Supporting Information

Mononuclear Copper Complex Catalyzed Four-Electron Reduction of Oxygen

Shunichi Fukuzumi,^{†,‡*} Hiroaki Kotani,[†] Heather R. Lucas,[§] Kaoru Doi,[†] Tomoyoshi Suenobu,[†] Ryan L. Peterson,^{§,‡} and Kenneth D. Karlin^{§,‡*}

[†]Department of Material and Life Science, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan [‡]Department of Chemistry, Division of Nano Sciences, Center for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea [§]Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA

* To whom correspondence should be addressed. E-mail: fukuzumi@chem.eng.osaka-u.ac.jp, karlin@jhu.edu

Experimental Section

Materials. Commercially available reagents, decamethylferrocene (Fc^{*}), perchloric acid (70%), trifluoroacetic acid, hydrogen peroxide (30%), and NaI (Wako Pure Chemical Industries.) were the best available purity and used without further purification unless otherwise noted. Acetone was dried according to the literature procedures¹ and distilled under Ar prior to use. Copper complex [(tmpa)Cu^{II}](ClO₄)₂ (1) (tmpa: tris(2-pyridylmethyl)amine) was prepared according to literature procedures.¹

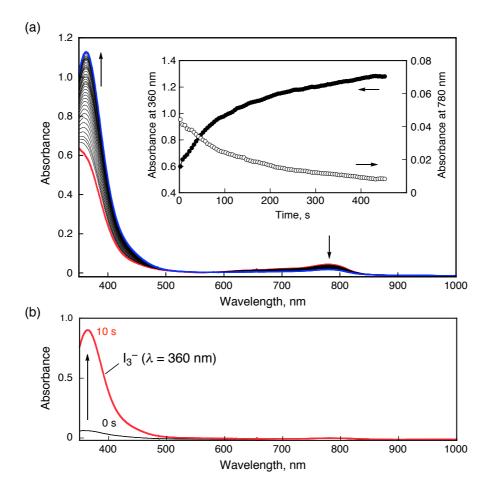
UV-Vis Spectral Titration. The catalytic reduction of O₂ was observed by the spectral change in the presence of various concentrations of HClO₄ at 298 K using a Hewlett Packard 8453 photodiode-array spectrophotometer with a quartz cuvette (path length = 10 mm). Typically, an acetone solution of HClO₄ (0 – 1.44 × 10⁻³ M) was added by means of a microsyringe to an O₂-saturated acetone solution containing **1** (9.0 × 10⁻⁵ M) and Fc^{*} (1.5 × 10⁻³ M). The concentration of Fc^{*+} was determined from the absorption band at $\lambda_{max} = 780$ nm ($\varepsilon = 4.5 \times 10^2$ M⁻¹ cm⁻¹). The ε value of Fc^{*+} was confirmed by the electron-transfer oxidation of Fc^{*} with [Ru^{III}(bpy)₃](PF₆)₃.

The limiting concentration of O_2 in an acetone solution was prepared by a mixed gas flow of O_2 and N_2 . The mixed gas was controlled by using a gas mixer (Kofloc GB-3C, KOJIMA Instrument Inc.), which can mix two or more gases at a certain pressure and flow rate.

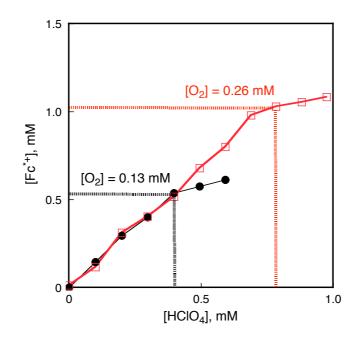

Reaction Procedure. Gas chromatographic analysis was performed on a Shimadzu GC-17A equipped with an InertCap 5MS/Sil column (GL Science Inc., 30 m) and a mass spectrograph (Shimadzu QP-5000) as a detector. The amount of H₂O₂ was determined by the titration by iodide ion. The diluted acetone solution (× 10) of the reduced product of O₂ was treated with an excess amount of NaI. The amount of I₃⁻ formed was then determined by the visible spectrum ($\lambda_{max} = 361 \text{ nm}$, $\varepsilon = 2.5 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$).

Kinetic Measurements. Kinetic measurements were performed on a UNISOKU RSP-601 stopped-flow spectrometer equipped with a MOS-type highly sensitive photodiode

array or a Hewlett Packard 8453 photodiode-array spectrophotometer at 298 K. Rates of electron transfer from Fc^* to **1** were monitored by the rise of absorption bands due to Fc^{*+} and $[(tmpa)Cu^{II}(O_2)Cu^{II}(tmpa)]^{2+}$ (2). All kinetic measurements were carried out under pseudo-first-order conditions where concentrations of Fc^* was maintained to be more than in 10-fold excess compared to the concentration of **1**.

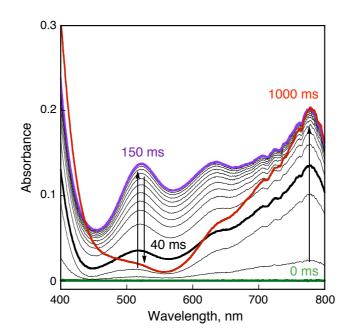

References

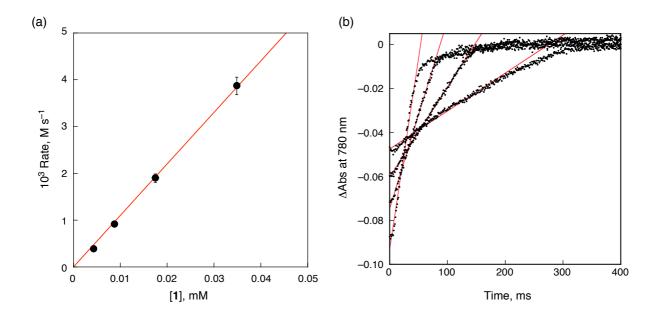
- (1) Tyeklár, Z.; Jacobson, R. R.; Wei, N.; Murthy, N. N.; Zubieta, J.; Karlin, K. D. J. Am. Chem. Soc. 1993, 115, 2677.
- (2) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 5th ed.;
 Butterworth-Heinemann: Amsterdam, 2003.


Figure S1. A molecular ion peak at m/z = 20 due to $H_2^{18}O$ (gray: 1, 2 and 5 mM) and that observed in the reduction of ${}^{18}O_2$ (blue) with Fc^{*} (17 mM) catalyzed by 1 (0.1 mM) in the presence of CF₃COOH (20 mM) in acetone at 298 K after 3h.

Comment: The product of catalytic O_2 reduction was confirmed to be H_2O by using ¹⁸O-labeled O_2 , because $H_2^{18}O$ was formed by the reduction of ¹⁸O₂. Trifluoroacetic acid (CF₃COOH) was used as a proton source instead of HClO₄ to avoid inclusion of H_2O .

Figure S2. (a) Spectral changes in the reaction of NaI (0.3 M) and reduced product of O_2 (2.2 mM) in acetone solution including Fc^{*+} (0.15 mM), 1 (9.0 × 10⁻⁶ M) and HClO₄ (0.15 mM). Inset: Time profiles of formation of I_3^- monitored by absorbance at 360 nm and decay of Fc^{*+} at 780 nm. (b) Spectral changes in the reaction of NaI (0.3 M) and H₂O₂ (0.15 mM) in acetone solution.


Comment: The formation of I_3^- was accompanied by the decay of Fc^{*+}, see Figure S2a. This indicates that there is no formation of H_2O_2 in this solution compared to the reaction between NaI and H_2O_2 , see Figure S1b.


Figure S3. The concentration of Fc^{*+} determined from absorbance at 780 nm vs the concentration of HClO₄ in the reduction of O₂ [0.13 mM (•) and 0.26 mM (\Box)] with Fc^{*} (2.0 mM) catalyzed by 1 (0.04 mM) in the presence of HClO₄ in acetone at 298 K.

Comment: The stoichiometry of O_2 as described in eq 1 was confirmed by using a limiting $[O_2]$ experiment. After the addition of four equiv. of HClO₄, four equiv. of Fc^{*+} was formed with respect to the initial concentration of O_2 .

The turnover number (TON = 7) was determined from the ratio (moles of Fc^{*+}: 43 μ mol)/(moles of 1: 1.5 μ mol) in the catalytic reduction of O₂ (2.2 mM) by Fc^{*} (10 mM) in the presence of 1 (0.3 mM) and HClO₄ (10 mM) in acetone (5 mL) at 298 K. In this case, a stoichiometric amount of HClO₄ was added at the beginning.

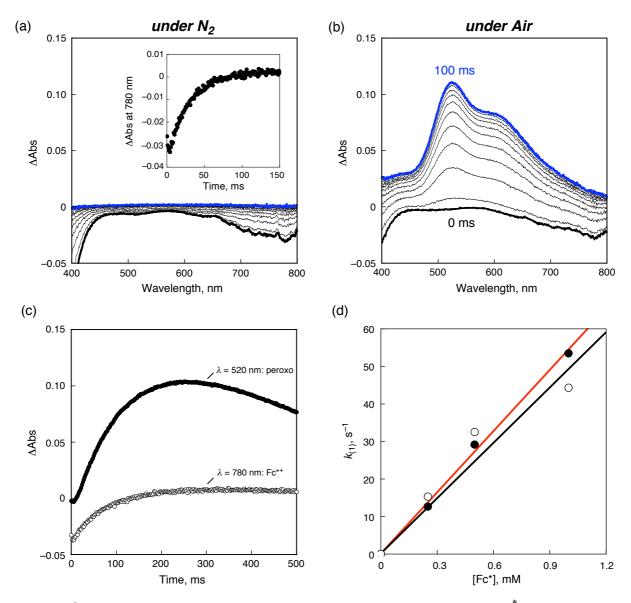


Figure S4. UV-vis spectral change observed in electron transfer from Fc^{*} (1.0 mM) to 1 (0.12 mM) in the presence of $HClO_4$ (0.35 mM) in aerated acetone at 298 K.

Figure S5. (a) Plot of the constant rate vs [1] $(0.5 - 3.5 \times 10^{-5} \text{ M})$ in an acetone solution containing Fc^{*} (1.0 mM), O₂ (2.2 mM), and HClO₄ (0.1 mM) at 298 K. (b) Time profiles of the absorbance at 780 nm due to Fc^{*+}.

Comment: The constant rate also increased linearly with $[Fc^*]$ (data is not shown) under the conditions ($[Fc^*]$, $[O_2] >> [H^+] > [1]$).

Figure S6. UV-vis spectral change observed in electron transfer from Fc^{*} (1.0 mM) to 1 (0.05 mM) in (a) deaerated or (b) air saturated acetone solution. Inset: Time profile of absorbance at 780 nm due to Fc^{*+}. (c) Time profiles of formation of 2 and Fc^{*+} monitored by the absorbances at 520 nm and 780 nm in electron transfer from Fc^{*} (0.5 mM) to 1 (0.05 mM) in aerated acetone at 298 K. (d) Plots of $k_{(1)}$ vs [Fc^{*}] under N₂ (O) and air (\bullet).

Comment: The second-order rate constant (k'_{obs}) for formation of Fc^{*+} in the presence of O₂ is virtually the same value as compared to that in the absence of O₂. This indicates that a rate-determining step for formation of **2** was the electron-transfer reaction from Fc^{*} to **1**.

Kinetic Analysis

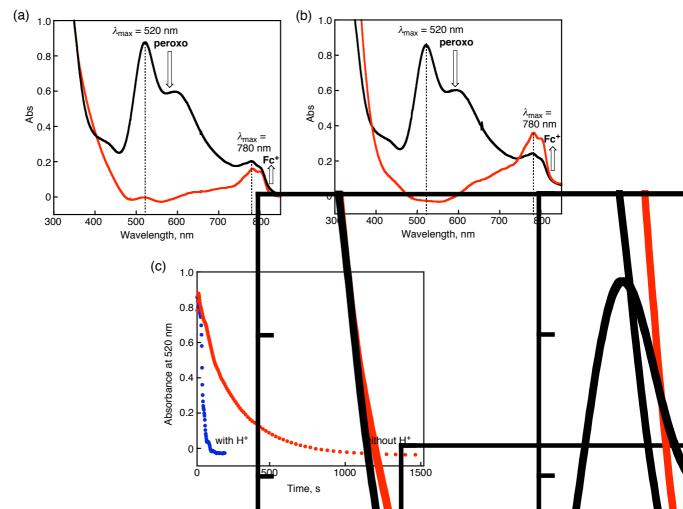
Assuming that electron transfer from Fc^* to 1 with O_2 is the rate-determining step in the catalytic cycle, the rate of formation of Fc^{*+} under catalytic conditions in Figure 2b is given by eq 1, where the observed second-order rate constant k_{obs} corresponds to $2k_{et}$ (k_{et} is the rate constant of electron transfer from Fc^* to 1), because four equiv. of Fc^{*+} are formed once electron transfer from Fc^* to 1 occurs. Equation 1 can be replaced by eq 2, where $[Fc^*]_0$ is the initial concentration of Fc^* . Because the concentration of Fc^* , $[Fc^*]$, is larger than the concentration of $HClO_4$, the final concentration of Fc^{*+} ($[Fc^{*+}]_{\infty}$) is given by $[Fc^{+*}]_{\infty} = [HClO_4]_0$. Equation 3 is derived by integration of eq 2. The slope of the linear plot of $\ln \{[Fc^*]_0 - [Fc^{*+}]\}$ vs *t* affords k_{obs} [1]. Alternatively, the initial rate corresponds to $k_{obs}[Fc^*]$ [1]: k_{obs} corresponds to $2k_{et}$, because two equiv. of Fc^{*+} are formed once electron transfer from Fc^* to 1 occurs according to Scheme 1.

$$d[Fc^{*+}]/dt = k_{obs}[Fc^{*}][1]$$
(1)

$$d[Fc^{*+}]/dt = k_{obs}\{[Fc^{*}]_0 - [Fc^{*+}]\}[1]$$
(2)

$$\ln\{[Fc^*]_0 - [Fc^{*+}]\} = \ln[Fc^*]_0 - k_{obs}[1]t$$
(3)

The rate of formation of Fc^{*+} under single turnover conditions in Figure S4 (S5) is given by eq 4, where the observed second-order rate constant (k'_{obs}) corresponds to k_{et} , because two equiv. of Fc^{*+} are formed once electron transfer from Fc^* to 1 occurs. Because [Fc^*] is much larger than [1], the rate obeys pseudo-first-order kinetics with respect to [Fc^{*+}]. Equation 4 is rewritten using eq 5, because [1] = [1]₀ - [Fc^{*+}]; [1]₀ is the initial concentration of 1.


$$d[Fc^{*+}]/dt = k'_{obs}[Fc^{*}][1]$$

$$d[Fc^{*+}]/dt = k'_{obs}[Fc^{*}]\{[1]_{0} - [Fc^{*+}]\}$$
(5)

Equation 6 is derived by integration of eq 5.

$$\ln\{[\mathbf{1}]_0 - [\mathbf{F}\mathbf{c}^{*+}]\} = \ln[\mathbf{1}]_0 - k'_{obs}[\mathbf{F}\mathbf{c}^*]t$$
(6)

The slope of the pseudo-first-order plot affords $k'_{obs}[Fc^*]$. $k_{obs} = 2k'_{obs} = 2k_{et}$.

Figure S7. (a) UV-Vis spectrum of the peroxo species, $[(mp_2)Cu^{II}(O_2)Cu^{II}(tmpa)]^+$ (black line) observed upon mixing (t = 0 s) an acetone solution of (0.2 mM) with that of Fc^{*} 2.0 mM) and that observed at t = 1000 s (ed line) in the absence of HClO₄ in O₂-saturated acetone at 193 K. (b) UV-Vis spectrum of the peroxo species $[(tmpa)Cu^{II}(O_2)Cu^{II}(tmpa)]^{2+}$ (black line) observed upon mixing of ac stone solution of 1 (0.0 mM) with that of Fc (2.0 mM) and that observed after addition (t = 0 s) of 0.4 mM HClO eq. t = 150 s (red line) in O₂-saturated acetone at 193 K. (c) Time profiles of the absorption at 520 mm due to t in the presence or absence of HClO₄.