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1 Model reduction

To reduce the model
ẋ = N v(x) (1)

we exploit the existence of time-scale hierarchies in the carbon assimilation network [1]. In
particular, two di�erent time-scales are distinguished, one corresponding to the slow processes
(protein synthesis and degradation) and one to the fast processes (complex formation and
enzymatic reactions). In order to better bring out these time-scales in the model, following
[1], we divide the rate vector v ∈ Rq in a fast and a slow component. More particularly, we
de�ne vs ∈ Rp and vf ∈ Rq−p, p < q, such that v = [vs vf ]′, and in the physiological range of

interest vs
i � vf

j for all 1 ≤ i ≤ p and 1 ≤ j ≤ q − p. Protein synthesis and degradation are
typical slow reactions, while enzymatic and complex formation reactions are typically fast.

The separation of fast and slow reactions motivates a linear transformation T ∈ Zn × Zn

of the variables: [
xs

xf

]
= T x, (2)

such that [
N s 0
N s′

Nf

]
= T N. (3)

We call xs ∈ Rm
+ and xf ∈ Rn−m

+ slow and fast variables of the system, respectively (m < n).

N s ∈ Zm × Zp and N s′ ∈ Zn−m × Zp are stoichiometry matrices for the slow reactions, and
Nf ∈ Zn−m×Zq−p is a stoichiometry matrix for the fast reactions. The slow variables typically
correspond to total protein concentrations, whereas the fast variables include concentrations
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of metabolites and biochemical complexes. The variable transformation allows the original
system Eq. 1 to be rewritten as:

ẋs =N s vs(xs, xf ), xs(0) = xs
0, (4)

ẋf = N s′
vs(xs, xf ) + Nf vf (xs, xf ) ≈ Nf vf (xs, xf ), xf (0) = xf

0 . (5)

Notice that the slow variables are only in�uenced by slow reactions, while the fast reactions
dominate the change of the fast variables. The e�ect of slow rates is neglected in the equations
for fast variables, as vs(xs, xf )� vf (xs, xf ) in the physiological range of interest.

In the main text we have assumed that N has been reduced for conserved quantities,
following the approach in [2]. Notice that, under this assumption, the stoichiometry matrices
in Eqs. 4 and 5 are full rank and, therefore, the Jacobian matrix of the fast system, called M
in the main text, is non-singular.

As summarized in the main text, and explained in detail in [1], the separation of the system
into a slow and a fast part allows the application of the quasi-steady-state approximation
ẋf = 0, implying

Nf vf (xs, xf ) = 0. (6)

It is sometimes possible to decompose the fast system into independent subsystems, each
corresponding to a block in the stoichiometry matrix:

Nf vf (xf , xs) =

Nf
1 · · · 0
...

. . .
...

0 · · · Nf
r


vf

1 (xf
1 , xs)
...

vf
r (xf

r , xs)

 . (7)

This means that the system of algebraic equations 6 resulting from the quasi-steady-state
approximation decomposes into r independent subsystems. This greatly simpli�es the appli-
cation of the method presented in the main text.

2 Su�cient conditions for sign determinedness of network

We de�ne sign-determinedness of a gene regulatory network as the uniqueness of the signs of
the elements of the Jacobian matrix J of the slow system, given by Eq. 6 of the main text,
independently of the exact form of kinetic rate laws and precise parameter values. In the
Methods section we enumerate four su�cient conditions for the sign-determinedness of the
reconstructed network at the slow time-scale, which we brie�y repeat here.

C1 A slow variable acts directly either on the slow system or on the fast system, but not on
both simultaneously.

C2 No variable has direct antagonistic (i.e., both activating and inhibiting) e�ects on a slow
variable.

C3 The concentration control coe�cients of the fast coupling species with respect to the
slow variables have a determinate sign.
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C4 If a slow variable contributes to the concentration control of several fast coupling species,
the latter do not simultaneously regulate any of the slow variables (no concerted regu-
lation).

We demonstrate the following proposition:

Prop. 1 Under conditions C1-C4, the network structure de�ned by the Jacobian matrix J
is sign-determined.

Proof. The element of Eq. 6 of the main text describing the e�ect of xs
j on xs

i reads

∂ẋs
i

∂xs
j

=
∑

k

ns
ik

∂vs
k(xs, xf )
∂xs

j

+
∑
m

[∑
k

ns
ik

∂vs
k(xs, xf )

∂xf
m

] ∂gm(xs)
∂xs

j

(8)

where N s = {ns
ik} is the stoichiometry matrix for the slow subsystem (see Sec. 1). Remem-

ber that the sign of the partial derivatives ∂vs(xs, xf )/∂xs and ∂vs(xs, xf )/∂xf is generally
known from the literature, as discussed in the Methods section. In this context, conditions
C1-C4 provide additional constraints on the sign of the terms in Eq. 8, such that the resulting
Jacobian is sign-determined.

ConditionC1 imposes that for all j, either ∂vs
k(xs, xf )/∂xs

j = 0, for all k, or ∂gm(xs)/∂xs
j =

0, for all m. This means that only one of the summation terms in Eq. 8 is non-zero, thus
excluding an antagonism between the direct and the indirect regulations exerted by a slow
variable. The remaining conditions then assure that this non-zero term has a determinate
sign, as shown below.

Under condition C2, all terms in the sum
∑

k ns
ik ∂vs

k(xs, xf )/∂xs
j in Eq. 8 have the same

sign (positive, negative, zero). Idem for the sum
∑

k ns
ik ∂vs

k(xs, xf )/∂xf
m, for all m. This

condition is su�cient to �x the sign of the �rst summation term in Eq. 8, and thus of the
direct interaction between xs

j and xs
i .

Conditions C3 and C4 deal with the second summation term of Eq. 8, and thus with
the sign of the indirect interaction. We start with condition C4: it states that the second
summation term of Eq. 8 reduces to[∑

k

ns
ik

∂vs
k(xs, xf )

∂xf
m̄

] ∂gm̄(xs)
∂xs

j

(9)

for some m̄. Moreover, condition C3 guarantees that the control coe�cient ∂gm̄(xs)/∂xs
j has

a determinate sign. As a consequence, in conjunction with C2, the sign of Eq. 9, and thus
of the second summation term in Eq. 8, is unambiguous. This �xes the sign of the indirect
interaction between xs

j and xs
i . In conclusion, the four conditions are su�cient to guarantee

the sign-determinedness of the the Jacobian matrix J , and thus of the reconstructed network.
�

Remember that C1-C4 are only su�cient conditions and that sign-determinedness can be
obtained even when some of the conditions are violated.

3



References

1. Heinrich R, Schuster S (1996) The Regulation of Cellular Systems. New York: Chapman
& Hall.

2. Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135:
175�201.

4


