SUPPORTING INFORMATION

Characterization of Glycosaminoglycans by ¹⁵N-NMR Spectroscopy and *in vivo* Isotopic Labeling

Vitor H. Pomin, Joshua S. Sharp, Xuanyang Li, Lianchun Wang, James H. Prestegard

Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA

Figures:

Figure S1. ¹⁵N-gHSQC spectra of the standard monomeric (A) GlcNAc, and (B) GalNAc.

Figure S2. ¹⁵N-gHSQC spectrum (A), and TOCSY spectra (B,C) of the enzymatically treated endothelial negatively charged molecules: (A) Nuclease (DNAse/RNAse) treated, (B) ABC lyase digestion of the nuclease-untreated sample, and (C) ABC lyase digestion after nuclease-treated sample.

Figure S3. NMR analysis of the endothelial nuclease/ABC lyase-treated sample (unsaturated CS low-molecular weight products) (A-C), and the purified Δ C4S dimer (D) obtained through SAX-HPLC chromatography. (A) 1D ¹H-spectrum, the percentage without parentheses represents the real integral values of the peaks, whereas the percentages with parentheses belong to theoretical values assuming a pure sample of dimers. (B) ¹³C-gHSQC and (C, D) ¹⁵N-gHSQC spectra.

Figure S4. 1D ¹H-NMR of the unprocessed endothelial GAGs (pool of negatively charged molecules). This spectrum was the only one recorded at 45 ^oC to induce an upfield shift of the HOD signal in order to prove the presence of the near ¹H4 resonance from C4S. The endothelial HS:CS ratio was measured as 1:9.

