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Almost sure convergence to correct dose

The most practically useful tool for investigating operating characteristics is that of simula-

tion. The methods are very easy to put into practice and the user can obtain a good idea on

how things work by studying behaviour over a range of potential situations. Large sample

properties are of lesser interest in view of the typically small to moderate sample sizes we

usually deal with. Nonetheless, if large sample behaviour is erratic or unpredictable then

the grounds for having confidence in finite sample behaviour becomes shaky.

It is important then to establish central statistical properties such as almost sure conver-

gence of estimators for these models. We might feel that convergence in probability is not

enough. On the other hand, almost sure convergence indicates that as sample size increases,

we do better and better in some sense. Even so, both types of convergence, are large sample

properties. We cannot appeal to the usual maximum likelihood theory since our models are

usually miss-specified. First consider the situation when X takes continuous values and let

(X,Y ) be governed by the relation.

Y = α + βX + σǫ, α > 0, β > 0, X > 0. (1)

In the extreme case where σ = 0, i.e., there are no errors, we can show that the next design

value x̄n+1 lies strictly between x̄n and ξ0. If x̄n > ξ0, then we can see that x̄n − ξ0 is a

decreasing sequence bounded below. It therefore has a limit and this limit can be seen to

be 0. If x̄n < ξ0, then we can see that x̄n − ξ0 is an increasing sequence bounded above.

0



Again the sequence has a limit which can be seen to be 0. When σ > 0 we can refine this

argument to show that x̄n converges almost surely to ξ0. Next, consider the situation when X

takes only a finite number of values. This case is of more interest to us because, in practice,

the design levels will often be restricted to a small finite range. Suppose these values are

denoted by d1 <, . . . , < dk. Let (x1, y1), . . . , (xn, yn) be the first n observations. After fitting

an ordinary linear model without intercept to the data we can calculate θ/β̂n = θx̄n/ȳn.

The next design value xn+1 is chosen from d1 <, . . . , < dk so that it is the closest to θx̄n/ȳn.

Consider an example in which the design variable X takes the following values: 1, 2, . . . , 10.

The response variable Y is generated according to

Y = 2 + 0.5X + σǫ.

Consider the case where σ = 0. Suppose that the target value for Y is taken as θ = 3. Solving

equation 3 = 2 + 0.5x gives ξ0 = 2, the target level that we are trying to estimate. However,

if we start with the wrong level x1 = 3, which is one level above the target one, then we have

y1 = 3.5. The least squared estimate (without the intercept) of β is β̂1 = 3.5/3 = 1.167. To

select the recommended level for the next experiment, we calculate 3/β̂1 = 3/1.167 = 2.564.

Therefore x2 should be chosen as 3 instead of 2. It is easy to see that this process will

continue and, at each step, level 3 will be the recommended level. Hence there will be

no chance for the experiment to be carried out at the right level. A careful examination

of the above model reveals that for this particular set of possible design values, the slope

(β = 0.5) is too low or the regression line is too flat. Thus it is difficult to distinguish the

effect of different levels in terms of their responses. Establishing consistency would require

that the slope of the regression line be sufficiently large. This concept is now made precise

but without loss of generality, we assume that the design values d1, . . . , dk satisfy: for some

∆ > 0, di+1 = di + ∆, i = 2, . . . , k. Again, let ξ0 be the target level, i.e., α + βξ0 = θ.

Introduce the following condition:

β >
θ

2d1 + ∆
. (2)

When the condition is not met we would anticipate obtaining a level still close to the target

but not necessarily the closest among those available. For instance, consider the case when

β ≤ θ/(2d1 + ∆), d2 = ξ0 = d1 + ∆ and the procedure stars with x1 = d1. We can even
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assume that σ = 0. Then it is easy to show that

θd1

α + βd1

< d1 +
∆

2
,

which implies x2 = d1. Thus the procedure will stay at d1 regardless of sample size. The

design point converges to d1 and not as we would hope to d2. If we can assume the condition

of Equation 2 then consistency will indeed follow as detailed below. The arguments lean

on straightforward algebraic manipulation and are a little tedious. We first examine the

extreme case when σ = 0, i.e., there is no error in the observations. The following lemma

will be applied repeatedly.

Lemma 1 Suppose that σ = 0 in (1). Assume that (x1, y1), . . . , (xn, yn) are generated ac-

cording to (1) with σ = 0. Let xn+1 = θx̄n/ȳn be the next design value.

(i) If x̄n > ξ0 then ξ0 < xn+1 < x̄n, and therefore ξ0 < x̄n+1 < x̄n.

(ii) If x̄n < ξ0 then x̄n < xn+1 < ξ0, and consequently x̄n < x̄n+1 < ξ0.

Proof. We provide the proof for the first assertion only. The second assertion can be shown

similarly. Note that when σ = 0, ȳn = α + βx̄n. Thus xn+1 ≡ θx̄n/(α + βx̄n) is less than

x̄n if and only if α + βx̄n > θ = α + βξ0, which follows from the assumption that x̄n > ξ0

and that β > 0. This establishes the second inequality. The first inequality can be shown in

the same way using the assumption that α > 0. The implication of this lemma is that when

σ = 0, the absolute value of (x̄n − ξ0) is decreasing and that all the x̄′

ns stay at the same

side of ξ0 as does the starting value x1. Without loss of generality, assume that x̄n ≥ ξ0 and

x̄n ↓ ξ1. Then ȳn → α + βξ1. Since xn+1 = θx̄n/ȳn, we have ξ1 = θ0ξ1/(α + βξ1). Thus

ξ1 = ξ0. In other words, x̄n converges to ξ0 when n tends to infinity. It is easy to see that

this property is retained by xn as well. Thus the consistency has been established for σ = 0.

Next we consider the case that σ > 0.

Theorem 1 Under the model E(Yj) = φ(xj) + σǫj with σ > 0 and φ′(x) > 0, let x1, . . . , xn

be defined sequentially as above, then xn → ξ0 almost surely.

Proof. First, since φ′(x) exists and is positive, we replace, at x, the function φ(x) by M(x).

Define δn = n−1
∑n

i=1 ǫi. Since ǫ1, . . . , ǫn are i.i.d. samples with mean zero and a finite second

moment, δn → 0 almost surely by the law of large numbers. Let A denote the subset of
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the sample space, on which δn tends to zero. Then P (A) = 1. The following derivation is

performed on the set A. Without loss of generality, we can assume that α + δn > 0 and

δn/β << 1. If x̄n > ξ0 − δn/β, then

ȳn = α + βx̄n + δn > α + β(ξ0 −
δn

β
) + δn = α + βξ0 = θ.

Thus xn+1 ≡ θx̄n/(α + βx̄n + δn) < x̄n. On the other hand, simple calculation reveals that:

x̄n

{

α + β(ξ0 −
δn

β
) + δn

}

> (ξ0 −
δn

β
)(α + βx̄n + δn)

by the assumption that α + δn > 0 and x̄n > ξ0 − δn/β. The above inequality reduces to

xn+1 =
θx̄n

α + βx̄n + δn

> ξ0 −
δn

β
.

Therefore

ξ0 − δn/β < x̄n+1 < x̄n, when x̄n > ξ0 − δn/β. (3)

Similarly, it can be shown that

x̄n < x̄n+1 ≤ ξ0 − δn/β when x̄n < ξ0 − δn/β. (4)

Now suppose lim supn x̄n = a. Then a ≥ ξ0, or else there is a subsequence x̄nk
which

converges to a < ξ0. Since δnk
→ 0, x̄nk

< ξ0 − δnk
/β for k sufficiently large, and thus

x̄nk+1 > x̄nk
by the above conclusion. Hence

a = lim
k

x̄nk
≤ lim inf

k
x̄nk+1 ≤ lim sup

k

x̄nk+1 ≤ lim sup
n

x̄n = a.

This yields limk x̄nk+1 = a. Since limk ȳnk
= α + βa, it then follows that a = limk x̄nk+1 =

θa/(α + βa), which implies that a = ξ0, a contradiction. Thus we have shown that a ≥ ξ0.

Next we shall establish that a = ξ0. If a > ξ0, define δ0 = (a − ξ0)/2 > 0. There must exist

N0 such that for n > N0, |δn| < δ0. Therefore for nk > N0, x̄nk
> ξ0 + δ0 > ξ0 − δnk

/β. By

(3) again

ξ0 −
δnk

β
< x̄nk+1 < x̄nk

.

If for each i > 0, x̄nk+i ≥ a + δ0 then

x̄nk+i ≥ ξ0 −
δnk+i

β
, for all i.
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It follows that

ξ0 −
δnk+1

β
< x̄nk+i+1 < x̄nk+i for all i > 0.

Therefore x̄nk+1 is decreasing in i. Hence x̄n is decreasing when n > N0. Thus limn x̄n = a

and it is easy to show that a = θa/(α + βa), which implies a = ξ0, a contradiction. Hence

there must exist an i0 > 0 such that x̄nk+i0 < ξ0 + δ0. If x̄nk+i0 > ξ0 − δnk+i0/β then

x̄nk+i0+1 < x̄nk+i0 < ξ0 + δ0; if x̄nk+i0 ≤ ξ0 − δnk+i0/β then

x̄nk+i0 < x̄nk+i0+1 ≤ ξ0 −
δnk+i0

β
< ξ0 + δ0.

In either case, x̄nk+i0+1 < ξ0 + δ0. In the same way, one can show that x̄nk+i < ξ0 + δ0

for all i > i0. Letting i = nk+1 − nk yields x̄nk+1
< ξ0 + δ0 which is again a contradiction.

Thus we have shown that a = ξ0. The same argument using (4) leads to lim infn x̄n = ξ0.

Similarly either or x̄nk+2 < ξ0 − δnk+1/β, depending on whether x̄nk+1 > ξ0 − δnk+1/β or

x̄nk+1 < ξ0 − δnk+1/β. In either case, we have x̄nk+2 < ξ0 − δ0β. Continuing this procedure,

we conclude that for each i, x̄nk+i < ξ0−δ0/β. This is impossible because, when i = nk+1−nk

it leads to x̄nk+1
< ξ0 − δ0/β, violating the assumption that limk x̄nk

= a > ξ0. Therefore

we have shown that a = ξ0. Thus it follows that limn x̄n = ξ0 and hence limn ȳn = θ and

limn xn = ξ0. Next we have:

Theorem 2 Assume that the data are generated according to Model (1). Under condition

(2), xn is consistent.

Proof. Define δn = n−1
∑n

i ǫi, which tends to zero almost surely. We first consider the

situation where d1 ≤ di ≤ x̄n < di+1 ≤ ξ0 for some i. Write x̄n = di+1 − δ0 where δ0 > 0. We

would like to establish
θx̄n

α + βx̄n

− di+1 > −
∆

2
, (5)

because the above inequality would ensure that xn+1 = di+1 for n sufficiently large. Note

that α + βx̄n = α + βdi+1 − βδ0. Since α + βdi+1 < θ, (5) would follow if

θ(di+1 − δ0) > (di+1 −
∆

2
)(θ − βδ0),

which holds if and only if

β >
δ0 −

∆

2

δ0

θ

di+1 −
∆

2

=
2δ0 − ∆

δ0

θ

2di+1 − ∆
. (6)
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Note that −∞ < (2δ0 − ∆)/δ0 < 2 − ∆/δ0 < 1 and di+1 −
∆

2
> d1. Thus

2δ0 − ∆

δ0

θ

2di+1 − ∆
<

θ

2d1

< β.

Hence (6) and (5) hold. Since δn tends to zero almost surely, it follows from (5) that

θx̄n

ȳn

=
θx̄n

α + βx̄n + δn

− di+1 ≥ −
∆

2
,

which implies that xn+1 = di+1. Now we consider the situation in which x̄n > ξ0. Suppose

ξ0 ≤ di ≤ x̄n < di+1, let ∆1 = x̄n − di > 0. It can be seen from (2) that

β >
θ

2di + ∆1

>
∆1

∆
×

θ

2di + ∆1

.

The above inequality leads to

θx̄n < (θ + β∆1)(di +
∆1

2
) ≤ (α + βdi + β∆1)(di +

∆1

2
) = (α + βx̄n)(di +

∆1

2
).

By the definition of ∆1 and a simple calculation we conclude that when n becomes large

enough,
θx̄n

α + βx̄n + δn

< di +
∆1

2
≤ di +

∆

2
.

Therefore if x̄n is one level above ξ0 + ∆, then xn+1 must be at least one level lower than x̄n

if n is sufficiently large. Thus we have established that xn converges to ξ0 almost surely.

Simulated examples

The four pairs of figures (Figures 1 to 4) show four different situations corresponding to

four different and arbitrary choices of the association between pharmacokinetic response and

dose. In each case the targeted average pharmacokinetic response that is sought is 8.0. For

illustration, a completely random sample of observations is shown in the left-hand panel.

The dynamic calibration sampling described in this current work, targeting the value 8.0, is

shown in the right hand figure. The initial value chosen for the log-dose is in all cases equal

to 1.0 and the steps taken between dose increments, or decrements, cannot exceed the value

0.25.

A phenomenon, already observed in the more classical CRM setting (O’Quigley 2001),

is that the more incorrect the initial guess of dose turns out to be, the better the algorithm
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performs. At first this is puzzling but is easily explained. The method very quickly can

detect that we are far below or far above the level we aim to be sampling at. Once we

are sampling in the vicinity of the correct dose level, then it is much more difficult to “fine

tune” the procedure since the natural variation that we are dealing with can often mask these

smaller differences. Nonetheless, all the figures show that the sampling algorithm will quickly

concentrate observations at and around the target level. Of course it would be difficult not

to do better than simple random sampling and this is only presented for the purposes of

illustration. The studies here worked with a fixed sample size. It ought be possible to

introduce, if wished, some early stopping rule. For a fixed finite number of doses we could

use the early stopping rule described in O’Quigley and Reiner (1998). For the situation

of a continuum it might be possible to derive analogous rules based on the construction of

intervals within which the responses are deemed to be approximately equivalent. This has

yet to be studied.
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1
Figure 1: Left hand figure shows the true dose-response curve and random sampling of size
40. Right hand figure illustrates dynamic calibration targeting the value 8.0. The starting
dose is 1.0 and step sizes constrained to be no greater than 0.25.7



1
Figure 2: Left hand figure shows the true dose-response curve and random sampling of size
40. Right hand figure illustrates dynamic calibration targeting the value 8.0. The starting
dose is 1.0 and step sizes constrained to be no greater than 0.25.8



1
Figure 3: Left hand figure shows the true dose-response curve and random sampling of size
40. Right hand figure illustrates dynamic calibration targeting the value 8.0. The starting
dose is 1.0 and step sizes constrained to be no greater than 0.25.9



1
Figure 4: Left hand figure shows the true dose-response curve and random sampling of size
40. Right hand figure illustrates dynamic calibration targeting the value 8.0. The starting
dose is 1.0 and step sizes constrained to be no greater than 0.25.10


