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1 Minimal models

In the main text, several minimal models have been discussed to illustrate the mechanisms
appearing in the simulation results. Here these models are defined more precisely.

In all descriptions below, the concentration of RNA polymerase–σ-complex in units of the
promoter’s dissociation constant is called qp. Transcription factors (TFs) binding cooperatively
are assumed to interact with an energy ETF, resulting in a factor ω ≡ exp(ETF) = 30 in the
Boltzmann weights of states in which both TFs are bound. Activators recruit RNAP through a
similar cooperative interaction energy ER and for simplicity we take ER = ETF.

We assume that the transcription rate of a promoter is proportional to the equilibrium
fraction of time RNA polymerase (RNAP) is bound to the promoter, called pon(c1, c2, c3). The
dynamics of the output concentration c3(t) are then assumed to obey:

dc3(t)
dt

= αpon(c1, c2, c3(t))− βc3(t). (1)

(The dependence on c2 is dropped if the gate has only one input.) The steady-state output
concentration c∗3 follows implicitly from

αpon(c1, c2, c
∗
3)− βc∗3 = 0. (2)

In the absence of auto-regulation pon does not depend on c3 so that simply c∗3 = (α/β)pon(c1, c2).
If pon does depend on c3 equation 2 has to be solved analytically or numerically.

The function pon(c1, c2, c3) can be expressed in terms of two partition sums: one over all
states in which the promoter is occupied, Zon, and one sum over states in which the promoter
is not occupied, Zoff:

pon(c1, c2, c3) =
Zon(c1, c2, c3)

Zon(c1, c2, c3) + Zoff(c1, c2, c3)
. (3)

In the simulations these partition sums are calculated numerically using a dynamic programming
algorithm [1], but for the simplified models they can be written out straightforwardly [2]. Below,
Zon and Zoff are specified for each of the models used; the response plot then follows from
equation 2.1

1In all examples, equation 2 can be written as a polynomial equation; the order of the polynomial equation
equals the number of auto-regulatory binding sites plus one.
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Conditional auto-activation

In Fig. 2C and D of the main text we compare the conventional mechanism of (cooperative)
activation to conditional auto-activation.

The first system, activation by one binding site, is described by the following partition sums:

Zon(c1) = qp

(
1 +

ωc1

kA

)
, (4a)

Zoff(c1) = 1 +
c1

kA
, (4b)

where kA is the dissociation constant of the binding site.
For the second system, cooperative activation by two binding sites, the following partition

sums can be written down:

Zon(c1) = qp

(
1 +

c1

k1
+
ωc1

k2
+
ω2c2

1

k1k2

)
, (5a)

Zoff(c1) = 1 +
c1

k1
+
c1

k2
+
ωc2

1

k1k2
. (5b)

Parameters k1 and k2 are the dissociation constants of the binding sites (from left to right in
Fig. 2D of the main text).

The partition sums of the third system, with conditional auto-activation, are:

Zon(c1, c3) = qp

(
1 +

c3

k∗
+
ωc1

k
+ ω2ω

2c1c3

kk∗

)
, (6a)

Zoff(c1, c3) = 1 +
c3

k∗
+
c1

k
+
ωc1c3

kk∗
. (6b)

Here k and k∗ are the dissociation constants for the binding site of TF1 and TF3, respectively.
Given these partition sums, equation 2 becomes a second order polynomial equation and can be
solved analytically (the result is given in the main text).

Fig. 2D in the main text shows response plots for all three systems. In all cases we chose the
parameter values that maximize the fitness function for ACT (activation) gates. The optimal
values of the parameters are as follows. For the activator with one binding site: kA = 1.82 µM,
qp = 0.179. The sum of squared deviations for the optimal parameters is MRF = 0.81 µM2.
For cooperative activation by two binding sites: k1 = 10.8 µM, k2 = 2.50 µM, qp = 0.181, and
MRF = 0.61 µM2. Conditional auto-activation leads to k = 12.4 µM, k∗ = 2.68 µM, qp = 0.176
and MRF = 0.66 µM2.

Sharper repression due to auto-activation

In Fig. 3C and D (main text) two systems are compared: cooperative repression and cooperative
repression with additional auto-activation.

The partition sums of the first system are:

Zon(c1) = qp, (7a)

Zoff(c1) = 1 +
c1

k1
+
c1

k2
+
ωc2

1

k1k2
. (7b)
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Figure 1. Sensitivity S(c1) as a function of the input concentration c1 for the plots in
Fig. 3D of the main text. The sensitivity of a response function c∗3(c1) is defined as
S(c1) ≡ |d log c∗3/d log c1| = |(c1/c∗3)dc∗3/dc1|. Clearly, the sensitivity of the repression systems can be
enhanced by adding an additional auto-regulation site.

In the second system, all states of the first system are possible, but on top of it the additional
binding site for TF3 with dissociation constant k∗ can be bound. Because the repression module
and the auto-activation binding site do not interact directly the partition sums factorize:

Zon(c1, c3) = qp

(
1 +

ωc3

k∗

)
, (8a)

Zoff(c1, c3) =
(

1 +
c1

k1
+
c1

k2
+
ωc2

1

k1k2

)(
1 +

c3

k∗

)
. (8b)

The plots shown have again been optimized using the fitness function for the IN (inhibit)
gate. However, as it turns out, in both systems qp → ∞ and k1, k2 → 0 as the fitness is
optimized. Clearly, this is unphysical. We therefore constrain the promoter strength by an
arbitrary large number: qp ≤ 50. The resulting parameters for the cooperative repression
system are: k1 = k2 = 344 nM and qp = 50, leading to MRF = 0.34 µM2. The second system,
with additional auto-actication, gives: k1 = k2 = 134 nM, k∗ = 1.75 µM and qp = 50, with
MRF = 0.15 µM2.

Note that the optimization returns identical values for k1 and k2; this maximizes the sensi-
tivity of the repression. For that reason the analytical results in the main text (equation 9 and
further) assume k1 = k2 from the start, which simplifies the calculation.

Fig. 1 shows the sensitivity function S(c1) ≡ c1
c∗3

dc∗3
dc1

for the optimized gates. Clearly, the
sensitivity of the design with auto-activation reaches a much higher maximal sensitivity, as
explained in the main text.

Linear repression with auto-activation

The minimal model presented in Fig. 4A of the main text is identical to the second system in the
previous subsection; the partition sums are given in equation 8. The usefulness of auto-activation
in obtaining a more linear repression function can be understood as follows.
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In the absence of auto-regulation c∗3 = (α/β)pon(c1) so that

dc∗3
dc1

=
α

β

dpon(c1)
dc1

. (9)

To obtain linear repression this derivative should equal -1. For a cooperative repression system,
pon(c1) has a sigmoidal shape and therefore dpon(c1)

dc1
is definitely not constant and equal to -1.

The equivalent of equation 9 for systems with auto-regulation can be derived from the relation
αpon(c1, c2, c

∗
3) = βc∗3:

dc∗3
dc1

=
α

β

∂pon(c1, c
∗
3)

∂c1

/(
1− α

β

∂pon(c1, c3)
∂c3

∣∣∣∣
c∗3

)
. (10)

This raises the hope that, by choosing the parameters correctly, the denominator in this equation
may be tuned to mitigate some of the variation in the numerator.

We now illustrate this for the minimal model presented in Fig. 4A in the main text. The
steady-state equation αpon(c1, c

∗
3)− βc∗3 = 0 is quadratic in this case and can be solved exactly:

c∗3(c1)
k∗

=
−B(c1) +

√
B(c1)2 + 4A(c1)C(c1)
2A(c1)

, (11)

with

A(c1) = 1 + ωqp +
c1

k1
+
c1

k2
+
ωc2

1

k1k2
, (12)

B(c1) = 1− qp(
αω

βk∗
− 1) +

c1

k1
+
c1

k2
+
ωc2

1

k1k2
, (13)

C(c1) =
αqp

β
. (14)

It is straightforward to optimize this curve numerically with respect to the fitness function used
in the main text, yielding the parameters k∗ = 731 nM, k1 = 37.9 nM, k2 = 7.17 µM, qp = 3.10.

From the exact solution 11 it is not easy to understand why these parameters result in a rather
straight curve in the interval [0, 1 µM]. More insight can be gained by examining equation 10.
The right-hand side of this equation is determined by the partial derivatives of pon; in Fig. 2 we
plot both derivatives as a function of c1. If c1 is large, the gate is completely inhibited (c∗3 is low)
and therefore the derivative ∂pon(c1, c

∗
3)/∂c1 must approach zero as well. At lower values of c1

the derivative ∂pon(c1, c
∗
3)/∂c1 has a finite value. Equation 10 now shows that this variation in

∂pon(c1, c
∗
3)/∂c1 can be mitigated if the denominator correlates with the numerator. Fig. 2 shows

that this is the case; it can be understood as follows. For any value of c1, pon is an increasing
function of c3 that saturates for high values of c3. Therefore, for high values of c∗3 the partial
derivative ∂pon(c1, c3)/∂c3 must be small. This explains why 1-(α/β)∂pon(c1, c3)/∂c3 is almost
1 at c1 = 0. At lower concentrations c∗3 (i.e., at higher values of c1) ∂pon(c1, c3)/∂c3 increases.
Since the absolute values of the denominator and the numerator correlate, their ratio is rather
(but not quite) constant for different values of c1.
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Figure 2. Partial derivatives of pon at steady state c∗3, as a function of input concentration
c1. Shown are the numerator and the denominator of equation10, for the minimal model depicted in
Fig. 4A of the main text.
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Linear activation with auto-regulation

In the simulation results, auto-regulation never occurred if we selected for a linear activation
gate (LACT). To check if this was an artifact of the simulation scheme we studied the series of
models depicted in Fig. 3. For all these models, a standard Nelder–Mead algorithm was used
to find the binding affinities for the various binding sites that lead to the best LACT gate (as
measured by the fitness function defined in the Method section of the main text). In all cases,
the affinities of the auto-regulatory binding sites were zero in the optimized gates, confirming
the results of the evolutionary algorithm. Each of the models is specified below.

We limited this analysis to designs containing modules of at most two binding sites. Each
of the models has one activation module for the activator TF1 containing two binding sites; the
dissociation constants of those sites are always called k1 and k2 (from left to right in Fig. 3).
In addition, there are usually two binding sites for TF3, with dissociation constants k∗1 and k∗2.
We consider several designs for auto-activation and for auto-repression. Auto-activation can
be achieved through direct activation or through conditional auto-activation; both options are
tested below. When auto-repression is combined with activation, the repression module can be
placed in various locations, leading to different degrees of overlap with the activation module.
We therefore consider a variety of placements.

Model A In this model two cooperative auto-activation sites are included that overlap
with the operators for TF1. As a result, the modules for TF1 and TF3 compete for binding.
The corresponding partition sums are:

Zon(c1, c3) = qp

(
1 +

c1

k1
+
ωc1

k2
+
c3

k∗1
+
ωc3

k∗2
+
ω2c2

1

k1k2
+
ω2c2

3

k∗1k
∗
2

+
ωc1c3

k∗1k2

)
, (15a)

Zoff(c1, c3) = 1 +
c1

k1
+
c1

k2
+
c3

k∗1
+
c3

k∗2
+
ωc2

1

k1k2
+

ωc2
3

k∗1k
∗
2

+
c1c3

k∗1k2
. (15b)

Model B This model is similar to model A, but now TF1 and TF3 can bind hetero-
cooperatively to the sites that do not overlap (see Fig. 3), leading to additional states and
factors in the partition sums:

Zon(c1, c3) = qp

(
1 +

c1

k1
+
ωc1

k2
+
c3

k∗1
+
ωc3

k∗2
+
ω2c2

1

k1k2
+
ω2c2

3

k∗1k
∗
2

+
ω2c1c3

k1k∗2
+
ω2c1c3

k∗1k2

)
, (16a)

Zoff(c1, c3) = 1 +
c1

k1
+
c1

k2
+
c3

k∗1
+
c3

k∗2
+
ωc2

1

k1k2
+

ωc2
3

k∗1k
∗
2

+
ωc1c3

k1k∗2
+
ωc1c3

k∗1k2
. (16b)

Model C This model tests if conditional auto-activation could be used to produce linear
response plots. There is only one binding site for TF3, with dissociation constant k∗.

Zon(c1, c3) = qp

(
1 +

c1

k1
+
ωc1

k2
+
c3

k∗
+
ω2c2

1

k1k2
+
ωc1c3

k∗k1
+
ωc1c3

k∗k2
+
ω3c2

1c3

k1k2k∗

)
, (17a)

Zoff(c1, c3) = 1 +
c1

k1
+
c1

k2
+
c3

k∗
+
ωc2

1

k1k2
+
ωc1c3

k∗k1
+
c1c3

k∗k2
+
ω2c2

1c3

k1k2k∗
. (17b)
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Model D Here activation is combined with auto-repression. The repressor sites are as-
sumed not to overlap with the activator sites, and therefore Zoff factorizes.

Zon(c1, c3) = qp

(
1 +

c1

k1
+
ωc1

k2
+
ω2c2

1

k1k2

)
, (18a)

Zoff(c1, c3) =
(

1 +
c1

k1
+
c1

k2
+
ωc2

1

k1k2

)(
1 +

c3

k∗1
+
c3

k∗2
+

ωc2
3

k∗1k
∗
2

)
. (18b)

Model E This model is similar to model D, except that one of the auto-repressor sites
overlaps with an activator site, eliminating several states in Zoff:

Zon(c1, c3) = qp

(
1 +

c1

k1
+
ωc1

k2
+
ω2c2

1

k1k2

)
, (19a)

Zoff(c1, c3) = 1 +
c1

k1
+
c1

k2
+
c3

k∗1
+
c3

k∗2
+
ωc2

1

k1k2
+

ωc2
3

k∗1k
∗
2

+
c1c3

k1k∗1
+
c1c3

k1k∗2
+
c1c3

k2k∗2
. (19b)

Model F In this model, the binding sites for TF3 both overlap with those of TF1; as a
result, only one of the TF3 binding sites overlaps directly with the core promoter.

Zon(c1, c3) = qp

(
1 +

c1

k1
+
ωc1

k2
+
c3

k∗1
+
ω2c2

1

k1k2

)
, (20a)

Zoff(c1, c3) = 1 +
c1

k1
+
c1

k2
+
c3

k∗1
+
c3

k∗2
+
ωc2

1

k1k2
+

ωc2
3

k∗1k
∗
2

+
c1c3

k1k∗2
. (20b)

Model G In this last model, the binding sites for TF3 have shifted even further, so that
the auto-regulation merely hinders the binding of the activator (anti-activation):

Zon(c1, c3) = qp

(
1 +

c1

k1
+
ωc1

k2
+
c3

k∗1
+
c3

k∗2
+
ω2c2

1

k1k2
+

ωc2
3

k∗1k
∗
2

+
ωc1c3

k∗1k2

)
, (21a)

Zoff(c1, c3) = 1 +
c1

k1
+
c1

k2
+
c3

k∗1
+
c3

k∗2
+
ωc2

1

k1k2
+

ωc2
3

k∗1k
∗
2

+
c1c3

k∗1k2
. (21b)

In all models A to G, the affinities of the auto-regulatory binding sites were zero in the
optimized gates, confirming the results of the evolutionary algorithm.

2 Computational footprints and deducing promoter designs

As explained in the main text, binding affinities are continuous variables and therefore there is
no natural distinction between binding sites and non-binding sites. Nevertheless it is useful to
evaluate which sites in the resulting designs are mainly responsible for the behavior of the gate.

A direct cut-off based on the binding equilibrium constants is not reliable because, in par-
ticular in the presence of cooperativity, weak binding sites can be very important. Therefore, in
order to recognize TF binding sites we calculate occupancy profiles—computational “footprints”.
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Figure 4. Histogram of occupancies

Calculating occupancies

The occupancy of TF a at site i for input concentrations (c1, c2) is calculated in the following
way. First, we calculate the steady state value of c3, called c∗3, numerically. The occupancy can
then be expressed as

oa,i =
Z(c1, c2, c

∗
3|a bound to i)

Ztot(c1, c2, c∗3)
= 1− Z(c1, c2, c

∗
3|a not bound to i)

Ztot(c1, c2, c∗3)
. (22)

Here Z(c1, c2, c
∗
3|a bound to i) is the partition sum of all states in which a is bound to i, and

Z(c1, c2, c
∗
3|a not bound to i) is the partition sum of all states in which a is not bound to i.

Ztot(c1, c2, c
∗
3) is the total partition sum of the system.

The total partition Ztot(c1, c2, c3) can easily be calculated with the recursive (dynamic pro-
gramming) method described in Ref. [1]. To compute Z(c1, c2, c

∗
3|a not bound to i) the exact

same calculation is repeated, but now assuming that the dissociation constant describing the
binding of a to site i, called ka,i, is infinite so that ca/ka,i = 0. This eliminates all states in
which a is bound to i from the partition sum. Now, the right hand side of equation 22 can be
evaluated.

Defining binding sites

In order to separate important sites from unimportant ones we use a threshold based on the
occupancy data. To determine a reasonable threshold value, we analyzed the distribution of
occupancies in the simulation results. We define omax

a,i to be the maximal occupancy of site i by
TF a over the four conditions (c1, c2) ∈ {(0, 0), (0, 1000 nM), (1000 nM, 0), (1000 nM, 1000 nM)}.
Figure 4 depicts a histogram of these occupancies for all TFs and all sites, using data gathered
from the results of 200 simulations. Clearly, this histogram is bi-modal. The vast majority of
the maximal occupancies omax

a,i have negligible values. However, a second peak occurs around
omax
a,i = 0.9; it is associated with binding sites that have evolved under selection pressure. Based

on this histogram, we choose a rather stringent threshold for our initial estimate as to which



9

 0

 0.5

 1
TF1
TF2
TF3

 0

 0.5

 1

 0

 0.5

 1

-100 -80 -60 -40 -20  0

 0

 0.5

 1

fra
ct

io
na

l o
cc

up
an

ci
es

tf3
0-10-35

RNAPTF1TF2TF1TF2TF3

c1 = 0 nM
c2 = 0 nM

c1 = 1000 nM
c2 = 0 nM

c1 = 0 nM
c2 = 1000 nM

c1 = 1000 nM
c2 = 1000 nM

de
si

gn

Figure 5. From occupancy data to promoter design The figure shows the fractional
occupancies of all sites on the cis-regulatory region for an AND gate resulting from the simulations.
The occupancies are calculated for four input conditions (c1, c2), each shown in a separate plot. The
occupancy of a site is indicated as a bar at the right-most base pair of the site.
It is clear that the occupancies of all sites are low except when both TF1 and TF2 are present at high
concentrations (the fourth plot). There are five sites with a high occupancy (the affinities of all other
sites are plotted as well, but remain invisible on this scale); these sites are therefore incorporated in the
schematic promoter design below the plots. Indeed, simplified models including only these five sites
accurately reproduce the response plot of this promoter.

binding sites have a function: omax
a,i = 0.3. The resulting simplified promoter designs usually

accurately explain the responses of the corresponding full promoters. If the threshold is lowered,
the resulting models more and more accurately approximate the behavior of the full promoters
but the models become more and more complex.

Deducing promoter designs from occupancy data

To illustrate how the promoter designs are deduced from the raw occupancy data, Fig. 5 shows
the raw data for the AND gate presented in the main text (Fig. 2A).

3 Selecting against noise

In order to select against noise, we need to estimate the variance in the concentration of TF3
as a function of the input concentrations (c1, c2). Because this calculation has to be repeated
many times during one simulation (for 1000 generations, 200 organisms and 16 values of (c1, c2)
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the number of repetitions becomes 3.2 × 106) a reasonable approximation is required that can
be calculated rapidly. Below, we derive equations 20 and 21 from the main text and test their
applicability.

Deriving an approximate expression for the variance of c3

In the main text, the following stochastic differential equation is introduced:

dc3(t)
dt

= αpon(c1, c2, c3(t))− β c3(t) + ξ(t). (23)

Here ci is the concentration of TF i. The noise term ξ(t) represents the fluctuations in the
transcription, translation and degradation rates. The amplitude of the noise is given by:

〈ξ(t′)ξ(t)〉 = ((α/V ) pon(c1, c2, c3(t)) + β c3(t)/V )δ(t′ − t). (24)

The first term in the noise amplitude, (α/V ) pon(c1, c2, c3(t)), describes the noise in the pro-
duction of TF3 while the second term, β c3/V , describes the stochasticity in the degradation of
TF3. The form of this stochastic differential equation follows from the following considerations.

At a more fundamental level, the noise in the system can be treated by the following Master
equation:

∂P (c3, t; c1, c2)
∂t

=α′pon

(
c1, c2, c3 −

1
V

)
P

(
c3 −

1
V
, t; c1, c2

)
+ β′

(
c3 +

1
V

)
P

(
c3 +

1
V
, t; c1, c2

)
− (α′pon(c1, c2, c3) + β′c3)P (c3, t; c1, c2). (25)

This equation describes the evolution of the probability distribution P (c3, t; c1, c2) (i.e., the
probability that the output concentration equals c3 at time t given the constant inputs c1 and
c2) as a result of the stochastic processes of production and degradation. This Master equation
can be approximated by a Fokker–Planck equation using the following Taylor expansions:

α′pon

(
c1, c2, c3 −

1
V

)
P

(
c3 −

1
V
, t; c1, c2

)
≈α′pon(c1, c2, c3)P (c3, t; c1, c2)

− 1
V

∂

∂c3
α′pon(c1, c2, c3)P (c3, t; c1, c2),

+
1
2

(
1
V

)2 ∂2

∂c23
α′pon(c1, c2, c3)P (c3, t; c1, c2),

(26)

β′
(
c3 +

1
V

)
P

(
c3 +

1
V
, t; c1, c2

)
≈β′c3P (c3, t; c1, c2) +

1
V

∂

∂c3
β′c3P (c3, t; c1, c2)

+
1
2

(
1
V

)2 ∂2

∂c23
β′c3P (c3, t; c1, c2). (27)
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Defining α ≡ α′/V and β ≡ β′/V we arrive at:

∂P (c3, t; c1, c2)
∂t

= − ∂

∂c3
f(c3; c1, c2)P (c3, t; c1, c2) +

∂2

∂c23
g(c3; c1, c2)P (c3, t; c1, c2), (28)

with

f(c3; c1, c2) ≡ αpon(c1, c2, c3)− βc3, (29)
g(c3; c1, c2) ≡ (αpon(c1, c2, c3) + βc3)/2V. (30)

In the Îto interpretation, this Fokker–Planck equation is mathematically equivalent to the
stochastic differential equation 23 [3, 4]. This shows that the stochastic differential equation
that we started with is an approximation of the Master equation above. (We test this approxi-
mation below.)

The steady state probability distribution P ∗(c3; c1, c2) of the Fokker–Planck equation 28 is
given by:

P ∗(c3; c1, c2) ∝ exp
∫ c3

(
f(c′3; c1, c2)− dg(c′3; c1, c2)

dc′3

)/
g(c′3; c1; c2) dc′3. (31)

Because the function pon(c1, c2, c3) evolves during the simulation and is therefore generally un-
known the integral on the right hand side cannot be performed analytically. However, anticipat-
ing that the distribution peaks close to c∗3 (the equilibrium value of the deterministic equation
1) we can approximate the distribution by expanding logP ∗(c3; c1, c2) around c3 = c∗3:

logP ∗(c3; c1, c2) ≈ const. + (c3 − c∗3)
[
f(c∗3)− g′(c∗3)

g(c∗3)

]
+

1
2

(c3 − c∗3)2

[
g(c∗3)(f ′(c∗3)− g′′(c∗3))− (f(c∗3)− g′(c∗3))g′(c∗3)

g(c∗3)2

]
. (32)

Note that we omitted the parameters c1 and c2 in the equations above for brevity. Using the
definitions of f(c3) and g(c3) and the fact that αpon(c1, c2, c

∗
3) = βc∗3 (by definition), we arrive

at:
logP ∗(c3; c1, c2) ≈ const. − a(c∗3)(c3 − c∗3)− 1

2
b(c∗3)(c3 − c∗3)2, (33)

with

a(c∗3) ≡(α/β)p′on(c1, c2, c
∗
3) + 1

2c∗3
, (34)

b(c∗3) ≡V 1− (α/β)p′on(c1, c2, c
∗
3)

c∗3
−
(

(α/β)p′on(c1, c2, c
∗
3) + 1

2c∗3

)2

+
(α/β)p′′on(c1, c2, c

∗
3)

2c∗3
. (35)

The functions p′on and p′′on are the first and second derivatives of pon with respect to c3. This
approximated distribution is a Gaussian with variance

σ(c∗3)2 =
1

b(c∗3)
. (36)
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This expression can easily be evaluated numerically.
We note that the volume V of the cell enters explicitly in the expression for b(c∗3). Indeed,

if the volume of the cell is increased while the concentration c∗3 is kept constant, the mean copy
number of TF3 in steady state is increased and therefore the concentration will fluctuate less.
According to the deterministic equation 1 the steady state copy number of TF3 is V αpon/β <
V α/β; we choose V = 103β/α so that the steady state copy numbers of TF3 stay within the
range 1–103. (Since we use α/β = 1000 nM this means that V = 103/1000 nM = 1.7 µm3, which
is indeed roughly the volume of one E. coli bacteria.)

Testing the approximation

Of course, the approximation in equation 32 is not exact. We tested the quality of the approxi-
mation in the following manner.

In the case of auto-repression the dependence of pon on c3 is usually rather well described
by a Hill-type function of the form:

pon(c3) =
Zon

Zon + Zoff
=

qp

qp + 1 + (c3/k)n
. (37)

We therefore test the approximation for auto-repressors that obey this equation. For given values
of qp and n, the deterministic steady state concentration c∗3 can be tuned by varying k. For the
different values of k we then calculate the variance of the steady state probability distribution
using the approximation of equation 36. Next, we also calculate the mean and variance of c3

exactly using equation 31; in order to do this, the integral on the right-hand side was performed
numerically. Lastly we also calculate the mean and variance by solving the Master equation 25
numerically. The three results can then be compared.

In the case of auto-activation pon is expected to have the following Hill-type form:

pon(c3) =
Zon

Zon + Zoff
=

qp(1 + ω(c3/k)n)
qp(1 + ω(c3/k)n) + 1 + (c3/k)n

. (38)

Again, for given qp, ω and n, the deterministic steady state concentration c∗3 can be tuned by
varying k and the corresponding variance can be calculated approximately using equation 36;
subsequently we also use equation 31 and Master equation 25 to calculate the mean and variance
according to the Fokker–Planck equation and the Master equation, respectively.

Fig. 6 show results of the tests. They show that the approximation is surprisingly accurate,
even for low values of c∗3. The mean and variance calculated with the approximation are practi-
cally indistinguishable from the exact Fokker–Planck or Master equation results. This justifies
the use of the approximation in our heuristic fitness function.

Limitations of the approximation

There are two conditions under which the approximation breaks down. The first condition is
if c∗3 . 1/V , i.e., if the equilibrium copy number of TF3 is . 1. Under these conditions the
second term in the right-hand side of equation 35 becomes of the same order as the first term,
so that b(c∗3) could become negative. In the simulations this happens in the initial phase of the
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Figure 6. Test of the approximate noise calculation Both figures plot the variance of the
concentration c3 versus its mean, calculated in three different ways. The top plot compares the
approximation of equation 36 with the exact solution equation 31 of the Fokker–Planck equation while
the bottom plot compares the same approximation to numerical solutions of the Master equation 25.
Results are shown for auto-activation and for auto-repression, and for Hill coefficients n = 1, 2 and 3.
We use ω = 30, α/β = 1000 nM and V = 103β/α, as in the simulations; auto-activators have qp = 0.05
whereas auto-repressors have qp = 10. The various mean concentrations c3 are obtained by varying the
dissociation constant k. Since in the simulations bi-stable systems are excluded, we only plot results for
parameters for which the system is mono-stable (according to the deterministic equation 1); this
explains why in case of auto-activation if n > 1 the plot breaks up in two disjointed branches. The
results show that the approximation is surprisingly accurate; the three approaches are practically
indistinguishable.
In a Poisson process, the variance is equal to the mean; this line is also shown. The fact that the
Poisson process separates the data for the auto-activators from those for the auto-repressors illustrates
that the Fano factor of auto-activators is larger than 1, while the Fano factor for auto-repressors is
smaller than 1.
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simulation, when the promoter is very weak. We heuristically solve this problem by imposing
that if c∗3 < 1/V the standard deviation becomes σ = 2/

√
3V ; this is the value predicted by

equation 35 if c∗3 = 1/V and αp′on/β � 1. This heuristic fix should not significantly affect
the simulation results since the total value of the noise measure is dominated by regions of the
response function where c∗3 is large.

The second condition under which the approximation fails is when αp′on(c∗3)/β approaches
1. Under these conditions the noise becomes very large; indeed, the deterministic steady state
solution becomes unstable (bifurcates) at αp′on(c∗3)/β = 1. Since we select against noise, the
designs naturally stay away from this high-noise region of parameter space. Nevertheless, dele-
terious mutants in the population can occasionally enter this region. In this case we assign
them the high standard deviation σ = 1000 nM; selection subsequently removes them from the
population.

OR gates under selection against noise

Figure 7 illustrates how selection against noise affects OR gates. In general there is a trade-off
between the quality of the response plot and the amount of noise. This trade-off also determines
whether auto-repression is beneficial. If noise is not under selection, auto-repression is not
observed, but under moderate selection pressure against noise (γmax

N = 10) the gates always do
develop auto-repression (with feedback measure MFB > 5.6× 104 nM2).

4 Statistical tests

In the main text, the results of two statistical tests are mentioned. Below we provide the details
of the calculations.

Auto-activators are more likely to have additional inputs

According to the data in RegulonDB [5], 18 of the 25 auto-activating TFs in E. coli have at
least one additional input (72%) versus 30 out of 62 auto-repressing TFs (48%); this suggests
that auto-activators are more likely to have additional inputs. The probability that out of
n = 25 + 62 = 87 auto-regulating TFs, of which r = 30 + 18 = 48 have additional inputs, a
random sample of size l = 25 contains m = 18 or more TFs with additional inputs equals

l∑
i=m

(
r

i

)(
n− r
l − i

)/(
n

l

)
= 0.037. (39)

Auto-activators have, on average, more inputs

The 25 auto-activators have, in total, 52 inputs (i.e., 2.08 on average) while the 62 auto-repressors
have 50 inputs in total (0.81 on average). To test if this difference is significant, we took the
actual data and randomly permuted the signs of the auto-regulation 107 times. Then, we counted
how often in this set of permutations the 25 auto-activators had a total number of inputs equal
to or greater than 52. As this happened 12966 times, p = 0.0013. We therefore conclude that
auto-activators have significantly more inputs than auto-repressors.
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Figure 7. OR gates under increasing selection against noise. We carried out simulations with
varying levels of selection against noise: γmax

N = 0 µM−1, 10 µM−1, 20 µM−1, 40 µM−1 or 80 µM−1. The
figure shows representative response plots of OR gates that evolved under each of these conditions.
Each simulation was repeated 20 times with different initial conditions; the plotted values of the noise
measure MN (in units of µM) and the response quality measure MRF (in µM2) are averages over these
repeats (the standard deviations are also shown). Clearly, the noise decreases if the selection strength
against noise is increased. But this decrease comes at a cost: the quality of the response function
decreases (remember that both MN and MRF are low when the performance is good).
In all cases except γmax

N = 0, all resulting gates use auto-repression to lower the noise. As a result, the
fold-changes are reduced. Also, since the noise tends to be lower at lower values of c3 (c.f. equation 36)
the total expression level is decreased gradually as γmax

N increases until at γmax
N = 80 µM−1, the response

has disappeared altogether.
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5 Linear repression
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