Restriction Maps for Twenty-One Charon Vector Phages[†]

JEFFREY R. DE WET,¹ DONNA L. DANIELS, JOHN L. SCHROEDER, BILL G. WILLIAMS,² KATHERINE DENNISTON-THOMPSON,³ DAVID D. MOORE, AND FREDERICK R. BLATTNER^{4*}

Department of Biology, University of California, San Diego, California 92037¹; Cetus Corporation, Emeryville, California 94608²; National Institutes of Health, Bethesda, Maryland 20205³; and Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706⁴

The mapping of the sites of cleavage of nine restriction endonucleases (*Eco*RI, *Hind*III, *Bam*HI, *Sal*I, *Kpn*I, *Sst*I, *Bgl*II, *Xho*I, and *Xba*I) on 21 Charon phage vectors is described. Maps of individual subsections were obtained and then combined to assemble the complete vector maps. Calculations of maximum and minimum sizes of inserts which may be carried by the vectors using different restriction endonucleases or pairs of restriction endonucleases are presented. The regions mapped include several parts of ϕ 80 that had not been mapped previously.

The 21 Charon phages which were derived from bacteriophage λ make available to experimenters a wide variety of vectors for use in recombinant DNA experiments. The construction, characterization, and preliminary restriction maps of the first 20 in the series have been described in previous work (3, 13, 15). The latest EK2 certified vector, CH21A, is described elsewhere (2).

To make best use of these vectors, it is desirable to have precise maps showing sites for as many restriction enzymes as possible. Those enzymes that cut only in the replaceable region are especially important, since these enzymes are useful for cloning. Restriction sites in other regions of the vector are useful in identification and characterization of inserts. In this paper we present maps of nine restriction endonucleases in Charon phages 1 to 21.

MATERIALS AND METHODS

Restriction endonucleases. *Eco*RI was prepared as described previously (14). All other restriction endonucleases were purchased from New England Biolabs. Digestion conditions were generally those recommended by New England Biolabs. For simultaneous digestion with several enzymes, the conditions were determined empirically and generally were those appropriate for the enzyme having the more stringent requirements. In a few cases, multiple digestion was done sequentially.

DNA. DNA was prepared from phages as described previously (14). $\phi X 174$ replicative-form DNA was from New England Biolabs. Plasmid DNA was prepared as described previously (7). For redigestion experiments, DNA fragments were extracted from slices of 0.5% agarose gels (0.7 cm thick) by using the elution solution and technique described by Maxam and Gilbert for acrylamide gels (8). The fragment was concentrated

[†] Paper no. 2386 from the Laboratory of Genetics, College of Agricultural and Life Sciences, University of Wisconsin-Madison. by ethanol precipitation and was resuspended in the buffer appropriate for the redigestion.

Gel electrophoresis. Sizes of fragments having less than 800 base pairs (bp) were determined on acrylamide gels. For larger fragments we employed agarose gels. Electrophoresis through 7.5% acrylamide-0.3% bisacrylamide gels (20 cm long by 1.5 mm thick) containing 25% glycerol was as described by Moore et al. (9). The gels were run by using voltage gradients of less than 5 V/cm.

Electrophoresis through agarose gels (10 cm long by 1.7 mm thick) was as described by Shinnick et al. (12). Thicker preparative gels were formed in shallow trays to provide edge support. Voltage gradients were less than 1 V/cm. Depending on the sizes of fragments to be resolved, agarose percentages of 0.5, 0.8, 1, or 1.2% were employed.

DNA size markers were run adjacent to the experimental digests. A standard curve was made for each gel by plotting the mobilities of the marker fragments versus the logarithms of their sizes. The sizes of DNA fragments from the experimental digests were then determined from the standard plot. The size markers for the acrylamide and for the agarose gels were as described previously (5).

Data management. Two computer programs were used. The first (11) performed least-squares analysis to provide best-fit maps from fragment sizes. The second program (Schroeder, unpublished) provided a comprehensive file management system which could be used to store, edit, and splice data files containing restriction maps of subregions of λ and the Charon phages and to construct and update maps of the 21 complete Charon phages.

RESULTS AND DISCUSSION

The complete maps of *Bam*HI, *BgI*II, *Eco*RI, *Hind*III, *Kpn*I, *Sal*I, *Sst*I, *Xba*I, and *Xho*I digests of the 21 Charon phages and of phage λ are presented in Fig. 1.

The Charon phages were constructed by combining various point, deletion, insertion, duplication, and substitution mutations of λ and other

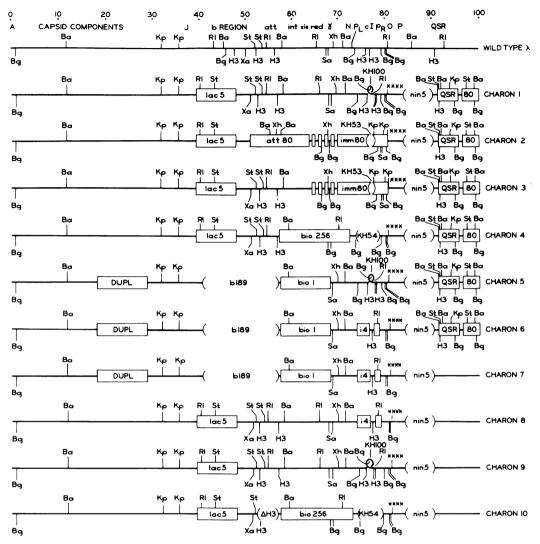
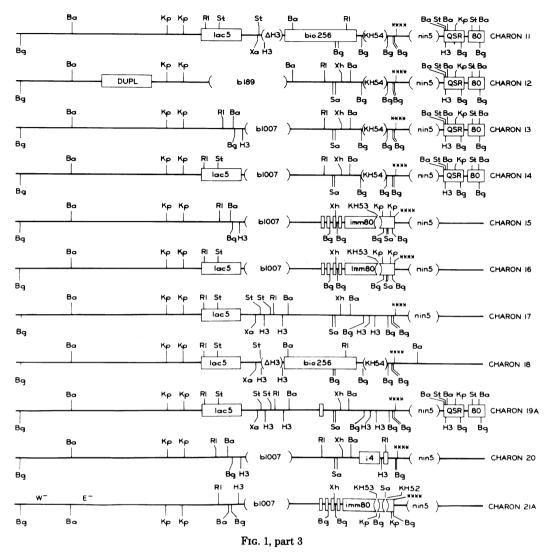


FIG. 1. Restriction maps of λ and Charon phages 1 to 21. The phage λ map is shown on the top line with some genes identified. In the vector maps lines represent regions homologous to λ , and boxes represent deletions. Lengths of the substitution boxes represent the amount of λ DNA removed and are not proportional to the amount of inserted DNA. **** represents the locations of the EcoRI site in the O gene of wild-type lambda which is removed in the Charon phages. The abbreviations for the restriction endonucleases are as follows: Ba, BamHI; Bg, BgII; Kp, KphI; H3, HindIII; RI, EcoRI; Sa, SaII; St, SstI; Xa, XbaI; and Xh, XhoI. Base pair coordinates of cleavage sites for these nine restriction endonucleases are shown on the facing page. Abbreviations: Lend, left end; Rend, right end.

lambdoid phages by homologous recombination (Fig. 1) (2, 3, 13, 15).

Thus, the analysis could be simplified by mapping subsections. It was possible to divide each Charon phage except Charon 2 into subsections with endpoints at restriction sites in λ DNA (i.e., within the straight-line portions of Fig. 1). In the case of Charon 2, one site in ϕ 80 DNA was needed. The eight subsections listed in Table 1 were mapped. Complete vector maps were then assembled by splicing individual subsections together with λ , taking into account deletions and duplications.


Most subsections were mapped rather simply. Our mapping of the immunity region of $\phi 80$ was more complex, and data are presented only for that case. Figure 2 shows a map of the *imm*80 subsection, which was defined to begin with a *Bam*HI site (position 28,713 on the λ map [5]) and to end with the *****Eco*RI site in gene *O*

CHARO		<u>Kpn</u> l	37430	<u>Sst</u> l	25336	<u>Kpn</u> l	23815	<u>Hind</u>	
Lend	0	Bglll	38379	HindIII		Kpn I	25337	EcoRI	37425
<u>Bg1</u> 11	482	****	38394	Sstl	26477	BamHI	27338	Bglll	38328
BamHI	5526	BamHI	40441	EcoRI	26693	Sall	30105	<u>Bgl</u> ll	38388
<u>Kpn</u> I	17290	<u>Sst</u> l	40591	HindIII		<u>Xho</u> l	30346	****	38742
Kpn I	18812	HindIII		BamHI	29026	BamHI	31350	Rend	45379
EcoRI	19801 20905	BamHI	40947 42833	Bglll	32613	Hind III EcoRI	33360 33596	CHARC	
<u>Sst</u> l Xbal	25072	Kpnl Bg111	42897	Bg111 EcoR1	32747 34524	Bg111	34499	Lend	0
Sstl	25336	Sstl	44453	Bg111	36071	Bglll	34559	Bg111	482
Hindlll		BamHI	44875	Bglil	36373	****	34913	BamHI	5526
Sstl	26477	Ball	45052	Bglll	37024	BamHl	36960	Kpnl	17290
EcoRI	26693	Rend	46366	Bglii	37084	Sstl	37110	Kpnl	18812
Hindlll			•	****	37438	Hindlll		EcoRI	19801
BamH I	28623	CHARO	N 3	BamHl	39485	BamHI	37466	Sstl	20905
EcoRI	32374	Lend	0	Sstl	39635	Kpn I	39352	Xbal	25072
Sall	33422	Bglll	482	HindIII		Bglll	39416	Sstl	25336
Sall	33934	BamH I	5526	BamHI	39991	Sstl	40972	Hindlll	
<u>Xho</u> l	34175	<u>Kpn l</u>	17290	Kpn I	41877	BamHI	41394	Sstl	26477
BamHI	35179	Kpn I	18812	Bglil	41941	Bglll	41571	EcoRI	26693
Bglll	36403	EcoRI	19801	Sstl	43497	Rend	42885	HindIII	
HindIII		Sstl	20905	BamHI	43919	CUADO		BamH I	28623
Bg111	38277	Xbal	25072	Bglll	44096	CHARO		EcoRI	32374
EcoRI HindIII	39132 39377	<u>Sst</u> l Hindlll	25336 25737	Rend	45410	Lend	0 482	Sall Sall	33422 33934
Hindlll		Sstl	26477	CHARO	NE	<u>Bgl</u> ll BamHl	5526	Xho I	34175
Bglll	40021	EcoRI	26693	Lend	0	Kpnl	23815	BamHI	35179
Balli	40672	Hindlll		Bg111	482	Kpnl	25337	Bg111	36403
Bglll	40732	BamHI	28623	BamHI	5526	BamHI	27338	Hindll	
****	41086	Bglii	33920	Kpnl	23815	Sall	30105	Bg111	38277
BamHI	43133	Xhol	34676	Kpnl	25337	Xhol	30346	EcoRI	39132
Sstl	43283	Bglll	34802	BamHI	27338	BamH I	31350	Hindlll	
Hindlll		Kpnl	37547	Sall	30105	Hindlll		Hindlll	39502
BamHI	43639	Bglll	38278	Xho I	30346	EcoRI	33596	Bg111	40021
Kpn l	45525	Sall	38569	BamHI	31350	Bglll	34499	Bglll	40672
<u>Bg1</u> 11	45589	Sall	38722	Bglll	32574	Bglll	34559	Bglll	40732
Sstl	47145	Kpn I	39357	HindIII		****	34913	****	41086
BamHI	47567	Bg111 ****	40306	Bglll	34448	Rend	41550	Rend	47723
<u>Bg1</u> 11 Rend	47744 49058	BamHI	40321 42368	<u>Eco</u> RI HindIII	35303 35548			CHARC	N 10
Nenu	-9090	Sstl	42518	Bglll	36192	CHARO	N 8	Lend	0
		Hindlll		Bglll	36843	Lend	0	Bg111	482
CHARO	N 2	BamHI	42874	Bglll	36903	Bglll	482	BamHI	5526
Lend	0	Kpn I	44760	****	37257	BamH I	5526	Kpnl	17290
Bglll	482	Bglll	44824	BamHI	39304	Kpn I	17290	Kpn I	18812
BamHI	5526	Sstl	46380	Sstl	39454	Kpn I	18812	EcoRI	19801
Kpn I	17290	BamH I	46802	Hindlll		EcoRI	19801	Sstl	20905
<u>Kpn</u> I	18812	Bglll	46979	BamHI	39810	Sstl	20905	Xbal	25072
EcoRI	19801	Rend	48293	Kpnl	41696	Xbal	25072	Sstl	25336
Sstl	20905			Bglll	41760	Sstl	25336	Hindlll	
BamHl	26923	CHARO	an t	Sstl	43316	HindIII		BamHI	26742
Xhol BamHl	27228 29998	Lend	0	BamHl Bglll	43738 43915	Sst1 EcoRI	26477 26693	<u>Bg1</u> Bg1	30329 30463
Bg111	31993	Bglll	482	Rend	45229	HindIII		EcoRI	32240
Xhol	32749	BamHI	5526	nenu	77227	BamHI	28623	Bg111	33787
Bglll	32875	Kpnl	17290			EcoRI	32374	Bglll	34089
Kpnl	35620	Kpn I	18812	CHARO	N 6	Sall	33422	Bglll	34740
Bglll	36351	EcoRI	19801	Lend	0	Sall	33934	Bglll	34800
Sall	36642	Sstl	20905	<u>Bg1</u>	482	Xho I	34175	****	35154
Sall	36795	Xbal	25072	BamHI	5526	BamHI	35179	Rend	41791
				T 1					

FIG. 1, part 2

404 DE WET ET AL.

J. VIROL.

(position 40,000 on the λ map). This subsection, which includes the KH53 deletion, is used in five of the Charon phages (Charon phages 2, 3, 15, 16, and 21).

Restriction mapping information from each of these phages was supplemented with data from the KH53⁺ precursor phage Fbn (13) and the plasmid pFbn3 (1). This plasmid was made by splicing the *imm*80 *Eco*RI fragment from Fbn into the mini ColE1 plasmid vector pVH51.

The difference between these substrates had to be taken into account in analyzing the mapping data. For example, phage Fbn has two EcoRI sites not present in the cloning vectors. One of these is in the middle of the immunity region (removed by deletion KH53), and the other is within gene O (removed by point mutation BW2). The KH53-BW2 combination appears in Charons 2, 3, 15, and 16, whereas Charon 21 also includes the KH52 deletion which was isolated by in vitro excision of the SaII subfragment of *imm*80. The plasmid pFbn3 contains both *Eco*RI sites and neither of the deletions.

The first step of analysis of *imm*80 was to determine which of the nine restriction enzymes cut in the *imm*80 subsection. Since a comprehensive map of λ was available, the easiest way to do this was to digest Charon 15 DNA with each enzyme and to compare the results with λ (Fig. 1). This experiment showed that XhoI cut once, KpnI and SaII cut twice, and BgIII cut four times in the *imm*80 subsection.

The second step was the determination of the order of restriction fragments in the region.

		Rend	43938	Bglll	39696	BamHl	28623	Hindl	38201
CHARO	N 11			Rend	41010	Sall	33422	Bg111	38845
Lend	0	CHAR	DN 13			Sall	33934	Bglil	39496
Bg111	482	Lend	0	CHAR	DN 15	Xhol	34175	Bglii	39556
BamHI	5526	Bglll	482	Lend	0	BamHI	35179	****	39910
Kpn I	17290	BamHI	5526	Bg111	482	Bglll	36403	BamHI	41957
Kpnl	18812	Kpn I	17290	BamHI	5526	Hindlll		Sstl	42107
EcoRI	19801	Kpnl	18812	Kpnl	17290	Hindlll		Hindll	
Sstl	20905	EcoRI	21569	Kpnl	18812	Bg111	38845	BamHI	42463
Xbal	25072	BamHI	22703	EcoRI	21569	Bglii	39496	Kpnl	44349
Sstl	25336	Bglll	22784	BamHI	22703	Bglii	39556	Bglll	44413
Hindlll		Hindll		Bglll	22784	****	39910	Sstl	45969
BamHI	26742	EcoRI	27354	Hindll		Rend	46547	BamHI	46391
Bg111	30329	Sall	28402	Bglll	28898	Kellu	40347	Bglii	46568
Bg111	30463	Sall	28914			СИАВО	N 18		40500
EcoRI				Xho I	29654	CHARO		Rend	4/002
Bg111	32240	Xho I	29155	Bglll	29780	Lend	0	CUADO	
	33787	BamHI	30159	Kpn I	32525	<u>Bg1</u> 11	482	CHAR	
<u>Bg1</u> Bg1	34089	<u>Bg1</u> 11	31383	Bglll	33256	BamHI	5526	Lend	0
	34740	Bglll	31685	Sall	33547	Kpnl	17290	<u>Bg1</u> 11	482
<u>Bg1</u> 11 ****	34800	Bglll	32336	Sall	33700	Kpnl	18812	BamHI	5526
	35154	Bglll	32396	Kpn I	34335	EcoRI	19801	Kpnl	17290
BamHI	37201	****	32750	Bglll	35284	Sstl	20905	Kpnl	18812
<u>Sst</u> l	37351	BamHI	34797	****	35299	Xbal	25072	EcoRI	21569
HindIII		Sstl	34947	Rend	41936	Sstl	25336	BamHI	22703
BamHI	37707	Hindll				HindIII		Bglll	22784
Kpnl	39593	BamHI	35303	CHARC		BamHI	26742	Hindll	
Bglll	39657	Kpnl	37189	Lend	0	Bglll	30329	EcoRI	27354
Sstl	41213	Bglll	37253	<u>Bg1 </u>	482	Bglll	30463	Sall	28402
BamH I	41635	<u>Sst</u> l	38809	BamHI	5526	EcoRI	32240	Sall	28914
Bglll	41812	BamH I	39231	Kpn I	17290	Bglll	33787	<u>Xho</u> l	29155
Rend	43126	Bglll	39408	Kpn I	18812	Bglll	34089	BamH I	30159
		Rend	40722	EcoRI	19801	Bglll	34740	Hindlll	
				Sstl	20905	Bglll	34800	EcoRI	32405
CHARO		CHARC	DN 14	Bglll	29188	****	35154	Bglll	33308
Lend	0	Lend	0	<u>Xho</u> I	29944	BamH I	37769	Bglll	33368
<u>Bg</u>]	482	Bglll	482	Bglll	30070	Rend	44656	****	33722
BamHI	5526	<u>BamHI</u>	5526	Kpnl	32815			Rend	40359
<u>Kpn I</u>	23815	Kpn I	17290	Bglll	33546				
<u>Kpn</u> l	25337	Kpn I	18812	Sall	33837	CHARO	N 19		
<u>Bam</u> H I	26819	<u>Eco</u> RI	19801	Sall	33990	Lend	0	CHARC	N 21
EcoRI	30570	<u>Sst</u> l	20905	Kpn I	34624	<u>Bg1</u> 11	482	Lend	0
Sall	31618	EcoRI	27642	Bg111	35574	BamH I	5526	Bglll	482
Sall	32130	Sall	28690	****	35589	Kpnl	17290	BamHI	5526
<u>Xho</u> l	32371	Sall	29202	Rend	42226	Kpn I	18812	Kpn I	17290
BamHI	33375	Xho I	29443			EcoR I	19801	Kpnl	18812
Bglll	34599	BamHI	30447	CHARO	N 17	Sstl	20905	EcoRI	21569
Bglll	34901	Bglii	31671	Lend	0	Xbal	25072	BamHI	22703
Bglll	35552	Bglll	31973	Bglll	482	Sstl	25336	Bglll	22784
Bglll	35612	Bglll	32624	BamHI	5526	Hindlll	25737	Hindlll	23513
****	35966	Bglll	32684	Kpn I	17290	Sstl	26477	Bg11	28898
<u>Bam</u> HI	38013	****	33038	Kpn I	18812	EcoRI	26693	Xho I	29654
Sstl	38163	BamHl	35085	EcoRI	19801	Hindlll		Bglll	29780
Hindlll	38205	Sstl	35235	Sstl	20905	BamHI	28623	Kpn I	32525
BamH I	38519	Hindlll		Xbal	25072	Sall	33422	Bglll	33256
Kpnl	40405	BamHI	35591	Sstl	25336	Sall	33934	Sall	33547
Bglll	40469	Kpnl	37477	HindIII		Xho I	34175	Kpn I	34182
Sstl	42025	<u>Bg111</u>	37541	Sstl	26477	BamH I	35179	<u>Bg1</u> 11	35131
BamHI	42447	Sstl	39097	EcoRI	26693	Bglii	36403	****	35146
Bglll	42624	BamHI	39519	Hindlll	28023	<u>Hind</u>	37616	Rend	41783
				-					

FIG. 1, part 4

406 DE WET ET AL.

Subsec- tion	Enzyme	Coordinate	Subsec- tion	Enzyme	Coordinate
lac5	KpnI	0 (19,181)		BglII	6,179
	Left end of <i>lac</i> 5			KpnI	8,924
	EcoRI	989		BglII	9,655
	SstI	2,093		Sall	9,942
	Right end of <i>lac</i> 5			SaП	10,095
	XbaI	6,259(25,161)		KpnI	10,734
				BgIII	11.683
lac5-att80	KpnI	0 (19,181)		EcoRI	11,697 (40,000)
	Left end of <i>lac</i> 5				
	EcoRI	989	imm434	BamHI	0 (35,269)
	SstI	2,093		Right end of imm434	• (•••,=•••)
	BamHI	8,111		HindIII	2,010
	XhoI	8,416		EcoRI	2,246
	BamHI	11,186		Right end of <i>imm</i> 434	_,
	Right end of att80			BgIII	3,148 (39,586)
	BglII	13,180 (5,297, imm80)		U	-,,,
		, , , ,,	KH100	HindIII	0 (37,700)
bio256	HindIII	0 (28,113)		Left end of KH100	, ,
	Left end of <i>bio</i> 256			BglII	661
	BamHI	1,003		EcoRI	1.516
	BglII	4,590		Right end of KH100	,
	BglII	4,724	[]	HindIII	1,760 (38,291)
	EcoRI	6,401			,,
	Right end of bio256		QSR80	EcoRI	0 (40,000)
	BgIII	8,047 (36,494)	nin5	nin5	(
		, , , , , ,		Left end of QSR80	
b189-bio1	KpnI	0 (19,181)		BamHI	2,047
	b189 and left end of bio1	. ,,		SstI	2,197
	BamHI	2,001		HindIII	2,239
	Right end of <i>bio</i> 1			BamHI	2,553
	Sall	4,767 (34,024)		KpnI	4,439
				BgIII	4,503
imm80	BamHI	0 (28,713)		SstI	6,059
	Left end of <i>imm</i> 80			BamHI	6,481
	BglII	5,297		BglII	6,658
	XhoI	6,053		Right end of $\phi 80$	7,971 (49,502)

TABLE 1. Subsection maps^a

^a Coordinates are listed for restriction sites within subsections, with the left end of each subsection defined as zero. Deletion and substitution boundaries are inserted in their corresponding positions, but coordinates are not given since these were not measured. Coordinates in parentheses are the λ restriction map (5) coordinates of sites which occur in λ . All subsection map endpoints are in λ except for the *BgIII* site at 13,180 of the *lac5-att80* subsection map, which corresponds to a *BgIII* site in the *imm80* subsection map. The *Eco*RI site at 11,697 in the *imm80* subsection does not occur in the vectors, as it has been removed by mutation. This *Eco*RI site has been shown by sequence to be the endpoint of the *imm80* substitution (10).

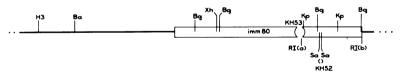


FIG. 2. Restriction map of the imm80 region of the λ - ϕ 80 hybrid Fbn. The straight line represents λ DNA, and the box represents ϕ 80 DNA. The parentheses indicate the deletion KH53, which eliminates the EcoRI site, RI(a). In the Charon phages the EcoRI site, RI(b) has been removed by the point mutation BW2. The fragment bounded by EcoRI sites RI(a) and RI(b) was inserted into pVH51 to construct the plasmid pFbn3. For abbreviations, see legend to Fig. 1.

Digestion of pFbn3 showed that all KpnI and SalI sites, as well as two of the BglII sites, were present in the plasmid and thus are located to the right of Δ KH53, leaving two closely spaced BglII sites and the XhoI site to the left of Δ KH53. The relative arrangement of these sites was established by single and multiple digestions of Charon 3 DNA. We observed that a 882-bp

BgIII fragment was cut into 756- and 126-bp subfragments by XhoI. Since no other small fragments were observed, we conclude that XhoI cuts once in between the BgIII sites. To determine the order of the 756- and 126-bp fragments, the nearby KpnI site was used as a reference. The KpnI-BgIII subfragment from this area measured 2,745 bp, whereas the KpnI-XhoI fragment measured 126 bp larger. Thus, the smaller of the XhoI-BglII subfragments was assigned to the right of the XhoI site. In a similar way, a series of single and double digests of pFbn3 and Charon 3 was analyzed, leading to the assignments shown in Fig. 2.

Mapping experiments with pFbn3 were done to analyze the *BgIII*, *KpnI*, and *SaII* sites to the right of KH53 in *imm*80, as the restriction patterns from the plasmid were much simpler than those from phage DNA. The pair of *Eco*RI sites in the plasmid, neither of which is present in the Charon phages, also provided convenient reference points from which to measure the locations of the restriction sites situated between them.

The third and final step of analysis of the *imm*80 subsection was the least-squares calculation of map coordinates for the 12 restriction sites. To obtain the best estimates of fragment sizes, all available measurements for each of 22 fragments resulting from various combinations of enzymes were averaged. In addition, the size of the *BgIII-Eco*RI fragment at the right of the subregion map was shown to be 14 bp by DNA sequence studies (10). These measurements served as input for the least-squares program of Schroeder and Blattner (11). As Fig. 3 shows, the 12 restriction sites were positioned so that the maximum error between predicted and measured fragment sizes was 2.6%.

Mapping of other subgroups proceeded along similar but generally simpler lines. Most of the restriction sites for the nine enzymes which were mapped could be determined on the basis of the sizes of DNA restriction fragments or upon the results of digestion of a phage DNA with a pair of enzymes.

The ordering of the BamHI, SstI, and HindIII restriction sites in the leftmost region of the QSR80 substitution proved difficult because of their close spacing and the lack of reference sites outside the region (Table 1). Digestion of QSR80 with BamHI produced a fragment of 506 bp which was cut by HindIII into fragments of 192 and 314 bp. SstI cut the 506-bp fragment into 356- and 150-bp pieces. It was also shown by acrylamide gel electrophoresis that the SstI site was 42 bp from the HindIII site and that SstI cut the smaller of the two BamHI-HindIII fragments. However, it was not possible to determine the order of the two BamHI-HindIII fragments, and consequently it was difficult to tell whether the SstI site was to the left or to the right of the HindIII site. This problem was solved by isolating the *Hin*dIII fragment from the right end of Charon 3, using a preparative agarose gel. This DNA was redigested with *Bam*HI and analyzed on a 7.5% acrylamide gel. The larger, 315-bp

BamHI-HindIII fragment was found to be present, and the smaller one was absent. This showed that the closer of the two BamHI sites was located to the left of the HindIII site. Since the BamHI-HindIII fragment contains the SstI site, this site had to be located ~45 bp to the left of the HindIII site. Once the order of these sites had been established, final map positions could be assigned by the least-squares program.

In order to complete the Charon maps, it was necessary to determine the length of each deletion and the duplication dupL, as well as to establish which restriction map interval is occupied by each of these mutations. In the case of Δ H3 and Δ KH52, which were generated in vitro by restriction enzyme cleavage, this was not a problem. These deletions remove 2,286 and 153 bp, respectively. Determination of the total shortening of fragments allowed the lengths of the in vivo-generated deletions to be

SITE NUMBER	MAP COURDINATE		INTERVAL
1	-602.4		.0
2	.0		602.4
3	5297.3		5297.3
4	6053.5		756+2
5	6179.0		125.5
6	8923.6		2/44.6
1	9654.9		731.3
8	9942+1		287.2
9	10095.4		153.3
10	10/34.3		538.9
11	11583+5		949.2
12	11697+5		14.0
FRAGMENT S12F	ADJUSTMENTS		
ERAGMENT	URTGINAL	COMPUTED	CHANGE
1 2	s02.0	602.4	.17
1 4	5200.0	6655.8	72
2 3	5220.0	5297+3	.5%
3 4	240+9	256+2	2.1%
3 5	905.0	331.5	67
4 S	125.0	125.5	. 47
4 5	2870.0	2870.1	/%
5 6	2740.0	2744.6	.27
5 /	3445.0	3475.9	.92
5 11	5530.0	5504.5	.5%
6 7	730.0	731.3	. 2%
6 10	1825 0	1810.7	87
7 8	285.0	287.2	.8%
/ 10	1100.9	1079.4	1.9%
7 11	100010	2028.0	1.1%
8 Y	153.0	153.3	
8 1.2	1/10.0	1755.4	
9 10	640.0	538.7	. 27
9 11	1555+0	1588+1	2.17
9 L.1	1600.0	1602+1	•17
10 11	¥50+0	9 4 9.2	1.17
10 12	971.0	Y63.1	1?Z
11 12	11.0	14.0	.0%
TYPE CIULS	(iv i EPR 6101110	No: DATA	

FIG. 3. Assignment of coordinates to restriction sites in the imm80 subsection by least-squares analysis. The site numbers at the top correspond to the restriction sites shown in Fig. 2. The map coordinate column gives the computed map positions of the restriction sites, with the BamHI site in λ defined as zero. Under fragment size adjustments are listed the sizes of fragments as measured (original) and as assigned by the program (computed) and the percent difference between these values (change). The fragments are identified in the left column by the numbers of the restriction sites which bound the fragment. A full description of the computational method appears in reference 12.

SHORT

Phage	Restriction enzyme(s)	Cloning ca- pacity (kbp)	Phage	Restriction enzyme(s)	Cloning ca pacity (kbr
Charon 1	EcoRI	8.3-20.3		SstI-XhoI	5.9-17.9
	XbaI	0-0.9		Xbal-HindIII	4.7-16.7
	Sall	0-1.5		Xbal-Sall	1.5-13.5
				Xbal-Sull	1.7-13.7
	XhoI	0-0.9		Sall-Xhol	0-5.4
	XbaI-Sall	0-9.8		Sai1-Ano1	0-0.4
	XbaI-XhoI	0-10.0		n n	
	Sall-Xhol	0-1.7	Charon 9	EcoRI	9.6-21.6
				SstI	0-7.8
Charon 2	EcoRI	0-3.6		XbaI	0–2.3
	XhoI	0–3.6		<i>Hin</i> dIII	3.9–15.9
	Sall	0-3.8		SstI	0-2.8
	EcoRI-XhoI	4.6-16.6		XhoI	0–2.3
				EcoRI-HindIII	9.9-21.9
Charon 3	EcoRI	0-8.6		SstI-Sall	3.3-15.3
	XbaI	0-1.7		SstI-XhoI	3.5-15.5
	XhoI	0-1.7		SstI-HindIII	8.7-20.7
	Sall	0-1.9		XbaI-Sall	0-11.
	EcoRI-XhoI	4.6-16.6		XbaI-XhoI	0-11.4
	EcoRI-Sal	8.6-20.6		Xbal-HindIII	4.6-16.0
				Sall-Xhol	4.0-10.0
	Xbal-Xhol	0-11.3		Sull-A1101	0-3.0
	XbaI-Sall	3.4-15.4			0 0 00
	XbaI-Sal	0-5.8	Charon 10	EcoRI	8.6-20.0
				SstI	0.6-12.0
Charon 4	EcoRI	7.3-19.3		XbaI	0-8.2
	XbaI	0-4.6		HindIII	0-8.2
				SstI-HindIII	1.0-13.
Charon 5	Sall	0-4.8		XbaI-HindIII	0-8.9
	XhoI	0-4.8			
	EcoRI	0-4.8	Charon 11	EcoRI	7.3-19.
	Sall-Xhol	0-5.0		XbaI	0-6.9
	Sall-EcoRI	0-10.0			
	XhoI-EcoRI	0-9.7	Charon 12	EcoRI	0-6.1
	Anoi-Ecolu	0-0.1	Charon 12	Sall	0-6.6
Charon 6	Sall	0-7.1		XhoI	0-6.1
Charon o		0-7.1		EcoRI-Sal	0-0.1
	XhoI E DI	0-7.1	1	EcoRI-Sali	0-7.9
	EcoRI				
	Sall-Xhol	0-7.4		Sall-Xhol	0-6.8
	Sall-EcoRI	0-10.6		D D	0 1 15
	XhoI-EcoRI	0-10.4	Charon 13	EcoRI	3.1-15.
				Sall	0-9.8
Charon 7	Sall	0-8.5		XhoI	0–9.3
	XhoI	0-8.5		EcoRI-Sal	4.6-16.
	EcoRI	0-8.5		EcoRI-XhoI	4.9-12.
	Sall-Xhol	0-8.7		Sall-Xhol	0-10.
	Sall-EcoRI	0-12.0			
	XhoI-EcoRI	0-11.7	Charon 14	EcoRI	4.8-16.
	HindIII	0-8.5		Sall	0-9.5
	Sall-HindIII	0-11.7		XhoI	0-9.0
	XhoI-HindIII	0-11.5		EcoRI-SalI	6.5-18.
	HindIII-EcoRI	0-8.7		EcoRI-XhoI	6.6-18.
	IImuiii-Ecolu	0-0.7		Sall-Xhol	0-9.7
Charger 9	EcoRI	10.2-22.2		0411-21/101	0-0.1
Charon 8			Charon 15	EcoRI	0-8.1
	SstI Vbal	0-10.2	Charon 15	HindIII	0-8.1
	Xbal	0-4.6		XhoI	0-8.1
	HindIII	4.1-16.1		Sall	0-8.1
	Sall	0-5.1			
	XhoI	0-4.6		EcoRI-HindIII	0-10.
	SstI-HindIII	8.9-20.9		EcoRI-XhoI	4.1-16.
	SstI-Sall	5.6-17.6	11	EcoRI-Sal	8.2-20.

TABLE 2. Cloning capacity of Charon phages 1 through 21 calculated by using single restriction enzymesand pairs of enzymes^a

TABLE 2—Continued								
Phage	Restriction enzyme(s)	Cloning ca- pacity (kbp)	Phage	Restriction enzyme(s)	Cloning ca- pacity (kbp)			
	HindIII-XhoI	2.2-14.2	Charon 18	EcoRI	5.8-17.8			
	HindIII-Sal	6.3-18.3		SstI	0-9.8			
	XhoI-Sall	0.1-12.1		XbaI	0-5.3			
				HindIII	0-5.3			
				SstI-HindIII	0-10.2			
Charon 16	EcoRI	0-7.8		XbaI-HindIII	0-6.0			
	SstI	0-7.8						
	XhoI	0-7.8	Charon 19	EcoRI	0-9.0			
	Sall	0-7.9		XbaI	0-2.1			
	EcoRI-SstI	0-8.9		Sall	0-2.6			
	EcoRI-XhoI	5.9-17.9		XhoI	0-2.1			
	EcoRI-SalI	10.0-22.0		EcoRI-Sal	4.3-16.3			
	SstI-XhoI	4.8-16.8		EcoRI-XhoI	4.5-16.5			
	SstI-Sall	8.9-20.9		XbaI-SaЛ	0-11.0			
	XhoI-SalI	0-11.8		XbaI-XhoI	0-11.2			
				Sall-Xhol	0–2.9			
Charon 17	EcoRI	0-10.3	Charon 20	EcoRI	8.5-20.5			
	SstI	0-9.0		HindIII	6.3-18.3			
	XbaI	0-3.5		Sall	0-10.2			
	HindIII	3.9-15.9		XhoI	0-9.6			
	Sall	0-4.0		Sall-Xhol	0-10.4			
	XhoI	0-3.5						
	EcoRI-Sal	5.6-17.6	Charon 21	EcoRI	0-8.2			
	EcoRI-XhoI	5.8-17.8		HindIII	0-8.2			
	SstI-HindIII	8.7-20.7		XhoI	0-8.2			
	SstI-SalI	4.5-16.5		SaП	0-8.2			
	SstI-XhoI	4.7-16.7		EcoRI-HindIII	0-10.2			
	XbaI-HindIII	4.6-16.6		EcoRI-XhoI	4.3-16.3			
	XbaI-Sal	0.3-12.3		EcoRI-Sal	8.2-20.2			
	XbaI-XhoI	0.6-12.6		HindIII-XhoI	2.4-14.4			
	Sall-Xhol	0-4.2		HindIII-Sal	6.3-18.3			
	EcoRI-HindIII	9.9-21.9		XhoI-Sall	0.1-12.1			
		t						

TABLE 2—Continued

^a It is assumed that a viable phage must have a total length between 38,000 and 50,000 bp. Cloning capacities are indicated in kilobase pairs. Charons 5, 6, 7, and 12 contain dupL. Phage which have either lost or gained a copy of the duplication due to unequal crossing-over occur in the population. A portion of the phage therefore has a cloning capacity enlarged or reduced by 6.5 kbp (the size of dupL).

determined. Nin5 was found to delete 2,865 bp, b1007 deleted 4,754 bp, b189 deleted 8,051 bp, and KH54 deleted 2,138 bp. KH53 was not measured since the *imm*80 subsection was defined to contain it. The insertion KH100 (IS5) was determined to be 1,176 bp long.

A spontaneous duplication of a region of the left arm of λ , designated *dupL*, is present in Charon phages 3, 6, and 7 (3, 13). The *PvuI* site at 12,376 on the left arm of λ (5) is in the region of DNA which is duplicated in *dupL*, and thus *PvuI* produces a restriction fragment which corresponds to the size of the duplication. Digestion of Charon 12 DNA with *PvuI* yielded a band with a size of 6,525 bp. This agrees well with a value of 13.4% of the λ genome (6,580 bp at 491 bp/1% of λ) for the size of *dupL*, as determined by buoyant density measurements in an analytical ultracentrifuge (13).

The final step of mapping the Charon vectors was to splice the subregions together with appropriate sections of λ to prepare Fig. 1. This figure gives base pair coordinates for each restriction site in each vector. Preparation of the figure was aided by the use of a computer program which combined subregions (Schroeder, unpublished). All of the splice points used were restriction sites in λ DNA, with the exception of the joints connecting *att*80 to *imm*80 in Charon 2 (Table 1).

It should be emphasized that the number of significant figures in Fig. 1 does not indicate the accuracy of each coordinate. There is simply no way to round the figures off that preserves the ability to subtract coordinates to obtain the lengths of small fragments.

410 DE WET ET AL.

The accuracy of the final map is dependent in part on the accuracy of each subsection map and in part on the errors inherent in the use of subsections. For each of the subsections the sizes of fragments predicted from the map agreed with electrophoresis measurements within $\pm 5\%$. The subsection approach did not allow inclusion of large fragments spanning subsection boundaries. Despite this, the total length of Charons 1 through 20 as determined by restriction mapping agrees well with the sizes that were determined by buoyant density centrifugation (13). The average difference in length for the vectors arrived at by these two methods was 0.6% of the λ genome, and the greatest difference in size was 1.6% of the total λ genome. Another uncertainty associated with the subsection approach is the possibility that one of the vectors might contain unsuspected mutations that delete or add sites. Because of the large number of experiments that would be needed, it was not possible to check every vector with every enzyme. There is precedent for such problems in that a new EcoRI site was found in a stock of Charon 4A (13). A similar case is presented by the *ind*⁻ mutation, which adds a HindIII site to the immunity region of λ (4). We have confirmed that this site is present in the KH100-containing phages (Charons 1 and 9), as was reported previously (1). Charon 19, which contains cI857, does not have the HindIII site and thus presumably is ind^+ . Further experience in using the phages may be the only way to learn whether other anomalies of this sort occur.

The completed maps show that many of the Charon phages possess restriction sites for the enzymes *XhoI*, *SaII*, and *XbaI* solely within the dispensable regions, and thus these enzymes can be used for cloning. This accordingly increases the number of pairwise combinations of enzymes which may be used. Table 2 lists the possibilities that are now available and the sizes of fragments that can be cloned, assuming that λ capsids can hold between 38 and 50 kilobase pairs of DNA (3). These capacities are conservative, since λ phages having at least 52,000 bp have been isolated (13).

ACKNOWLEDGMENTS

This research was supported in part by Public Health Service training grant GM07133 from the National Institutes of Health to D.L.D. and by Public Health Service grant GM12182 to F.R.B. from the National Institutes of Health.

LITERATURE CITED

- Blattner, F. R., M. Fiandt, K. H. Hass, P. A. Twose, and W. Szybalski. 1974. Deletions and insertions in the immunity region of coliphage lambda: revised measurement of the promoter-startpoint distance. Virology 62:458-471.
- Blattner, F. R., D. O. Kiefer, D. D. Moore, J. R. de Wet, and B. W. Williams. 1978. Application for EK2 certification of a host-vector system for DNA cloning. Supplement IX. Data on Charon 21A.
- Blattner, F. R., B. G. Williams, A. E. Blechl, K. Denniston-Thompson, H. E. Faber, L. A. Furlong, D. S. Grunwald, D. O. Kiefer, D. D. Moore, J. W. Schumm, E. L. Sheldon, and O. Smithies. 1977. Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science 196:161-169.
- Chow, L. T., and T. R. Broker. 1978. Adjacent insertion sequences IS2 and IS5 in bacteriophage Mu mutants and an IS5 in a lambda darg bacteriophage. J. Bacteriol. 133:1427-1436.
- Daniels, D. L., J. R. de Wet, and F. R. Blattner. 1980. New map of bacteriophage lambda DNA. J. Virol. 33: 390-400.
- Denniston-Thompson, K., D. D. Moore, K. E. Kruger, M. E. Furth, and F. R. Blattner. 1977. Physical structure of the replication origin of bacteriophage lambda. Science 198:1051-1056.
- Humphreys, G. C., G. A. Willshaw, and E. S. Anderson. 1975. A simple method for the preparation of large quantities of pure plasmid DNA. Biochim. Biophys. Acta 383:457-463.
- Maxam, A. M., and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. U.S.A. 74:560– 564.
- Moore, D. D., K. Denniston-Thompson, M. E. Furth, B. G. Williams, and F. R. Blattner. 1977. Construction of chimeric phages and plasmids containing the origin of replication of bacteriophage lambda. Science 198:1041-1046.
- Moore, D. D., K. Denniston-Thompson, K. E. Kruger, M. E. Furth, B. G. Williams, D. L. Daniels and F. R. Blattner. 1978. Dissection and comparative anatomy of the origins of replication of lambdoid phages. Cold Spring Harbor Symp. Quant. Biol. 43:155-163.
- Schroeder, J. L., and F. R. Blattner. 1978. Least squares method for restriction mapping. Gene 4:167-174.
- Shinnick, T. M., E. Lund, O. Smithies, and F. R. Blattner. 1975. Hybridization of RNA to DNA in agarose gels. Nucleic Acids Res. 2:1911-1928.
- Williams, B. G., and F. R. Blattner. 1978. Construction and characterization of the hybrid bacteriophage lambda Charon vectors for DNA cloning. J. Virol. 29: 555-575.
- Williams, B. G., F. R. Blattner, S. R. Jaskunas, and M. Nomura. 1977. Insertion of DNA carrying ribosomal protein genes of *Escherichia coli* into Charon vector phages. J. Biol. Chem. 252:7344-7354.
- 15. Williams, B. G., D. D. Moore, S. W. Schumm, D. J. Grunwald, A. E. Blechl, and F. R. Blattner. 1977. Construction and testing of safer phage vectors for DNA cloning, p. 261-273. *In R. F. Beers, Jr. and E. G.* Bassett (ed.), Recombinant molecules: impact on science and society. Raven Press, New York.