Figures

Supplementary Information

Fig. S1. A) Pyrene fluorescence spectra recorded at room temperature in aqueous solutions of 2-nonyl-2-oxazoline based block copolymer P[NOx₁₀-b-MeOx₃₂] (2.1×10⁻⁴ M) [1], Pluronic P85 (2.2×10⁻³ M) and the 2-butyl-2-oxazoline based MeOx₃₆-b-BuOx₃₀-b-MeOx₃₆ (**P3**, 7.1×10⁻⁴ M). B) Comparison between pyrene fluorescence spectra in **P3** (7.1×10⁻⁴ M) and the ionic liquid 1-butyl-2,3-dimethylimidazolium chloride ([bdmim]/[C1]). For all experiment experimental conditions were: [pyrene] = 5×10^{-7} M, $\lambda_{exc} = 333$ nm, pH 7.2.

Fig. S2. Comparison of ¹H-NMR spectra of **P4** (300K, 400 MHz, normalized for methyl or ethyl side chain, respectively) in deuterated chloroform (no aggregates present) and D_2O (formation of polymeric micelles). Signals 1-4 (CDCl₃) and 1'-4'(D_2O) originated from butyl side chains in the hydrophobic block of **P4** signals 5/5' from polymer main chain and 6/6' and 7/7' from side chains in the hydrophilic block.

Results P1

Results P2

			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	20.72	Peak 1:	21.96	100.0	5.567
PdI:	0.043	Peak 2:	0.000	0.0	0.000
Intercept:	0.942	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

Results P3

Fig. S3. Dynamic light scattering of drug loaded micelles of **P1** and **P2** (10 mg/mL), each 4mg/mL PTX and unloaded micelles of **P3** (5 mg/mL) in the presence and absence of 5 mg/mL bovine serum albumin (BSA).

Fig. S4. Cytotoxicity of polymers **P1-P4** in A) multi-drug resistant (MCF7/ADR), B) non-resistant (MCF7) human adenocarcinoma cells and C) Madin-Darby canine kidney (MDCK) cells after incubation for 24 h (A) and 2 h (B,C). Data expressed as mean \pm SEM (n = 4).

Table S1: I_1/I_3 ratios of pyrene fluorescence spectra determined in the current work (†) and previous accounts in different solvents and polymer solutions (above cmc).

Solvent / polymer solution	I_1/I_3
Hexane/Cyclohexane [2]	0.61 - 0.64 ⁷
2-Nonyl-2-oxazoline based polymer [§]	$1.20 - 1.38^{\dagger}$
Methanol [3]	1.33 6 - 1.50
Pluronic P85 [4]	$1.49^{+}-1.69^{-}$
Water [3]	1.75 – 1.96

N,N-dimethylacetamide	1.58 – 1.82
Acetonitrile [2]	1.85 – 1.88
DMSO [3]	$1.90 - 2.03^{\dagger}$
Ionic liquid [3]	1.84 # - 2.09*†
P1	$2.16 - 2.21^{\dagger}$
P2	$2.08 - 2.11^{\dagger}$
P3	$2.30 - 2.35^{\dagger}$
P4	$2.29 - 2.33^{\dagger}$

* 1-butyl-2,3-dimethylimidazolium chloride

[#] 1-butyl-3-methylimidazolium hexafluorophosphate

^{\$} graphically extracted from previous report [4]

[§] The polymer $P[(NOx)_{10}(MOx)_{32}]$ was used in this experiment [1].

References:

(1) Bonné TB, Lüdtke K, Jordan R, Stepánek P, Papadakis CM. Aggregation behavior of amphiphilic poly (2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy. Colloid Polym Sci 2004;282(8):833-43.

(2) Kalyanasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 1977;99(7):2039-44.

(3) Fletcher KA, Storey IA, Hendricks AE, Pandey S. Behavior of the solvatochromic probes reichardt's dye, pyrene, dansylamide, nile red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid bmimpf₆. Green Chem 2001;3(5):210-5.

(4) Kabanov AV, Nazarova IR, Astafieva IV, Batrakova EV, Alakhov VY, Yaroslavov AA, et al. Micelle formation and solubilization of fluorescent probes in poly (oxyethylene-b-oxyethylene) solutions. Macromolecules 1995;28(7):2303-14.