Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia

Yaoyu Chen¹, Yiguo Hu², Haojian Zhang¹, Cong Peng¹ & Shaoguang Li¹

 ¹Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
²Current address: Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Mayer 557, Boston, MA 02115, USA

CONTENTS:

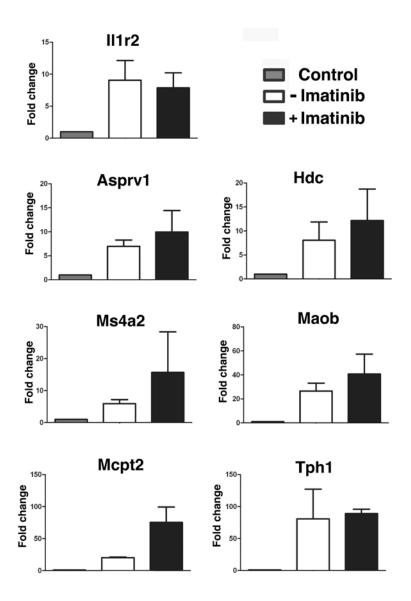
Supplementary Figure 1

Supplementary Figure 2

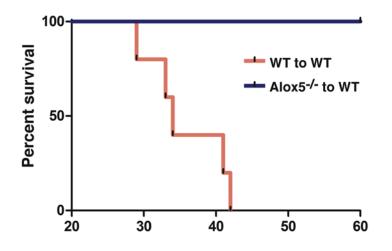
Supplementary Figure 3

Supplementary Figure 4

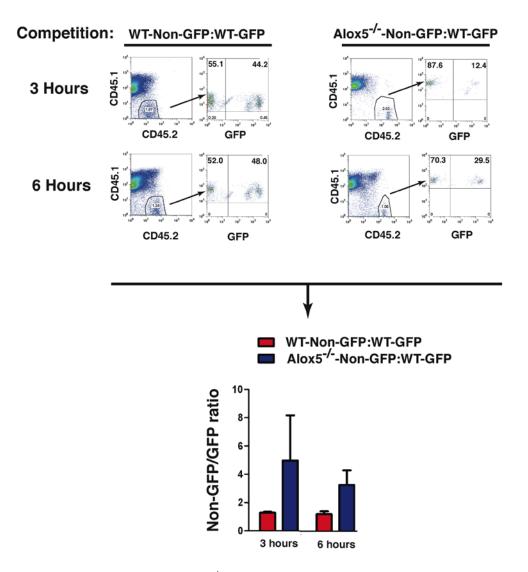
Supplementary Figure 5

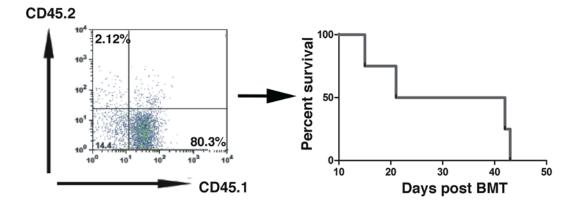

Supplementary Figure 6

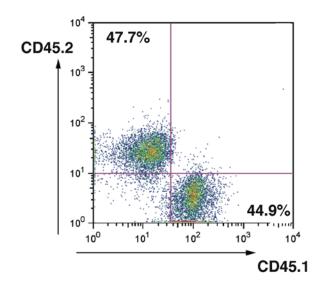
Supplementary Figure 7

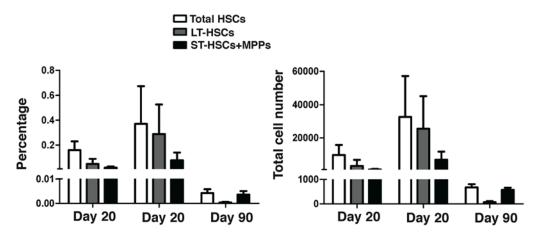

Supplementary Figure 8

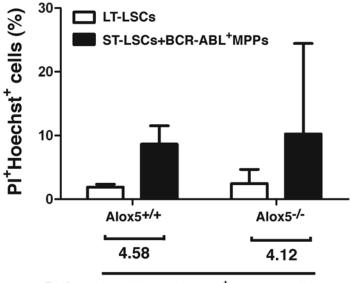
Supplementary Figure 9


Supplementary Table 1

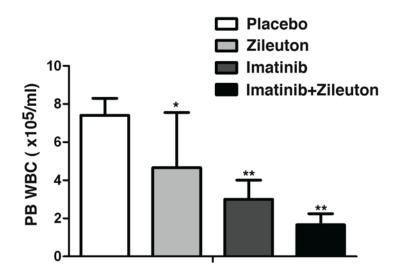

Supplementary Fig. 1. Genes that are up-regulated by BCR-ABL in LSCs and not changed in expression following imatinib treatment. Bone marrow cells from C57BL/6 mice (B6) were transduced with retrovirus containing BCR-ABL/GFP or GFP alone to induce CML as described in **Figure 1a**. A group of these mice were treated with imatinib as described in **Figure 1a**. Bone marrow cells were isolated from the mice, and were sorted by FACS for GFP⁺Lin⁻c-Kit⁺Sca-1⁺ cells. Total RNA was isolated from these sorted cells for comparing *Alox5* expression between GFP vector-transduced normal stem cells and BCR-ABL-transduced LSCs by DNA microarray.

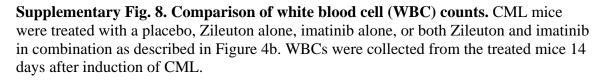

Supplementary Fig. 2. Loss of *Alox5* causes failure of BCR-ABL-expressing BM cells to induce CML in secondary recipient mice. Kaplan-Meier survival curves for secondary recipients of $2x10^6$ bone marrow cells from mice receiving *BCR-ABL*-transduced wild type (n=5) or *Alox5^{-/-}* (n=6) donor BM cells.

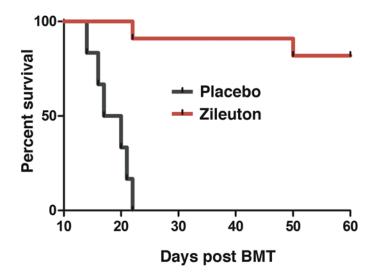

Supplementary Fig. 3. *Alox5^{-/-}* **bone marrow cells do not have a homing defect.** Bone marrow cells $(6x10^6)$ from GFP mice (CD45.2) were 1:1 mixed with either bone marrow cells from wild type B6 mice (CD45.2) or those from $Alox5^{-/-}$ mice (CD45.2), and then transferred by tail vein injection into each wild type recipient mouse (CD45.1). 3 or 6 hours after the transplantation, By FACS analysis, CD45.2⁺ bone marrow cells, representing the donor cells, were first identified and then analyzed for the percentages of GFP⁺ and GFP⁻ populations. The ration of non-GFP and GFP populations were shown.


Supplementary Fig. 4. Loss of *Alox5* impairs the function of LSCs. BCR-ABLexpressing wild type (CD45.1⁺) and $Alox5^{-/-}$ (CD45.2⁺) BM cells were 1:1 mixed (5x10⁵ each), followed by transplantation into lethally irradiated recipient mice. At 40 day after BMT, more than 80% of cells in PB were wild type (CD45.1⁺) leukaemia cells, and all these mice died of CML.

Supplementary Fig. 5. Loss of Alox5 does not impair the function of normal stem cells. Alox5^{-/-} (CD45.2) and wild type (CD45.1) BM cells were 1:1 mixed and then transferred into lethal recipient mice. 4 weeks after BMT, FACS analysis was carried out to compare the percentages of wild type and Alox5^{-/-} cells in BM of the recipient mice.




Supplementary Fig. 6. *Alox5* **deficiency does not lead to blockade of differentiation of normal LT-HSCs.** Bone marrow cells were isolated from recipients of *BCR-ABL*-transduced bone marrow cells from wild type or *Alox5^{-/-}* donor mice, and GFP⁻ cell population (representing normal hematopoietic cells in CML mice) were analyzed by FACS analysis. At 90 days after induction of CML, the percentages and total numbers of LT-HSCs (GFP⁻Lin⁻c-Kit⁺Sca-1⁺CD34⁻) were much lower than those of ST-HSCs /MPP cells (GFP⁻Lin⁻c-Kit⁺Sca-1⁺CD34⁺) in a similar degree in mice receiving either BCR-ABL-transduced wild type or *Alox5^{-/-}* donor bone marrow cells. These results indicate that *Alox5* deficiency does not lead to blockade of differentiation of normal LT-HSCs.



Ratio: ST-LSCs+BCR-ABL⁺MPPs:LT-LSCs

Supplementary Fig. 7. Analysis of apoptosis of LSCs in wild type and *Alox5^{-/-}* **mice.** At day 14 after BMT, bone marrow cells were isolated from recipients of *BCR-ABL*-transduced bone marrow cells from wild type or *Alox5^{-/-}* donor mice. The cells were stained with PI and Hoechst Blue, and the percentages of LT-LSCs (GFP⁺Lin⁻c-Kit⁺Sca-1⁺CD34⁻) and ST-LSCs /BCR-ABL-expressing MPP cells (Lin⁻c-Kit⁺Sca-1⁺CD34⁺) that were positive for PI and Hoechst Blue were determined by FACS. The ratios between ST-LSCs /BCR-ABL-expressing MPP cells and LT-LSCs in the presence and absence of *Alox5* were compared.

Supplementary Fig. 9. Inhibition of Alox5 prolongs survival of mice with CML induced with BCR-ABL-T315I. Kaplan-Meier survival curves for CML mice treated with a placebo (n=6), or Zileuton (n=11).

Gene	GeneBank accession	Forward primer	Reverse primer
β-catenin	NM_007614	5'-AACAGGGTGCTATTCCACGACTA-3'	5'-TGTGAACGTCCCGAGCAA-3'
GATA-1	NM_008089	5'-ACTGTGGAGCAACGGCTACT-3'	5'-TCCGCCAGAGTGTTGTAGTG-3'
FOG-1	NM_009569	5'-CATAGAGGAGCCCCCAAGTC-3'	5'-GGCTGCCTCTTCTTCCTTTT-3'

Supplementary Table. 1. Sequence of the primers used in real-time quantitative PCR assays.