SUPPLEMENTARY DATA

FIG. S1. Mn tissue concentration of rice leaf blades of different leaf age before and after elevated Mn supply (50 μ M) for 72 h. Different upper case letters indicate significant differences (P < 0.05) between different Mn levels of one leaf age according to Tukey; different lower case letters indicate significant differences (P < 0.05) between different levels of significance according to a two-factor ANOVA for P < 0.001, P < 0.01, P < 0.05 and non-significant are labelled with ***, **, * and ns, respectively.

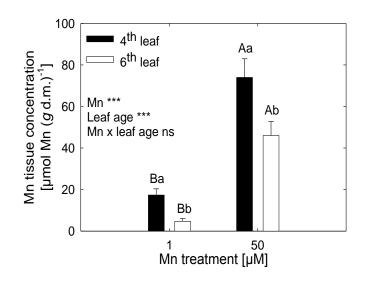


FIG. S2. Specific guaiacol-POD (A) and specific NADH-POD (B) activities of rice leaf blades of different leaf age before and after elevated Mn supply (50 μ M) for 72 h. Different upper case letters indicate significant differences (P < 0.05) between different Mn levels of one leaf age according to Tukey; different lower case letters indicate significant differences (P < 0.05) between different leaf ages of one level of Mn treatment. Different levels of significance according to a two-factor ANOVA for P < 0.001, P < 0.01, P < 0.05 and non-significant are labelled with ***, **, * and ns, respectively.

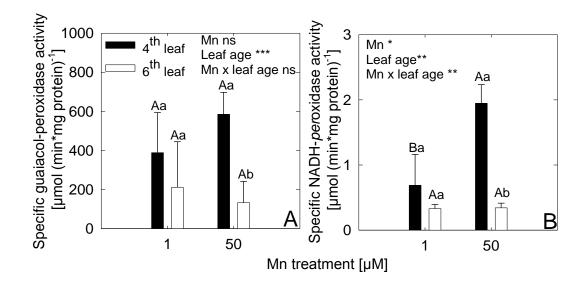


FIG. S3. Protein content of rice leaf blades of different leaf age before and after elevated Mn supply (50 μ M) for 72 h. Different upper case letters indicate significant differences (P < 0.05) between different Mn levels of one leaf age according to Tukey; different lower case letters indicate significant differences (P < 0.05) between differt leaf ages of one level of Mn treatment. Different levels of significance according to a two-factor ANOVA for P < 0.001, P < 0.01, P < 0.05 and non-significant are labelled with ***, **, * and ns, respectively.

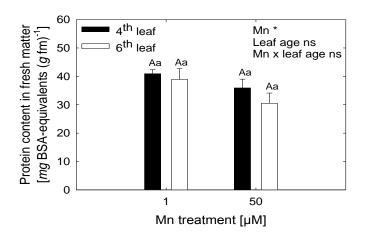


FIG. S4. Representative Coomassie-stained close-ups of regions containing Mn-influenced protein spots 2 and 7 extracted from the older fourth leaves of Mn control (left) and Mn-treated (left) plants. A complete 2D/IEF-SDS–PAGE resolution of the proteome is given in Fig. 9. Three replications of each treatment were analysed using the ImagemasterTM 2D PLATINUM Software 6.0. Significantly regulated (P < 0.05) protein spots (marked by arrows) were cut and identified by nanoLC-MS/MS.

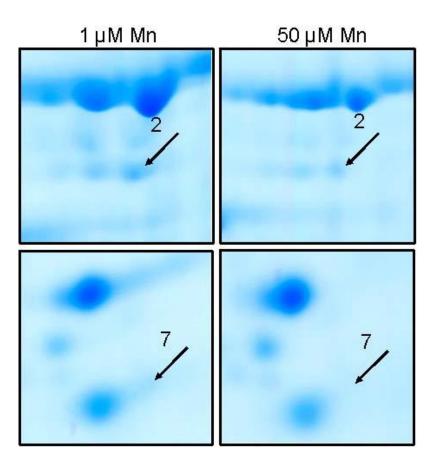


FIG. S5. Representative Coomassie-stained close-ups of regions containing Mn-influenced protein spots 5, 8 and 9 extracted from the younger sixth leaves of Mn control (left) and Mn-treated (left) plants. A complete 2D IEF/SDS–PAGE resolution of the proteome is given in Fig. 9. Three replications of each treatment were analysed using the ImagemasterTM 2D PLATINUM Software 6.0. Significantly regulated (P < 0.05) protein spots (marked by arrows) were cut and identified by nanoLC-MS/MS.

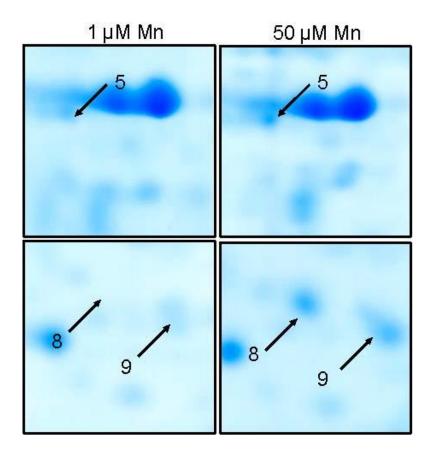


FIG. S6. Representative Coomassie-stained close- ups of regions containing protein spots 1, 4 and 6 differing in abundance between the younger sixth (right) and the older fourth (left) leaves of Mn control plants. A complete 2D IEF/SDS–PAGE resolution of the proteome is given in Fig. 9. Three replications of each treatment were analysed using the ImagemasterTM 2D PLATINUM Software 6.0. Significantly regulated (P < 0.05) protein spots (marked by arrows) were cut and identified by nanoLC-MS/MS.

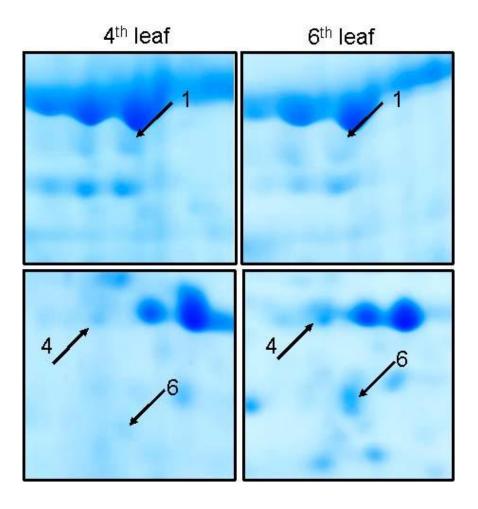
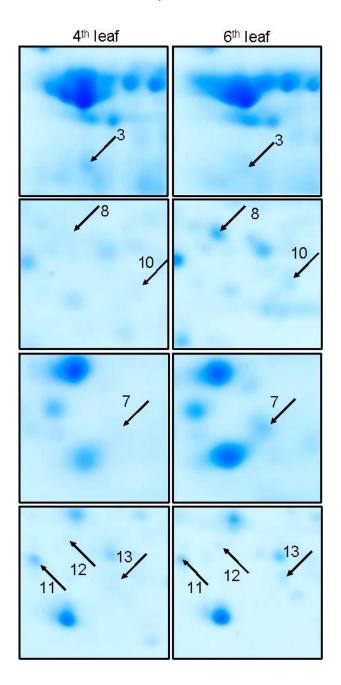



FIG. S7. Representative Coomassie-stained close-ups of regions containing protein spots 3, 7, 8, 10, 11, 12 and 13 differing in abundance between the younger sixth (right) and the older fourth (left) leaves of Mn-treated plants. A complete 2D IEF/SDS–PAGE resolution of the proteome is given in Fig. 9. Three replications of each treatment were analysed using the ImagemasterTM 2D PLATINUM Software 6.0. Significantly regulated (P < 0.05) protein spots (marked by arrows) were cut and identified by nanoLC-MS/MS.

Protein no. ^a	Acc. no. ^b	Identity ^c	Organism ^d	Peptide sequence ^e	Coverage (%) ^f
2	BAD16832	Chloroplast translational elongation factor Tu	Oryza sativa	MASLASASASTSLVFSTSSSKPRLGSSVGFSSPARFRRTAAA AASRGTGRRAGLLVVRAARGKFERTKPHVNIGTIGHVDHGK <u>T</u> <u>TLTAALTMVLASVGGSAPKKYDEIDAAPEER</u> AR <u>GITINTATVEY</u> <u>ETETR</u> HYAHVDCPGHADYVKNMITGAAQMDGAILVVSGADG PMPQTK <u>EHILLAK</u> QVGVPK <u>IVVFLNKK</u> DQVDDEELLQLVELEV R <u>ELLSSYEYDGDEVPIVAGSALKALENLMANPAIK</u> RGDDEWV DGIFSLIDSVDNYIPVPQRQTDLPFLLAVEDVFSITGRGTVATG RIERGTVK <u>VGDTVDIVGIR</u> ETR <u>NCTVTGVEMFQKTMDDAMAG</u> <u>DNVGLLLR</u> GMQKDDIERGMVLAKPASITPHTKFDAVVYVLKK DEGGRHSPFFPGYRPQFYMRTTDVTGNVTKIMNDKDEEAKM CMPGDRVKMVVELIQPVACEQGMRFAIREGGK <u>TVGAGVINTI</u> <u>LK</u>	28.40
7	NP_001048 798	50S ribosomal protein L11	Oryza sativa	MATTSLSLHGVPSPTATKLSSSFLGAPASFLRPTPPPLAAPSR RALAVRAMAPPKPGGKPKKVVGLIKLALEAGK <u>ATPAPPVGPA LGAK</u> GVNIMSFCKEYNAKTAEK <u>AGYIIPVEITVFDDK</u> SFTFILK <u>T PPASVLLLK</u> AAGIEKGSKEPQREKVGKVTADQVRTIAQEK <u>LPD LNCK</u> SIDSAMR <u>IIAGTAANMGIEVDPPILEK</u> KEKVLL	29.90

TABLE S1. Identity and peptide alignment of proteins changed in abundance after elevated Mn supply in the older (fourth) leaf of rice

^a Numbers in the table correspond to numbers given in Fig. 9.
^b Accession numbers correspond to proteins identified at the NCBI homepage showing sequence homology with the detected protein spot.
^c Identities are based on sequence comparisons using the NCBI protein database.
^d Origin species of the corresponding protein.

^e Amino acid sequence of the corresponding protein (identified by nano-LC-MS/MS; sequence homologies between protein spot and corresponding database hit ^f Coverage of the peptides identified by mass spectrometry

Protein no. ^a	Acc. no. ^b	Identity ^c	Organism ^d	Peptide sequence ^{e e}	Coverage (%) ^f
5	BAD16934	Putative inorganic pyrophosphatase	Oryza sativa	MATAATASATAATRFTRLAGVGLRRTARLPTAVRFQRRVLAT TALLRTAELRPKEQGLPETLDYR <u>VFLVDGGGR</u> KVSPWHDVPL R <u>AGDGVFHFVVEIPK</u> ESSAK <u>MEVATDESFTPIKQDTK</u> KGNLR YYPYNINWNYGLFPQTWEDPTLANTDVEGAFGDNDPVDVVEI GERR <u>ANIGDVLK</u> VKPLAALAMIDEGELDWK <u>IVAISLDDPKASLV</u> <u>NDVDDVEKHFPGTLTAIR</u> DWFRDYKIPDGKPANRFGLGNKPT SKEYALK <u>VIEETNESWEK</u> LVKR <u>NIPAGELSLA</u>	24.40
8	NP_00106699 8	Probenazole-inducible protein PBZ1	Oryza sativa	M <u>APACVSDEHAVAVSAER</u> LWK <u>AFMDASTLPK</u> ACAGLVDDIAV EGNGGPGTIYTMK <u>LNPAAGVGSTYK</u> TRVAVCDAASHVLKSD VLEAESKVGKLKSHSTETK <u>LEATGDGSCVAKLKVEYELEDGS</u> SLSPEKEKDIVDGYYGMLKMIEDYLVAHPAEYA	67.70
9	NP_00105470 4	Universal stress protein (Usp) family protein	Oryza sativa	MAGEAAAAER <u>WVGAAVDFSEGSRAALRWAADNLLR</u> AGDHLI LLHVLKDPDYEQGETLLWEATGSPLIPLSDFSEPTIAKKYGAK PDAETLDMLNTVAR <u>QKEVVVVFK</u> VLWGDPREKLCQAINEIPM SCLVIGSRGLGKLKRVLLGSVSDYVVNNATCPVTVVKTADG	18.00

TABLE S2. Identity and peptide alignment of proteins changed in abundance after elevated Mn supply in the younger (sixth) leaf of rice

^a Numbers in the table correspond to numbers given in Fig. 9.
^b Accession numbers correspond to proteins identified at the NCBI homepage showing sequence homology with the detected protein spot.
^c Identities are based on sequence comparisons using the NCBI protein database.
^d Origin species of the corresponding protein.
^e Amino acid sequence of the corresponding protein (identified by nano-LC-MS/MS, sequence homologies between protein spot and corresponding database hit ^f Coverage of the peptides identified by mass spectrometry.

TABLE S3. Identity and peptide alignment of proteins differing in abundance between the Mn-control (0.2 µM) older (fourth) and the younger (sixth) leaf of rice

Protein no. ^a	Acc.no. ^b	Identity ^c	Organism ^d	Peptide sequence ^e	Coverage (%) ^f
1	Q42971	Enolase (2-phosphoglycerate dehydratase)	Oryza sativa	MAATIVSVKARQIFDSRGNPTVEVDVCCSDGTFARAAVPSGA STGVYEALELRDGGSDYLGKGVSKAVDNVNSVIAPALIGKDP TSQAELDNFMVQQLDGTKNEWGWCKQKLGANAILAVSLAIC KAGAIIKKIPLYQHIANLAGNKQLVLPVPAFNVINGGSHAGNKL AMQEFMILPTGAASFKEAMKMGVEVYHNLKSVIKKKYGQDAT NVGDEGGFAPNIQENKEGLELLKTAIEKAGYTGKVVIGMDVAA SEFYNDKDKTYDLNFKEENNDGSQKISGDSLKNVYKSFVSEY PIVSIEDPFDQDDWEHYAKMTAEIGEQVQIVGDDLLVTNPTRV AKAIQEKSCNALLLKVNQIGSVTESIEAVKMSKR <u>AGWGVMTS</u> HRSGETEDTFIADLAVGLATGQIKTGAPCRSERLAKYNQLLR <u>I</u> EEELGAAAVYAGAKFRAPVEPY	48.40
4	NP_001043 134	Oxygen-evolving enhancer protein 1, chloroplast precursor	Oryza sativa	MAASLQAAATLMQPAKLGGRASSAALPSRPSSHVARAFGVD TGAAGRITCSLQSDIREVANKCADAAKLAGFALATSALLVSGA SAEGVPR <u>RLTFDEIQSK</u> TYMEVKGTGTANQCPTVEGGVDSF AFKAGKYNMKK <u>FCLEPTSFTVK</u> AEGVAKNAPPEFQKTKLMTR LTYTLDEIEGPLEVSSDGTIKFEEKDGIDYAAVTVQLPGGERV PFLFTIKNLVATGKPESFGGPFLVPSYRGSSFLDPKGRGGST GYDNAVALPAGGR <u>GDEEELAKENVKNASSSTGNITLSVTK</u> SK PETGEVIGVFESVQPSDTDLGAKVPKDVK <u>IQGVWYAQLE</u>	33.90
6	NP_001063 793	Ribonuclease T2 family protein	Oryza sativa	MEQRKFLLCLILGLLATSGPAKTVNADSPFDFYYLILMWPGAY CTDSEYGCCVPK <u>YGYPSEDFFVKSFMTFDSSENTAVVRCNS</u> <u>DNPFDINKLDSIENNLNHYWSNIKCPRTDGVNSWKSEWNSY</u> <u>GVCSGLKELDYFK</u> AGLQLRKNADVLSALAEQGIKPDYQLYNT AFIKWAVNQK <u>LGVTPGVQCR</u> DGPFGKK <u>QLYEIYLCVDK</u> DAKS FIDCPVLPNLSCPAEVLFHPFHTWMLNTTSAANIVMPTETVLA	40.10

^a Numbers in the table correspond to numbers given in Fig. 9.
^b Accession numbers correspond to proteins identified at the NCBI homepage showing sequence homology with the detected protein spot.
^c Identities are based on sequence comparisons using the NCBI protein database.
^d Origin species of the corresponding protein.
^e Amino acid sequence of the corresponding protein (identified by nano-LC-MS/MS, sequence homologies between protein spot and corresponding database hit f Coverage of the peptides identified by mass spectrometry.

TABLE S4. Identity and peptide alignment of proteins differing in abundance between the Mn-treated (50 µM) older (fourth) and younger (sixth) leaf of rice

Protein no.ª	Acc. no. ^b	Identity ^c	Organism ^d	Peptide sequence ^e	Coverage (%) ^f
3	NP_001047 479	Adenosine 5'- phosphotransferase 2	Oryza sativa	MASEGVLLGMGNPLLDISAVVDDAFLTKYDVKLNNAILAEEKH LPMYDELASKGNVEYIAGGATQNSIRVAQWMLQTPGATSYM GCIGKDKFGEEMKKNAQAAGVTAHYYEDEAAPTGTCAVCVV GGER <u>SLVANLSAANCYK</u> SEHLKKPENWALVEKAKYIYIAGFFL TVSPDSIQLVAEHAAANNK <u>VFLMNLSAPFICEFFR</u> DAQEKVLP FVDYIFGNETEARIFAKVR <u>GWETENVEEIALKISQLPLASGK</u> QK RIAVITQGADPVVVAEDGQVK <u>TFPVILLPK</u> EKLVDTNGAGDAF VGGFLSQLVQQKSIEDSVK <u>AGCYAANVIIQRSGCTYPEKPDF</u> <u>N</u>	43.70
7	NP_001048 798	50S ribosomal protein L11	Oryza sativa	MATTSLSLHGVPSPTATKLSSSFLGAPASFLRPTPPPLAAPSR RALAVRAMAPPKPGGKPKKVVGLIK <u>LALEAGKATPAPPVGPA</u> LGAKGVNIMSFCKEYNAKTAEK <u>AGYIIPVEITVFDDKSFTFILKT</u> PPASVLLLKAAGIEKGSKEPQREKVGKVTADQVRTIAQEK <u>LPD</u> LNCKSIDSAMRIIAGTAANMGIEVDPPILEKKEKVLL	36.20
8	NP_001066 998	Probenazole-inducible protein PBZ1	Oryza sativa	MAPACVSDEHAVAVSAERLWKAFMDASTLPKACAGLVDDIAV EGNGGPGTIYTMKLNPAAGVGSTYKTRVAVCDAASHVLKSD VLEAESKVGKLKSHSTETKLEATGDGSCVAKLKVEYELEDGS SLSPEKEKDIVDGYYGMLKMIEDYLVAHPAEYA	66.50
10	NP_001058 899	40S ribosomal protein S12	Oryza sativa	MAEETPVETPAAPVLGEPMDLMTALQLVMKKSSAHDGLVKG LREAAKAIEKHAAQLCVLAEDCDQPDYVKLVKALCAEHNVHL VTVPSAK <u>TLGEWAGLCK</u> IDSEGKAR <u>KVVGCSCVVVK</u> DYGEE SEGLNIVQDYVKSH	14.20
11	A2YQD9	Ferredoxin-1, chloroplast precursor (Ferredoxin I) (Anti- disease protein 1)	Oryza sativa	MAATALSSQVRLPMSLRVATAPAPARVSVLPASNKLGDRLRM QATYNVKLITPDGEVELQVPDDVYILDQAEEEGIDLPYSCRAG SCSSCAGK <u>VVSGEIDQSDQSFLDDDQVAAGWVLTCHAYPKS</u> DVVIETHKEDDLI	33.10
12	P56724	60S acidic ribosomal protein P3 (P1/P2-like)	Oryza sativa	M <u>GVYTFVCR</u> SSGDEWTAKQLK <u>GELEASAATPYELQR</u> RLVAA ASAADSAAGVQSSFSMVSPSSAVFQVIIGAVGGGAAIGGGAA AGAASGGAAAEAPKAEEKKEEEKEESEDDLGFSLFD	19.30
13	NP_001043 653	Ribosomal protein L31 family protein	Oryza sativa	MALSLSTSFLPTQAAAAATRTTLRSLVPSQRMRCSMRKK <u>GLH</u> <u>PEIYEDAK</u> VYCNGELVLVTGGTKPEYTVDVWSGNHPYYVGD TSAMVVMDSQIEKFRKKWGHIK <u>EYWPEDQWR</u> EMHPDGDPE FDPEEEGSAGAS	14.80

^a Numbers in the table correspond to numbers given in Fig. 9.
^b Accession numbers correspond to proteins identified at the NCBI homepage showing sequence homology with the detected protein spot.
^c Identities are based on sequence comparisons using the NCBI protein database.
^d Origin species of the corresponding protein.
^e Amino acid sequence of the corresponding protein (identified by nano-LC-MS/MS, sequence homologies between protein spot and corresponding database hit f Coverage of the peptides identified by mass spectrometry.