

Protein	Size (aa)	Number of peptides ^a
Hemagglutinin	565	94
Nonstructural protein 1	230	37
Nucleocapsid protein	498	82
Neuraminidase	470	78
Matrix protein 1	252	41

^aPeptides screened were 17mers overlapping by 11 amino acids obtained through the NIH Biodefense and Emerging Infections Resources Repository, NIAID, NIH.

SUPPLEMENTARY FIG. 1. Example of flow cytometry demonstrating the enrichment of CD4 T cells following antibody and complement mediated lysis of CD8 T cells and APC. This figure is representative of the results from the CD4 enrichment of splenocytes. (**A**) Pre- and post-depletion results in C57BL/10 mice. (**B**) Pre- and post-depletion staining in SJL mice. There were <1% contaminating CD8⁺ T cells present in any sample.

SUPPLEMENTARY FIG. 2. Screening of the NP protein utilizing a peptide pooling matrix approach. A matrix of pooled 17-mer peptides that contained no overlapping peptides in either rows or columns was constructed, as shown in panels **B** and **D**. Peptides were considered for further analysis if they were a member of both a positive row and column (shown in gray), with no row or column containing >40 spots per 10⁶ CD4-enriched T cells excluded. All matrices were screened at least twice to ensure that no potential epitopes were falsely considered negative. The results from the NP matrix in both C57BL/10 (panels **A** and **B**), and SJL (panels **C** and **D**) mice are shown as examples. Panels **A** and **C** demonstrate the results from representative EliSpot assays, while panels **B** and **D** show the subsequent analysis of the matrix.