1	Data Supplement
2	Sinoatrial node cell is a dynamic SYSTEM of sarcolemmal and intracellular proteins
4	Victor A. Maltsev and Edward G. Lakatta
5 6 7	Parameters and formulations of our numerical model of rabbit SANC, 4 supplemental tables, and 2 supplemental figures
8	MATHEMATICAL DESCRIPTION OF THE MODEL
9 10 11 12 13 14 15	The present model of rabbit SANC is a system of 30 first-order differential equations. All model equations and parameter values are provided below. Online Table 1 summarizes all model variables (y_1-y_{30}) with their initial values. The model is based on our previously published version of a "Basal State" model (7) that was modified in the present study to simulate GPCR modulation of rabbit SANC automaticity.
15 16	PARAMETERS
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Fixed ion concentrations, mM $Ca_o = 2$: Extracellular Ca ²⁺ concentration. $K_o = 5.4$: Extracellular K ⁺ concentration. $K_i = 140$: Intracellular K ⁺ concentration. $Na_o = 140$: Extracellular Na ⁺ concentration. $Na_i = 10$: Intracellular Na ⁺ concentration. $Mg_i = 2.5$: Intracellular Mg ²⁺ concentration. $Mg_i = 2.5$: Intracellular Mg ²⁺ concentration. Cell compartments $C_m = 32 \text{ pF}$: Cell electric capacitance. $L_{cell} = 70 \mu\text{m}$: Cell length. $R_{cell} = 4 \mu\text{m}$: Cell radius. $L_{sub} = 0.02 \mu\text{m}$: Distance between jSR and surface membrane (submembrane space). $V_{cell} = \pi \cdot R_{cell}^{-2} \cdot L_{cell} = 3.5185838 \text{ pL}$: Cell volume. $V_{sub} = 2\pi \cdot L_{sub}/(R_{cell} - L_{sub}/2) \cdot L_{cell} = 0.035097874 \text{ pL}$: Submembrane space volume. $V_{jSR, part} = 0.0012$: Part of cell volume occupied by junctional SR. $V_{jSR} = V_{jSR, part} \cdot V_{cell}$: Volume of junctional SR (Ca ²⁺ release store). $V_{i_part} = 0.46$: Part of cell volume occupied with myoplasm. $V_i = V_{i_part} \cdot V_{cell} \cdot V_{sub}$: Myoplasmic volume. $V_{nSR} = V_{nSR, part} = 0.0116$: Part of cell volume occupied by network SR. $V_{nSR} = V_{nSR, part} \cdot V_{cell}$: Volume of network SR (Ca ²⁺ uptake store).
39 40 41 42 43 44	The Nernst equation and electric potentials, mV $E_X = (RT/F) \cdot \ln([X]_0/[X]_i) = E_T \cdot \ln([X]_0/[X]_i)$, where F = 96485 C/M is Faraday constant, T = 310.15 K° is absolute temperature for 37°C, R = 8.3144 J/(M·K°) is the universal gas constant,

45	$E_{\rm T}$ is "RT/F"	factor = 26.72655 mV ,
----	-----------------------	----------------------------------

- 46 and $[X]_0$ and $[X]_i$ are concentrations of an ion "X" out and inside cell, respectively.
- 47 $E_{\text{Na}} = E_{\text{T}} \cdot \ln(\text{Na}_{o}/\text{Na}_{i})$: Equilibrium potential for Na⁺.
- 48 $E_{\rm K} = E_{\rm T} \cdot \ln({\rm K_o/K_i})$: Equilibrium potential for K⁺.

49 $E_{\text{Ks}} = E_{\text{T}} \cdot \ln[(\text{K}_{\text{o}} + 0.12 \cdot \text{Na}_{\text{o}})/(\text{K}_{\text{i}} + 0.12 \cdot \text{Na}_{\text{i}})]$: Reversal potential of I_{Ks} .

- 50 $E_{CaL} = 45$: Apparent reversal potential of I_{CaL} .
- 51 $E_{CaT} = 45$: Apparent reversal potential of I_{CaT} .
- 52 $E_{st} = 37.4$: Apparent reversal potential of I_{st} .
- 53

54 Sarcolemmal ion current types and their parameter values

55 L-type Ca^{2+} current [$g_{CaL,max,basal} = 0.58$ nS/pF, as in Kurata et al. model (4)]. 56 I_{CaL}: 57 Steady-state activation parameters: $V_{\frac{1}{2}d}$ =-13.5 mV; K_d =6 mV. Steady-state inactivation parameters: $V_{1/2,f}$ =-35 mV; K_f =7.3 mV. 58 $K_{\rm mfCa} = 0.00035$ mM: Dissociation constant of Ca²⁺ -dependent $I_{\rm CaL}$ inactivation. 59 $\beta_{fCa} = 60 \text{ mM}^{-1} \cdot \text{ms}^{-1}$: Ca²⁺ association rate constant for I_{CaL} . 60 $\alpha_{\rm fCa} = 0.021 \text{ ms}^{-1}$: Ca²⁺ dissociation rate constant for $I_{\rm CaL}$ 61 62 $b_{CaL,max} = 0.31$: maximum ACh-induced inhibition of I_{CaL} . 63 T-type Ca^{2+} current ($g_{CaT,max} = 0.1832 \text{ nS/pF}$). 64 I_{CaT}: 65 Hyperpolarization-activated current ($g_{Ifmax} = 0.15 \text{ nS/pF}$). 66 $I_{\rm f}$: 67 $V_{\text{If.}1/2,\text{basal}} = -64 \text{ mV}$: half activation voltage for I_{f} current in the basal state. $s_{\text{max}} = -7.2 \text{ mV}$: maximum ACh-induced shift of I_{f} half activation voltage. 68 69 $n_f = 0.69$ and $K_{0.5,f} = 12.6$ nM: Michaelis-Menton parameters for ACh modulation of I_f . 70 71 Sustained non-selective current ($g_{st,max} = 0.003 \text{ nS/pF}$). $I_{\rm st}$: 72 Delayed rectifier K⁺ current rapid component ($g_{Krmax} = 0.08113973 \text{ nS/pF}$). 73 $I_{\rm Kr}$: 74 Delayed rectifier K⁺ current slow component ($g_{Ks,max} = 0.0259 \text{ nS/pF}$). 75 $I_{\rm Ks}$: 76 77 4-aminopyridine sensitive transient K⁺ current ($g_{to,max} = 0.252 \text{ nS/pF}$). $I_{\rm to}$: 78 79 4-aminopyridine sensitive sustained K⁺ current ($g_{sus max} = 0.02 \text{ nS/pF}$). I_{sus}: 80 Na^+/K^+ pump current ($I_{NaK max} = 2.88 \text{ pA/pF}$). 81 $I_{\rm NaK}$: $K_{\rm mKp} = 1.4$ mM: Half-maximal $K_{\rm o}$ for $I_{\rm NaK}$. 82 $K_{\rm mNap} = 14$ mM: Half-maximal Na_i for $I_{\rm NaK}$. 83 84 Background Ca²⁺ current ($g_{bCa} = 0.0006 \text{ nS/pF}$). 85 *I*_{bCa}: 86 Background Na⁺ current ($g_{bNa} = 0.00486 \text{ nS/pF}$). 87 I_{bNa}: 88 I_{KACh} : Acetylcholine-activated K⁺ current; $I_{\text{KACh}} = 0$, when [ACh]=0. 89 90 $g_{\text{KAch,max}} = 0.14241818 \text{ nS/pF}.$

91

- I_{NCX} : Na⁺/Ca²⁺ exchanger (NCX) current ($k_{\text{NCX}} = 187.5 \text{ pA/pF}$). 92
- K_{1ni} = 395.3: intracellular Na⁺ binding to first site on NCX. 93
- 94 $K_{2ni} = 2.289$: intracellular Na⁺ binding to second site on NCX.
- 95 $K_{3ni} = 26.44$: intracellular Na⁺ binding to third site on NCX.
- K_{1no} = 1628: extracellular Na⁺ binding to first site on NCX. 96
- 97 $K_{2no} = 561.4$: extracellular Na⁺ binding to second site on NCX.
- $K_{3no} = 4.663$: extracellular Na⁺ binding to third site on NCX. 98
- $K_{\rm ci} = 0.0207$: intracellular Ca²⁺ binding to NCX transporter. 99
- $K_{co} = 3.663$: extracellular Ca²⁺ binding to NCX transporter. 100
- $K_{cni} = 26.44$: intracellular Na⁺ and Ca²⁺ simultaneous binding to NCX. 101
- $Q_{ci} = 0.1369$: intracellular Ca²⁺ occlusion reaction of NCX. 102
- $Q_{co}=0$: extracellular Ca²⁺ occlusion reaction of NCX. 103
- 104 $Q_{\rm n}$ = 0.4315: Na⁺ occlusion reactions of NCX.

105 106 Ca²⁺ diffusion

- $\tau_{difCa} = 0.04$ ms: Time constant of Ca²⁺ diffusion from the submembrane to myoplasm. 107
- $\tau_{\rm tr} = 40$ ms: Time constant for Ca²⁺ transfer from the network to junctional SR. 108 109

SR Ca²⁺ **ATPase function** 110

- $K_{up} = 0.6 \cdot 10^{-3}$ mM: Half-maximal Ca_i for Ca²⁺ uptake in the network SR. 111
- $P_{\text{un basal}} = 0.012 \text{ mM/ms}$: Rate constant for Ca²⁺ uptake by the Ca²⁺ pump in the network SR 112 (Please note that while we performed j_{up} computations in mM/ms, our results of parametric 113
- sensitivity analysis in main text and Supplemental Tables are presented in mM/s). 114 115

116 **RvR** function

 $k_{\text{oCa}} = 10 \text{ mM}^{-2} \cdot \text{ms}^{-1}$; $k_{\text{om}} = 0.06 \text{ ms}^{-1}$; $k_{\text{iCa}} = 0.5 \text{ mM}^{-1} \cdot \text{ms}^{-1}$; $k_{\text{im}} = 0.005 \text{ ms}^{-1}$; EC_{50} sr = 0.45 117 mM; $k_s = 250 \cdot 10^3 \text{ ms}^{-1}$; MaxSR = 15; MinSR = 1; HSR = 2.5; 118

119

Ca²⁺ and Mg²⁺ buffering 120

- 121
- $k_{bCM}=0.542 \text{ ms}^{-1}$: Ca²⁺ dissociation constant for calmodulin. $k_{bCO}=0.445 \text{ ms}^{-1}$: Ca²⁺ dissociation constant for calsequestrin. 122
- k_{bTC} =0.446 ms⁻¹: Ca²⁺ dissociation constant for the troponin-Ca²⁺ site. 123
- $k_{\rm bTMC}$ =0.00751 ms⁻¹: Ca²⁺ dissociation constant for the troponin-Mg²⁺ site. 124
- $k_{\text{bTMM}}=0.751 \text{ ms}^{-1}$: Mg²⁺ dissociation constant for the troponin-Mg²⁺ site. 125
- k_{fCM} =227.7 mM⁻¹· ms⁻¹: Ca²⁺ association constant for calmodulin. k_{fCQ} =0.534 mM⁻¹· ms⁻¹: Ca²⁺ association constant for calsequestrin. 126
- 127
- $k_{\rm fTC}$ =88.8 mM/ms: Ca²⁺ association constant for troponin. 128
- $k_{\rm fTMC}$ =227.7 mM/ms: Ca²⁺ association constant for the troponin-Mg²⁺ site. 129
- $k_{\rm fTMM}$ =2.277 mM/ms: Mg²⁺ association constant for the troponin-Mg²⁺ site. 130
- 131 TC_{tot} =0.031 mM: Total concentration of the troponin-Ca²⁺ site.
- $TMC_{tot}=0.062$ mM: Total concentration of the troponin-Mg²⁺ site. 132
- 133 $CQ_{tot}=10$ mM: Total calsequestrin concentration.
- 134 $CM_{tot}=0.045$ mM: Total calmodulin concentration.
- 135
- 136

Online Supplement

.37	FORMULATIONS: ELECTROPHYSIOLOGY
38	
39	Membrane potential, V _m (variable y ₁₅ , see Table S1 for all variables and their initial values)
40	$dV_m/dt = -(I_{CaL} + I_{CaT} + I_f + I_{st} + I_{Kr} + I_{Ks} + I_{to} + I_{sus} + I_{NaK} + I_{NCX} + I_{bCa} + I_{bNa} + I_{KACh})/C_m$
41	
42	Gating variables (y ₁₆ - y ₃₀) and their differential equations
.43	
44	$dy_{i}/dt = (y_{i,\infty} - y)/\tau_{yi}$
45	$(y_i = d_L, f_L, f_{Ca}, d_T, f_T, p_{aF}, p_{aS}, p_i, n, q, r, y, q_a, q_i, a)$
46	
47	τ_{yi} : Time constant for a gating variable y_i .
8	α_{yi} and β_{yi} : Opening and closing rates for channel gating.
)	$y_{i,\infty}$: Steady-state curve for a gating variable y_i .
)	
	<u>Ion currents</u>
2	
	L-type Ca²⁺ current (I_{CaL}), based on formulations of Kurata et al. (4) that include Ca ²⁺
	dependent I_{CaL} inactivation. See also Table S2 for comparison of steady-state activation
	parameters with those in other SANC models. The fractional block (b_{CaL}) of I_{CaL} by ChR
	stimulation was adopted from (15).
	$I_{\text{CaL}} = C_{\text{m}} \cdot g_{\text{CaL},\text{max}} \cdot (V_{m} - E_{\text{CaL}}) \cdot d_{\text{L}} \cdot f_{\text{Ca}}$
	$d_{L,\infty} = \frac{1}{1+ \exp[-(V_m - V_{1/2,d})/K_d]}$
	$f_{L,\infty} = 1/\{1 + \exp[(V_m - V_{\frac{1}{2},f})/K_f]\}$
	$\alpha_{\rm dL} = -0.02839 \cdot (V_m + 35) / \{ \exp[-(V_m + 35)/2.5] - 1 \} - 0.0849 \cdot V_m / [\exp(-V_m/4.8) - 1] $
	$\beta_{\rm dL} = 0.01143 \cdot (V_m - 5) / \{ \exp[(V_m - 5)/2.5] - 1 \}$
	$\tau_{\rm dL} = 1/(\alpha_{\rm dL} + \beta_{\rm dL})$
	$\tau_{\rm fL} = 257.1 \cdot \exp\{-[(V_m + 32.5)/13.9]^2\} + 44.3$
	$f_{\mathrm{Ca},\infty} = K_{\mathrm{mfCa}} / (K_{\mathrm{mfCa}} + Ca_{\mathrm{sub}})$
	$ au_{ m fCa} = f_{ m Ca,\infty} / lpha_{ m fCa}$
	$g_{\text{CaL,max}} = C_{\text{m}} \cdot g_{\text{CaL,basal}} \cdot (1 - b_{\text{CaL}})$
	$b_{CaL} = b_{CaL,max} \cdot [ACh]/(K_{0.5,CaL} + [ACh])$
	T-type Ca⁻⁺ current (I_{CaT}), based on formulations suggested by Demir et al., (2) and modified
	by Kurata et al. (4).
	$I_{\text{CaT}} = C_{\text{m}} \cdot g_{\text{CaT},\text{max}} \cdot (V_m - E_{\text{CaT}}) \cdot d_{\text{T}} \cdot f_{\text{T}}$
	$d_{T,\infty} = \frac{1}{1 + \exp[-(V_m + 26.3)/6.0]}$
	$J_{T,\infty} = \frac{1}{1 + \exp[(V_m + 61.7)/5.6]}$
	$\tau_{\rm dT} = 1/\{1.068 \cdot \exp[(V_m + 26.3)/30] + 1.068 \cdot \exp[-(V_m + 26.3)/30]\}$
	$\tau_{\rm fT} = 1/\{0.0153 \cdot \exp[-(V_m + 61.7)/83.3] + 0.015 \cdot \exp[(V_m + 61.7)/15.38]\}$

Rapidly activating delayed rectifier K⁺ current (I_{Kr}), based on formulations suggested by 181 182 Zhang et al. (14) and modified by Kurata et al. (4). 183 184 $I_{\mathrm{Kr}} = C_{\mathrm{m}} \cdot g_{\mathrm{Kr,max}} \cdot (V_m - E_{\mathrm{K}}) \cdot (0.6 \cdot p_{\mathrm{aF}} + 0.4 \cdot p_{\mathrm{aS}}) \cdot p_{\mathrm{i}}$ 185 $p_{a,\infty} = 1/\{1 + \exp[-(V_m + 23.2)/10.6]\}$ $p_{i,\infty} = 1/\{1 + \exp[(V_m + 28.6)/17.1]\}$ 186 $\tau_{\text{paF}} = 0.84655354 / [0.0372 \cdot \exp(V_m / 15.9) + 0.00096 \cdot \exp(-V_m / 22.5)]$ 187 $\tau_{\text{pas}} = 0.84655354 / [0.0042 \cdot \exp(V_m / 17.0) + 0.00015 \cdot \exp(-V_m / 21.6)]$ 188 189 $\tau_{\rm pi} = 1/[0.1 \cdot \exp(-V_m/54.645) + 0.656 \cdot \exp(V_m/106.157)]$ 190 191 Slowly activating delayed rectifier K^+ current (I_{Ks}), based on formulations suggested by 192 Zhang et al. (14). $I_{\rm Ks} = C_{\rm m} \cdot g_{\rm Ks,max} \cdot (V_m - E_{\rm Ks}) \cdot n^2$ 193 $\alpha_{\rm n} = 0.014 / \{1 + \exp[-(V_m - 40)/9]\}$ 194 195 $\beta_{\rm n} = 0.001 \cdot \exp(-V_m/45)$ 196 $n_{\infty} = \alpha_{\rm n} / (\alpha_{\rm n} + \beta_{\rm n})$ 197 $\tau_n = 1/(\alpha_n + \beta_n)$ 198 199 4-aminopyridine-sensitive currents ($I_{4AP} = I_{to} + I_{sus}$), based on formulations suggested by 200 Zhang et al. (14). $I_{\text{to}} = C_{\text{m}} \cdot g_{\text{to,max}} \cdot (V_m - E_{\text{K}}) \cdot q \cdot r$ 201 202 $I_{\text{sus}} = C_{\text{m}} \cdot g_{\text{sus,max}} \cdot (V_m - E_{\text{K}}) \cdot r$ 203 $q_{\infty} = 1/\{1 + \exp[(V_m + 49)/13]\}$ 204 $r_{\infty} = 1/\{1 + \exp[-(V_m - 19.3)/15]\}$ $\tau_{\rm q} = 39.102 / \{0.57 \cdot \exp[-0.08 \cdot (V_m + 44)] + 0.065 \cdot \exp[0.1 \cdot (V_m + 45.93)]\} + 6.06$ 205 206 $\tau_r = 14.40516 / \{1.037 \cdot \exp[0.09 \cdot (V_m + 30.61)] + 0.369 \cdot \exp[-0.12 \cdot (V_m + 23.84)] \} + 2.75352$ 207 208 209 Hyperpolarization-activated, "funny" current (I_f) , based on formulations of Wilders at al. 210 (13) and Kurata et al.(4). The shift s (in mV) of the $I_{\rm f}$ activation curve by ChR stimulation was 211 adopted from (15). 212 $I_{\rm f} = I_{\rm fNa} + I_{\rm fK}$ $y_{\infty} = 1/\{1 + \exp[(V_m - V_{\text{If},1/2})/13.5]\}$ 213 $\tau_{\rm y} = 0.7166529 / \{ \exp[-(V_m + 386.9)/45.302] + \exp[(V_m - 73.08)/19.231] \}$ $I_{\rm fNa} = C_{\rm m} \cdot 0.3833 \cdot g_{\rm If,max} \cdot (V_m - E_{\rm Na}) \cdot y^2$ 214 215 216 $I_{\rm fK} = C_{\rm m} \cdot 0.6167 \cdot g_{\rm If,max} \cdot (V_m - E_{\rm K}) \cdot y^2$ 217 $V_{\rm If, 1/2} = V_{\rm If, 1/2, basal} + s$ $s = s_{\max} [ACh]^{n_f} / (K_{0.5, f}^{n_f} + [ACh]^{n_f})$ 218 219 220 Sustained inward current (I_{st}) , based on formulations of Shinigawa et al. (10) which were 221 adopted for rabbit SANC by Kurata et al. (4). 222 $I_{\rm st} = C_{\rm m} \cdot g_{\rm st,max} \cdot (V_m - E_{\rm st}) \cdot q_{\rm a} \cdot q_{\rm i}$ 223 $q_{a,\infty} = 1/\{1 + \exp[-(V_m + 57)/5]\}$ $\alpha_{qa} = 1/\{0.15 \cdot \exp(-V_m/11) + 0.2 \cdot \exp(-V_m/700)\}$ 224 $\beta_{qa} = 1/\{16 \cdot \exp(V_m/8) + 15 \cdot \exp(V_m/50)\}$ 225

226 $\tau_{qa} = 1/(\alpha_{qa} + \beta_{qa})$ $\alpha_{qi} = 1/\{3100 \cdot \exp(V_m/13) + 700 \cdot \exp(V_m/70)\}$ 227 228 $\beta_{qi} = 1/\{95 \cdot \exp(-V_m/10) + 50 \cdot \exp(-V_m/700)\} + 0.000229/[1 + \exp(-V_m/5)]$ 229 $\tau_{\rm ai} = 6.65/(\alpha_{\rm ai} + \beta_{\rm ai})$ 230 $q_{i,\infty} = \alpha_{ai} / (\alpha_{ai} + \beta_{ai})$ 231 Na⁺-dependent background current (I_{bNa}) 232 233 $I_{b,Na} = C_m \cdot g_{bNa} \cdot (V_m - E_{Na})$ 234 235 Na^+-K^+ pump current (I_{NaK}), based on formulations on Kurata et al. (4), which were in turn 236 based on the experimental work of Sakai et al. (8) for rabbit SANC. 237 $I_{\text{NaK}} = C_{\text{m}} \cdot I_{\text{NaK},\text{max}} \cdot \{1 + (K_{\text{mKp}}/K_{\text{o}})^{1.2}\}^{-1} \cdot \{1 + (K_{\text{mNap}}/\text{Na}_{\text{i}})^{1.3}\}^{-1} \cdot \{1 + \exp[-(V_{m} - E_{\text{Na}} + 120)/30]\}^{-1}$ 238 239 Ca^{2+} - background current (I_{bCa}) 240 241 $I_{bCa} = C_{m} \cdot g_{bCa} \cdot (V_m - E_{CaL})$ 242 243 Na^+-Ca^{2+} exchanger current (I_{NCX}), based on original formulations from Dokos et al. (3). 244 245 246 $I_{\text{NCX}} = C_{\text{m}} \cdot k_{\text{NCX}} \cdot (k_{21} \cdot x_2 - k_{12} \cdot x_1) / (x_1 + x_2 + x_3 + x_4)$ 247 $d_{0} = 1 + (Ca_{0}/K_{c0}) \cdot \{1 + \exp(Q_{c0} \cdot V_{m}/E_{T})\} + (Na_{0}/K_{1n0}) \cdot \{1 + (Na_{0}/K_{2n0}) \cdot (1 + Na_{0}/K_{3n0})\}$ 248 $k_{43} = Na_i/(K_{3ni} + Na_i)$ 249 $k_{41} = \exp[-Q_{\rm n} V_m/(2E_{\rm T})]$ 250 $k_{34} = Na_0/(K_{3n0} + Na_0)$ 251 $k_{21} = (Ca_o/K_{co}) \cdot \exp(Q_{co} \cdot V_m/E_T) / d_o$ 252 $k_{23} = (Na_o/K_{1no}) \cdot (Na_o/K_{2no}) \cdot (1 + Na_o/K_{3no}) \cdot \exp[-Q_n \cdot V_m/(2E_T)]/d_o$ 253 $k_{32} = \exp[Q_{\rm n} \cdot V_m / (2E_{\rm T})]$ 254 $x_1 = k_{34} \cdot k_{41} \cdot (k_{23} + k_{21}) + k_{21} \cdot k_{32} \cdot (k_{43} + k_{41})$ 255 $d_{i} = 1 + (Ca_{sub}/K_{ci}) \cdot \{1 + \exp(-Q_{ci} \cdot V_{m}/E_{T}) + Na_{i}/K_{cni}\} + (Na_{i}/K_{1ni}) \cdot \{1 + (Na_{i}/K_{2ni}) \cdot (1 + Na_{i}/K_{3ni})\}$ 256 $k_{12} = (Ca_{sub}/K_{ci}) \cdot \exp(-Q_{ci} \cdot V_m/E_T)/d_i$ 257 $k_{14} = (Na_i/K_{1ni}) \cdot (Na_i/K_{2ni}) \cdot (1 + Na_i/K_{3ni}) \cdot \exp[Q_n \cdot V_m/(2E_T)]/d_i$ 258 $x_2 = k_{43} \cdot k_{32} \cdot (k_{14} + k_{12}) + k_{41} \cdot k_{12} \cdot k_{34} + k_{32})$ 259 $x_3 = k_{43} \cdot k_{14} \cdot (k_{23} + k_{21}) + k_{12} \cdot k_{23} \cdot (k_{43} + k_{41})$ 260 $x_4 = k_{34} \cdot k_{23} \cdot (k_{14} + k_{12}) + k_{21} \cdot k_{14} \cdot (k_{34} + k_{32})$ 261 262 Acetylcholine-activated K⁺ current (I_{KACh}), adopted from (1) (Note $I_{KACh} = 0$ when [ACh]=0) 263 264 $I_{\text{KACh}} = a \cdot g_{\text{KACh,max}} \cdot (V_{\text{m}} - E_{\text{K}})$ 265 *beta*=0.001 · 12.32/(1+0.0042/[ACh]) (per ms) 266 $alfa = 0.001 \cdot 17 \cdot \exp(0.0133 \cdot (V_m + 40))$ (per ms) 267 $a_{\infty} = beta / (alfa + beta)$ 268 $\tau_a = 1/(alfa + beta)$ (in ms) 269 270 271 272

Online Supplement

273	FORMULATIONS: Ca ²⁺ CYCLING
274	C_{2}^{2+} malages flow (i) from CD via DyDg based on an initial formulations of Starm et al. (11)
213	and modified by Shannon et al. (0)
270	and modified by Shannon et al. (9) $i_{res} = k_{r} O(C_{res} - C_{res})$
277	$J_{\text{SRCarel}} = K_{\text{s}} O(Ca_{\text{JSR}} - Ca_{\text{sub}})$ $k_{\text{s}} = Mar SR_{\text{s}} (Mar SR_{\text{s}} - Min SR) / (1 + (EC_{\text{s}} - a_{\text{s}})/(Ca_{\text{sub}})^{\text{HSR}})$
270	$k_{\text{aSR}} = k_{\text{aSR}} - k_{$
279	$k_{\rm oSRCa} = k_{\rm oCa} / k_{\rm CaSR}$ $k_{\rm oRCa} = k_{\rm ica} \cdot k_{\rm cacR}$
280	$dR/dt = (k \cdot RL - k \cdot R) - (k \cdot R)$
201	$d\Omega/dt = (k_{\rm im} R - k_{\rm iSRCa} - Ca_{\rm sub} R) - (k_{\rm oSRCa} - Ca_{\rm sub} R - k_{\rm om} O)$
282	$\frac{dU}{dt} = (k_{\text{oBRC}} \cdot Ca_{\text{sub}} \cdot C - k_{\text{om}} \cdot C) - (k_{\text{oBRC}} \cdot Ca_{\text{sub}} \cdot C - k_{\text{om}} \cdot C)$
285	$dRI/dt = (k + I - k \text{ spc} \cdot Ca + 2 \cdot RI) - (k + RI - k \text{ spc} \cdot Ca + 2 \cdot RI)$
285	univer (Nom 1 Noskca Cusub M) (Nim M Niskca Cusub N)
285	Intracellular Ca ²⁺ fluxes
287	Ca^{2+} diffusion flux (i_{Ca} +++) from submembrane space to myoplasm.
288	$i_{\alpha} = i_{\alpha} = (C_{\alpha} + C_{\alpha})/\tau_{1/2}$
280	JCa_dif (Casub Cal)/ vdifca
20)	The rate of Ca²⁺ untake (numping) (<i>i</i> _m) by the SR based on formulations of SR Ca ²⁺ nump
291	function suggested by Luo and Rudy (5). The fractional block (b_{uv}) of P_{uv} by ChR stimulation
292	was described similar to that of I_{Cal} (see above) but $b_{up max}$ was fitted to experimental curve of
293	phospholamban dephosphorylation (6) (main text Fig 4A)
294	$i_{\rm up} = P_{\rm up} / (1 + K_{\rm up}/Ca_i)$
295	$P_{\text{up}} = P_{\text{up} \text{ hasal}} \cdot (1 - b_{\text{up}})$
296	$b_{\rm un} = b_{\rm un \ max} \cdot [{\rm ACh}]/(K_{0.5 \ \rm un} + [{\rm ACh}])$
297	
298	Ca^{2+} flux between (network and junctional) SR compartments (i_{tr}) :
299	$j_{\rm tr} = (Ca_{\rm nSR} - Ca_{\rm iSR})/\tau_{\rm tr}$
300	
301	Ca ²⁺ buffering
302	$df_{\rm TC}/dt = k_{\rm fTC} \cdot Ca_{\rm i} \cdot (1 - f_{\rm TC}) - k_{\rm bTC} \cdot f_{\rm TC}$
303	$df_{\text{TMC}}/dt = k_{\text{fTMC}} \cdot Ca_{\text{i}} \cdot (1 - f_{\text{TMC}} - f_{\text{TMM}}) - k_{\text{bTMC}} \cdot f_{\text{TMC}}$
304	$df_{\text{TMM}}/dt = k_{\text{fTMM}} \cdot Mg_{\text{i}} \cdot (1 - f_{\text{TMC}} - f_{\text{TMM}}) - K_{\text{bTMM}} \cdot f_{\text{TMM}}$
305	$df_{\rm CMi}/dt = k_{\rm fCM} \cdot Ca_{\rm i} \cdot (1 - f_{\rm CMi}) - k_{\rm bCM} \cdot f_{\rm CMi}$
306	$df_{\rm CMs}/dt = k_{\rm fCM} \cdot Ca_{\rm sub} \cdot (1 - f_{\rm CMs}) - k_{\rm bCM} \cdot f_{\rm CMs}$
307	$df_{\rm CQ}/dt = k_{\rm fCQ} \cdot Ca_{\rm jSR} \cdot (1 - f_{\rm CQ}) - k_{\rm bCQ} \cdot f_{\rm CQ}$
308	
309	Dynamics of Ca ²⁺ concentrations in cell compartments
310	$dCa_{i}/dt = (j_{Ca_{dif}} \cdot V_{sub} - j_{up} \cdot V_{nSR}) / V_{i} - (CM_{tot} \cdot df_{CMi}/dt + TC_{tot} \cdot df_{TC}/dt + TMC_{tot} \cdot df_{TMC}/dt)$
311	$dCa_{\rm sub}/dt = \bar{j}_{\rm SRCarel} \cdot V_{\rm jSR}/V_{\rm sub} - (I_{\rm CaL} + I_{\rm CaT} + I_{\rm bCa} - 2 \cdot I_{\rm NCX})/(2 \cdot F \cdot V_{\rm sub}) - (j_{\rm Ca_dif} + CM_{\rm tot} \cdot df_{\rm CMs}/dt)$
312	$dCa_{jSR}/dt = j_{tr} - j_{SRCarel} - CQ_{tot} \cdot df_{CQ}/dt$
313	$dCa_{\rm nSR}/dt = j_{\rm up} - j_{\rm tr} \cdot V_{\rm jSR}/V_{\rm nSR}$
314	
315	
316	

317 **Online Supplement Table S1.** Model variables: description and initial values. Our SANC model

318 is described by a system of 30 first order differential equations (variables $y_1 - y_{30}$). All initial

319 values (except that for y_{30}) were taken from our prior study (7).

320

#	Variable	Description	Initial					
Ca^{2+} cycling								
<i>y</i> 1	Ca_i	[Ca ²⁺] in myoplasm, mM	0.0001					
<i>y</i> ₂	Ca_{sub}	[Ca ²⁺] in submembrane space, mM	0.000223					
<i>у</i> з	$Ca_{\rm jSR}$	[Ca ²⁺] in the junctional SR (jSR), mM	0.029					
<i>y</i> 4	Ca_{nSR}	$[Ca^{2+}]$ in the network SR (nSR), mM	1.35					
<i>y</i> 5	$f_{\rm TC}$	Fractional occupancy of the troponin-Ca ²⁺	0.02					
-		site by Ca ²⁺ in myoplasm						
<i>y</i> 6	f_{TMC}	Fractional occupancy of the troponin-Mg ²⁺	0.22					
		site by Ca ² in myoplasm						
<i>y</i> 7	f_{TMM}	Fractional occupancy of the troponin-Mg ²⁺	0.69					
		site by Mg ²⁺ in myoplasm						
<i>y</i> 8	$f_{\rm CMi}$	Fractional occupancy of calmodulin by Ca ²⁺	0.042					
		in myoplasm						
<i>y</i> 9	$f_{\rm CMs}$	Fractional occupancy of calmodulin by Ca ²⁺	0.089					
-	-	in submembrane space						
<i>Y10</i>	fco	Fractional occupancy of calsequestrin by Ca ²⁺	0.032					
-		in junctional SR						
<i>Y11</i>	R	RyR reactivated (closed) state	0.7499955					
y12	0	RyR open state	$3.4 \cdot 10^{-6}$					
y13	Ι	RyR inactivated state	$1.1 \cdot 10^{-6}$					
<i>Y</i> 14	RI	RyR RI state	0.25					
-		Electrophysiology						
<i>Y</i> 15	V_m	Membrane potential, mV	-65					
y16	$d_{ m L}$	<i>I</i> _{CaL} activation	0					
y17	$f_{\rm L}$	<i>I</i> _{CaL} voltage-dependent inactivation	1					
<i>Y</i> 18	<i>f</i> _{Ca}	$I_{\text{CaL}} \text{Ca}^{2+}$ dependent inactivation	1					
y19	p_{aF}	<i>I</i> _{Kr} fast activation	0					
<i>Y</i> 20	p_{aS}	<i>I</i> _{Kr} slow activation	0					
	p_i	<i>I</i> _{Kr} inactivation	1					
y22	n	$I_{\rm Ks}$ activation	0					
V23	у	<i>I</i> _f activation	1					
	\dot{d}_{T}	<i>I</i> _{CaT} activation	0					
<i>y</i> 25	$f_{\rm T}$	<i>I</i> _{CaT} inactivation	1					
¥26	q	<i>I</i> _{to} inactivation	1					
y 23 Y27	r	$I_{\rm to}$ and $I_{\rm sus}$ activation	0					
V28	q_a	<i>I</i> _{st} activation	0					
y 20 V29	q_i	$\frac{-j_a}{q_i}$ I_{st} inactivation						
<u>у</u> зо	a	<i>I</i> _{KACh} activation	1					

322 Online Supplement Table S2.

323 Parameters of steady-state activation and inactivation for I_{CaL} in the present model compared to

- 324 previous rabbit SANC models (see main text Methods for details). * Steady state inactivation
- 325 parameters were set in our model to the respective values measured in our laboratory in an
- 326 experimental study of isolated rabbit SANC by Vinogradova et al. (12).
- 327

Model	Steady-state activation curve,		Steady-state inactivation curve,		
	$d_{\mathrm{L},\infty}$		$f_{\mathrm{L},\infty}$		
	Midpoint,	Slope factor	Midpoint,	Slope factor	
	$V_{\frac{1}{2},d}(mV)$	$K_{\rm d}({\rm mV})$	$V_{\frac{1}{2},\mathrm{f}}(\mathrm{mV})$	$K_{\rm f}({\rm mV})$	
Wilders et al. (13)	-6.6	6.6	-25	6	
Demir et al. (2)	-14.1	6	-25	5	
Dokos et al. (3)	-6.6	6.6	-25	6	
Zhang et al. (14)	-23.1	6	-45	5	
Kurata et al. (4)	-14.1	6	-30	5	
Present model	-13.5	6	-35*	7.3*	

328

329

331 Online Supplement Table S3.

Parameter values and result summary of simulations of β-AR stimulation. In addition to the

333 primary set of model parameters (described above), the robustness of our findings was also

tested in two additional model sets (See "Parameter set" column), in which both maximum

335 conductances $g_{CaL,max}$ and $g_{If,max}$ were increased (model set "More $I_f \& I_{CaL}$ ") or decreased (model

- set "Less I_f & I_{CaL}") by 25%. While the shift of $V_{If,1/2}$ and relative increases in $g_{CaL,max}$ and $g_{Kr,max}$ were set in accordance with previously documented experimental results in rabbis SANC (see
- main text Methods for details), the values for the maximum Ca^{2+} pumping rate of the SR (P_{up})
- 339 were found numerically based on parametric sensitivity analyses as solutions to match

340 experimentally documented result of a 25.8% AP firing rate increase (main text figure 2A, black

341 circle, squire, and triangle, respectively).

342343

Parameter set	Parameter	Units	Basal state	ß-AR	Effect on	Effect on
				stimulation	beating rate:	beating rate:
					M clock, only	All
						mechanisms
Primary model	$P_{\rm up}$	mM/s	12	24	3.070 Hz	3.070 Hz
set	g CaL,max	nS/pF	0.58	1.015	to	to
	$V_{\mathrm{If},1/2}$	mV	-64	-56.2	3.166 Hz	3.862 Hz
	$g_{ m Kr,max}$	nS/pF	0.08113973	0.1217096	(3.15%)	(25.80%
	$g_{ m If,max}$	nS/pF	0.1	5	increase)	increase)
Model set	$P_{\rm up}$	mM/s	12	20.6	2.943 Hz	2.943 Hz
"Less If & I _{CaL} "	<i>g</i> CaL,max	nS/pF	0.435	0.76125	to	to
	$V_{\mathrm{If},1/2}$	mV	-64	-56.2	3.089 Hz	3.702 Hz
	$g_{ m Kr,max}$	nS/pF	0.08113973	0.1217096	(4.97%)	(25.80%
	$g_{ m If,max}$	nS/pF	0.11	25	increase)	increase)
Model set	$P_{\rm up}$	mM/s	12	26.6	3.116 Hz	3.116 Hz
"More I _f &I _{CaL} "	g CaL,max	nS/pF	0.725	1.26875	to	to
	$V_{\mathrm{If},1/2}$	mV	-64	-56.2	3.198 Hz	3.920 Hz
	g _{Kr,max}	nS/pF	0.08113973	0.1217096	(2.63%	(25.80%)
	g If,max	nS/pF	0.18	375	increase)	increase)

344

345

347 Online Supplement Table S4.

348 Parameter values and result summary of simulations of ChR stimulation ([ACh[=100 nM).

- 349 In addition to the primary set of model parameters (described above), the robustness of our
- 350 findings was also tested in two additional model sets (See "Parameter set" column), in which
- both maximum conductances $g_{CaL,max}$ and $g_{If,max}$ were increased (model set "More $I_f \& I_{CaL}$ ") or
- decreased (model set "Less $I_f \& I_{CaL}$ ") by 25%. All parameters, including P_{up} , were calculated
- 353 using above formulations for [ACh]=100 nM.
- 354 355

Parameter set	Parameter	Units	Basal	ChR stimulation	Effect on	Effect on
			state		beating	beating rate
					rate	M+Ca clock
					M clock	
Primary model	$P_{\rm up}$	mM/s	12	7.578947	3.070 Hz	3.070 Hz
set	$g_{ m CaL,max}$	nS/pF	0.58	0.485368	to	to
	beta	ms ⁻¹	0	$0.2865116 \cdot 10^{-3}$	2.615 Hz	1.849 Hz
	$V_{\mathrm{If},1/2}$	mV	-64	-69.8089	(14.8%	(40%
	g _{If,max}	nS/pF		0.15	decrease)	decrease)
Model set	$P_{\rm up}$	mM/s	12	7.578947	2.943 Hz	2.943 Hz
"Less If & I _{CaL} "	g CaL,max	nS/pF	0.435	0.364026	to	to
	beta		0	$0.2865116 \cdot 10^{-3}$	halt	halt
	$V_{\mathrm{If},1/2}$	mV	-64	-69.8089		
	$g_{ m If,max}$	nS/pF		0.1125		
Model set	$P_{\rm up}$	mM/s	12	7.578947	3.116 Hz	3.116 Hz
"More I _f &I _{CaL} "	$g_{ m CaL,max}$	nS/pF	0.725	0.606711	to	to
	beta		0	$0.2865116 \cdot 10^{-3}$	2.832 Hz	2.354 Hz
	$V_{\mathrm{If},1/2}$	mV	-64	-69.8089	(9.1%	(24.5%
	g If.max	nS/pF		0.1875	decrease)	decrease)

356

357

358

360 Online Supplement Fig.S1

- 361 The predicted effects of GPCR agonists on the current voltage relationship for simulated peak
- 362 I_{CaL} . The I_{CaL} traces were simulated by applying testing voltage pulses V_m from a holding
- potential of -80 mV. A, B, and C show simulated traces for V_m from -60 mV to 40 mV with a 10
- 364 mV interval in the basal state (Control), in the presence of β -AR stimulation by isoproterenol
- 365 (ISO), and in the presence of ChR stimulation with 100 nM ACh. The values of V_m are shown by
- labels at the respective current peaks. D: The current voltage relationships (5 mV voltage step)
- for I_{CaL} peak. Inset illustrates presence of I_{CaL} current activation in the model within the voltage
- range of the diastolic depolarization from -60 mV to -40 mV. Cell electric capacitance is 32 pF.

371 Online Supplement Fig.S2

The predicted effects of GPCR agonists on I_{CaL} dynamics during diastolic depolarization (DD)

373 from -60 mV to -40 mV. A: simulated action potentials (APs) in the basal state (Control), in

374 the presence of β -AR stimulation by isoproterenol (ISO), and in the presence of ChR stimulation 375 million and β -AR stimulation by isoproterenol (ISO), and in the presence of ChR stimulation 376 million and β -AR stimulation by isoproterenol (ISO), and in the presence of ChR stimulation

with 100 nM ACh. APs were time shifted to overlap at -60 mV. DD fragments from -60 to -40 mV are shown by solid black surgery $P_{\rm ext}$ involves a first structure of the extension of the ext

376 mV are shown by solid black curves. B: simultaneously simulated dynamics of I_{CaL} . Activation

of I_{CaL} accelerated and increased in case of ISO but decelerated and decreased in case of ACh.

- Cell electric capacitance is 32 pF.
- 379

Online Supplement

381 Supplemental references

- 383
- 384
- Demir SS, Clark JW, and Giles WR. Parasympathetic modulation of sinoatrial node
 pacemaker activity in rabbit heart: a unifying model. *Am J Physiol* 276: H2221-2244, 1999.
- Demir SS, Clark JW, Murphey CR, and Giles WR. A mathematical model of a rabbit sinoatrial node cell. *Am J Physiol* 266: C832-852, 1994.
- 389 3. Dokos S, Celler B, and Lovell N. Ion currents underlying sinoatrial node pacemaker activity: a new single cell mathematical model. *J Theor Biol* 181: 245-272, 1996.
- Kurata Y, Hisatome I, Imanishi S, and Shibamoto T. Dynamical description of
 sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. *Am J Physiol* 283: H2074-2101, 2002.
- Luo CH and Rudy Y. A dynamic model of the cardiac ventricular action potential. I.
 Simulations of ionic currents and concentration changes. *Circ Res* 74: 1071-1096, 1994.
- Lyashkov AE, Vinogradova TM, Zahanich I, Li Y, Younes A, Nuss HB, Spurgeon
 HA, Maltsev VA, and Lakatta EG. Cholinergic receptor signaling modulates spontaneous
 firing of sinoatrial nodal cells via integrated effects on PKA-dependent Ca²⁺ cycling and
 I_{KACh}. Am J Physiol Heart Circ Physiol: H949-H959, 2009.
- 400 7. Maltsev VA and Lakatta EG. Synergism of coupled subsarcolemmal Ca²⁺ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. *Am J Physiol Heart Circ Physiol* 296: H594-H615, 2009.
- 8. Sakai R, Hagiwara N, Matsuda N, Kassanuki H, and Hosoda S. Sodium--potassium pump current in rabbit sino-atrial node cells. *J Physiol* 490 (Pt 1): 51-62, 1996.
- 405
 406
 9. Shannon TR, Wang F, Puglisi J, Weber C, and Bers DM. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. *Biophys J* 87: 3351-3371, 2004.
- 407 10. Shinagawa Y, Satoh H, and Noma A. The sustained inward current and inward rectifier
 408 K⁺ current in pacemaker cells dissociated from rat sinoatrial node. *J Physiol* 523 Pt 3: 593409 605, 2000.
- 410 11. Stern MD, Song LS, Cheng H, Sham JS, Yang HT, Boheler KR, and Rios E. Local
 411 control models of cardiac excitation-contraction coupling. A possible role for allosteric
 412 interactions between ryanodine receptors. *J Gen Physiol* 113: 469-489, 1999.
- Vinogradova TM, Zhou YY, Bogdanov KY, Yang D, Kuschel M, Cheng H, and Xiao
 RP. Sinoatrial node pacemaker activity requires Ca²⁺/calmodulin-dependent protein kinase
 II activation. *Circ Res* 87: 760-767, 2000.
- 416
 13. Wilders R, Jongsma HJ, and van Ginneken AC. Pacemaker activity of the rabbit
 417 sinoatrial node. A comparison of mathematical models. *Biophys J* 60: 1202-1216, 1991.
- 418 14. Zhang H, Holden AV, Kodama I, Honjo H, Lei M, Varghese T, and Boyett MR.
 419 Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial 420 node. *Am J Physiol* 279: H397-421, 2000.
- 421 15. Zhang H, Holden AV, Noble D, and Boyett MR. Analysis of the chronotropic effect of
 422 acetylcholine on sinoatrial node cells. *J Cardiovasc Electrophysiol* 13: 465-474, 2002.
- 423 424