, Z)) is the effect of X units of exposure

conditional on covariate value Z. Note that the conditional exposure effect is assumed

to be constant over Z.

We make the conditional independence assumption that Y (0) is independent of

exposure given Z. That is, within a population with fixed Z, the expected outcome

absent exposure is not dependent on the actual exposure level. Under this assumption,
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the causal exposure effect reduces to

T (X) = g(E(Y (X)|X),

∫
E(Y (0)|X, Z)dFZ|X(z))

= g(E(Y obs|X),

∫
E(Y (0)|X = 0, Z)dFZ|X(z))

= g(E(Y obs|X),

∫
E(Y obs|X = 0, Z)dFZ|X(z)),

which involves only directly observable quantities.

We propose a standardization estimate of confounding, following the methods of

Hernan and Robins (2006) and Sato and Matsuyama (2003). Here E(Y obs|X) is es-

timated from a marginal binary regression model and E(Y obs|X, Z) from a binary

regression model that includes Z as a covariate. The distribution of Z conditional on

exposure can be estimated using a parametric model. In the exercises below we use

logistic regression models and assume that Z is normally distributed conditional on X,

where the parameters of the distribution are estimated using a normal linear model.

As in Section 5, we compare the performances of the simple and standardization

estimates of confounding using simulations. We simulate a fixed X ∼ N(0, 1), and

draw 3000 datasets of size 2000 from the following model:

Z|X ∼ N(α0 + α1X, 1)

log odds E(Y |X,Z) = β0 + β1X + β2Z. (1 a)

We fix the parameters at α0 = 0, β0 = −3, and eβ1 = 1.5, a modest conditional

exposure effect. The parameters α1 and β2 are varied to explore different scenarios.

We quantify the causal exposure effect of 1 unit of exposure. The simulation results are

shown in Table 1 of the Supplementary Materials. The conclusions are similar to the
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binary exposure case. The only qualitative difference is that here the corrected estimate

of confounding incorporates very little extra variability. This is to be expected, as we

have estimated the distribution of Z parametrically.

Section 2

We address the problem of quantifying incremental confounding, the amount by which

a factor of interest (Z) confounds the exposure-outcome association over and above

known confounders (C). We explore two approaches:

1. Quantify the amount of confounding due to (C, Z), and compare this to the

amount of confounding due to C alone.

2. Quantify the amount of confounding due to Z conditional on C, and then marginal-

ize this over C.

We show that these two approaches answer different questions. Consider method (1).

The amount of confounding due to (C,Z) is

∆CZ = g

(
E(Y obs| = 1),

∫
E(Y obs|X = 0, Z, C) dFC,Z|X=1(c, z)

)

− g
(
E(Y obs|X = 1), E(Y obs|X = 0)

)

and the amount of confounding due to C alone is

∆C = g

(
E(Y obs|X = 1),

∫
E(Y obs|X = 0, C) dFC|X=1(c)

)

− g
(
E(Y obs|X = 1), E(Y obs|X = 0)

)
.
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The measure of incremental confounding according to method (1) is then ∆CZ −∆C .

According to method (2), the measure of incremental confounding is

∆Z|C =

∫ [
g

(
E(Y obs|X = 1, C),

∫
E(Y obs|X = 0, C, Z) dFZ|X=1,C(z)

)
−

g
(
E(Y obs|X = 1, C), E(Y obs|X = 0, C)

)]
dFC|X=1(c)).

If g(a, b) = a − b is the risk difference, ∆Z|C = ∆CZ − ∆Z . More generally, however,

the two measures differ.

Approaches (1) and (2) address different questions. The first approach quantifies the

change in the amount of confounding of the marginal association due to considering

Z in addition to C. The second approach quantifies the amount of confounding of

the C-conditional association due to Z. The first approach focuses on the marginal

association, the second on the association conditional on C.

Both measures (1) and (2) of incremental confounding can be estimated using the

standardization or IPW approaches. The distribution of C can be estimated empiri-

cally, and bootstrapping used for inference.

Section 3

Suppose the causal exposure effect of interest is the average causal effect (ACE),

T = g(E(Y (1)), E(Y (0))),

the effect of exposure in the whole population. The magnitude of confounding can then

be quantified by

∆ = T − Tm = g(E(Y (1), E(Y (0)))− g(E(Y obs|X = 1), E(Y obs|X = 0)).
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Under the assumption that (Y (1), Y (0)) is independent of exposure given a covariate

Z (a stronger assumption than was used to define confounding for the causal effect

among the exposed (Hernan and Robins 2006)), we rewrite ∆ as

∆ = g

(∫
E(Y (1)|Z)dFZ(z),

∫
E(Y (0)|Z)dFZ(z)

)
− g(E(Y obs|X = 1), E(Y obs|X = 0))

= g

(∫
E(Y (1)|X = 1, Z)dFZ(z),

∫
E(Y (0)|X = 0, Z)dFZ(z)

)
−

g(E(Y obs|X = 1), E(Y obs|X = 0))

= g

(∫
E(Y obs|X = 1, Z)dFZ(z),

∫
E(Y obs|X = 0, Z)dFZ(z)

)
−

g(E(Y obs|X = 1), E(Y obs|X = 0)),

where the second line follows from the conditional independence assumption. The

parameter ∆ then can be estimated using the standardization approach, where FZ

is estimated empirically and E(Y obs|X,Z) using binary regression, or using the IPW

approach, the fact that

E(Y (0)) = E

(
I(X = 0)Y (0)

P (X = 0|Z)

)
and E(Y (1)) = E

(
I(X = 1)Y (1)

P (X = 1|Z)

)
,

and estimating P (X|Z) using binary regression.
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Table 1: 3000 simulations under model (1 a) to evaluate the performance of the simple
and standardized estimates of confounding bias for one unit of a continuous exposure,
X ∼ N(0, 1). In each scenario, E(Y |X, Z) is plotted against Z for X = 0 and X = 1.
In all scenarios, eβ1 = 1.5. The mean Neuhaus et al. (1991) estimate of the non-
linearity effect is also shown.

Mean ×10 Var × 1000 Mean ×10
Scenario T (1) ∆(1)× 10 ∆nl(1)× 10 ∆̂si(1) ∆̂st(1) ∆̂si(1) ∆̂st(1) ∆̂nl(1)

 

  

0
1

−1 3

α1 = 0.01
β2 = 0.05

A

0.41 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.01 < 0.01

 

  

0
1

−1 3

α1 = 0.1
β2 = 0.05

B

0.41 -0.05 < 0.01 -0.04 -0.05 0.11 0.12 < 0.01

 

  

0
1

−1 3

α1 = 0.5
β2 = 0.05

C

0.41 -0.25 < 0.01 -0.22 -0.23 2.67 2.69 < 0.01

 

  

0
1

−1 3

α1 = 1
β2 = 0.05

D

0.41 -0.50 < 0.01 -0.45 -0.46 10.60 10.61 < 0.01

 

  

0
1

−1 3

α1 = 2
β2 = 0.05

E

0.41 -1.00 < 0.01 -0.90 -0.90 41.67 41.62 < 0.01

 

  

0
1

−1 3

α1 = 0.01
β2 = 0.5

F

0.40 -0.05 0.06 0.02 -0.06 0.17 0.16 0.10

 

  

0
1

−1 3

α1 = 0.01
β2 = 1.5

G

0.33 -0.12 0.81 0.67 -0.16 1.48 1.09 0.80

 

  

0
1

−1 3

α1 = 0.01
β2 = 4

H

0.16 -0.16 2.50 2.51 -0.19 4.54 1.68 2.50

 

  

0
1

−1 3

α1 = 0.5
β2 = 0.5

I

0.40 -2.46 0.08 -2.38 -2.46 2.12 2.33 0.10

 

  

0
1

−1 3

α1 = 0.5
β2 = 1.5

J

0.31 -5.94 0.97 -5.04 -6.01 2.12 1.89 0.90

 

  

0
1

−1 3

α1 = 0.5
β2 = 4

K

0.15 -7.52 2.58 -7.86 -7.86 5.84 2.21 2.60


