Supplemental Legends:

Figure S1. YopE does not affect caspase-1 activation in response to Yersinia infection and Caspase-1 activation occurs in response Yersinia infection in NLRP3- or NLRC4-deficient cells. (A) C57BL/6 bone marrow macrophages were infected with isogenic WT, $\Delta yopE$, $\Delta yopJ$, and $\Delta yopEJ$ strains, and lysates harvested at indicated times post-infection. Cell lysates were probed with anti-caspase-1 antibodies to assay for presence of cleaved p10 subunit. Salmonella typhimurium (Stm) and isogenic Stm $\Delta sipB$ serve as postitive and negative controls, respectively. The presence or absence of YopE does not impact the extent of caspase-1 activation in response to Y. pseudotuberculosis infection. (B) BMMs from $NIrc4^{--}$ (left panel) or $NIrp3^{--}$ (right panel) mice were infected with WT, Δ yopEHJ, or T3SS Yersinia strains, or with S. typhimurium (Stm) or treated with LPS+Nigericin (Ng) as indicated. Cell lysates were harvested at indicated times post-infection and probed for caspase-1 activation (p10).

Figure S2. Bacterial flagellin is not responsible for caspase-1 activation in response to the Yersinia T3SS. C57BL/6 macrophages were infected with isogenic bacterial strains of the T3SS strain (A) or $\Delta yopJK$ strain (B) in which the *fliC* locus, which encodes bacterial flagellin was either ablated by in-frame deletion ($\Delta fliC$) or left intact, as indicated. Whole cell lysates were harvested at 0 and 120 minutes post-infection, as indicated. (C) BMMs from B6 or *Nlrc4-/-* mice were also infected with $\Delta yopJK$ or $\Delta yopJK$ fliC strains, or $\Delta yopJ$ strain as negative control, and analyzed for caspase-1 cleavage.

Figure S3. YopK prevents macrophage production of caspase-1 dependent cytokines and Yersinia flagellin does not contribute to IL-1 β production (A) Macrophages from B6, Asc^{-/-} and NIrp3^{-/-} mice were treated with 50 ng/ml LPS for 3 hours, infected with indicated bacterial strains, supernatants were harvested 2 hours post-infection and analyzed by ELISA for production of IL-1 β and IL-6 or (B) IL-18.

(C) Macrophages from B6, *NIrp3^{-/-}*, and *NIrc4^{-/-}* mice were treated with 50 ng/ml LPS for 3 hours infected with indicated bacterial strains, supernatants were harvested 2 hours post-infection and analyzed by ELISA for production of IL-1 β and IL-6.

Figure S4. LPS pretreatment inhibits caspase-1 activation in response to wild-type *Yersinia* **but not in response to the** *Yersinia* **T3SS.** C57BL/6 BMMs were either pretreated with LPS for 2 hours prior to infection or left untreated, followed by infection with indicated bacterial strains. Whole cell lysates were harvested at 0, 60, and 120 minutes post-infection, as indicated, and analyzed by SDS-PAGE and western blotting for the caspase-1 p10 subunit.

Figure S5. YopK is translocated in a T3SS-dependent manner but does not prevent caspase-1 activation *in trans*. (A) BMMs from C57BL/6 mice were infected either singly at an MOI of 15 with T3SS strain containing vector control or a YopK expression plasmid, or co-infected at an MOI of 30 with both bacterial strains. At 60 and 120 minutes post-infection, whole-cell lysates were harvested and assayed for caspase-1 activation by western blotting. (B) BMMs were infected with T3SS or Δ yopB Yersinia strains expressing a YopK-GSK tagged protein (C) BMMs were infected with T3SS, T3SS harboring a YopK expression plasmid, and T3SS harboring an isogenic YopK-GSK tag expression plasmid. At indicated times post-infection, whole cell lysates were harvested and assayed for caspase-1 activation by western blotting for caspase-1 p10. (D) BMMs were infected with indicated *Yersinia* strains and harvested 120 minutes post-infection. Cell lysates were assayed for caspase-1 activation by western blotting.

Figure S6. Caspase-1 deficient mice are not generally more susceptible to bacterial infection and T3SS vector and T3SS pYopK initially colonize spleen at equal levels. (A) Age-matched WT (white circles) or *Casp1^{-/-}* (gray circles) mice were infected intraperitoneally with 1x10⁵ cfu of IP2666c *phoP* bacteria and bacterial loads in the spleen determined four days post-infection. (B) Age-matched WT (C57BL/6) mice were infected intraperitoneally with either T3SS vector control (black squares) or T3SS pYopK (black triangles) *Yersinia*. Spleen homogenates were prepared 24 hours post-infection and assayed for bacterial CFU/g spleen.

Supplemental Table 1. Bacterial strains and plasmids used in this work

Strain Genotype	Description	Source or Reference
IP2666 (WT)	Wild-type <i>Y. pseudotuberculosis</i> O:3 strain	(Black and Bliska, 1997)
pYV-	IP2666 cured of virulence plasmid	(Grabenstein et al., 2004)
phoP	pYV- phoP mutant	(Grabenstein et al., 2004)
yopJ	IP2666 yopJ mutant	(Lilo et al., 2008)
yopEJ	IP2666 yopEJ double mutant	(Lilo et al., 2008)
yopEHJ	IP2666 yopEHJ triple mutant	This work, (Viboud and Bliska, 2001)
yopK	IP2666 yopK mutant	This work, (Ryndak et al., 2005)
vopJK	IP2666 yopJK double mutant	This work
yopJKB	IP2666 yopJKB triple mutant	This work
mCD1	Modified CD1 virulence plasmid from <i>Y. pestis</i> lacking all known effectors but expressing functional type III secretion system	(Bartra et al., 2006)
T3SS	pYV- reconstituted with mCD1	This work
pProH (Vector)	pMMB67EH plasmid containing vopH promoter	(Black and Bliska, 1997)
pPYopK	pProH driving YopK expression	This work
T3SS pYopK	T3SS containing pPYopK	This work
T3SS pYopK-	T3SS containing pPYoK-GSK-	This work
GSK	3β tag fusion	
T3SS pYopK- FLAG	T3SS containing pProH-YopK- 3X FLAG fusion	This work

Supplemental References:

Bartra, S.S., Jackson, M.W., Ross, J.A., and Plano, G.V. (2006). Calciumregulated type III secretion of Yop proteins by an Escherichia coli hha mutant carrying a Yersinia pestis pCD1 virulence plasmid. Infect Immun *74*, 1381-1386.

Black, D.S., and Bliska, J.B. (1997). Identification of p130Cas as a substrate of *Yersinia* YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J *16*, 2730-2744.

Grabenstein, J.P., Marceau, M., Pujol, C., Simonet, M., and Bliska, J.B. (2004). The response regulator PhoP of *Yersinia pseudotuberculosis* is important for replication in macrophages and for virulence. Infect Immun *72*, 4973-4984.

Lilo, S., Zheng, Y., and Bliska, J.B. (2008). Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ. Infect Immun *76*, 3911-3923.

Ryndak, M.B., Chung, H., London, E., and Bliska, J.B. (2005). Role of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein. Infect Immun *73*, 2433-2443.

Viboud, G.I., and Bliska, J.B. (2001). A bacterial type III secretion system inhibits actin polymerization to prevent pore formation in host cell membranes. Embo J *20*, 5373-5382.

Brodsky et al. Supplemental Figure 1

Α

p10

Brodsky et al. Supplemental Figure 2

Brodsky et al. Supplemental Figure 3

