A Formal [4+4] Complementary Ambiphile Pairing (CAP) Reaction: A New Cyclization Pathway for ortho-Quinone Methides

Thiwanka B. Samarakoon, Moon-Young Hur, Ryan D. Kurtz, Paul R. Hanson^{†,*}

[†]Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 and the University of Kansas Center for Chemical Methodologies and Library Development 2121 Simons Drive, Structural Biology Center, West Campus, Lawrence, Kansas 66047

Supporting Information

Contents

	Page
General Information	S 1
Experimental Procedures and Characterization data	S1-S14
Spectroscopic data	S15-S38
X-Ray Data	S39-40
	General Information Experimental Procedures and Characterization data Spectroscopic data X-Ray Data

Experimental Section

General Methods. All reactions were carried out under argon in oven-dried or flame-dried glassware. THF and CH₂Cl₂ were purified by passage through a purification system (Solv-Tek) employing activated Al₂O₃. Flash column chromatography was performed with Merck silica gel (EM-9385-9, 230-400 mesh) or via the Biotage SP System with FLASH 12+ or FLASH 40+ cartridges. Thin layer chromatography was performed on silica gel 60F₂₅₄ plates (EM-5717, Merck). ¹H and ¹³C NMR spectra were recorded in CDCl₃ (unless otherwise mentioned) on a Bruker DRX-500 spectrometer operating at 500 MHz, and 125 MHz, respectively and calibrated to the solvent peak. High-resolution mass spectrometry (HRMS) was recorded on a LCT Premier Spectrometer (Micromass UK Limited) operating on ESI (MeOH).

General Procedure for preparation of α -fluorobenzene sulfonamide

To a vigorously stirred solution of amine (7.34 mmol, 2.0 equiv.) in CH_2Cl_2 (12.2 mL, 0.3 M) in a round bottom flask was added NaHCO₃ (3 equiv.) and H₂O (6.1 mL, 0.6 M). A solution of benzenesulfonyl chloride (1.0 g, 3.67 mmol) in CH_2Cl_2 (3.6 mL, 1 M) was added dropwise, and the reaction was stirred for 4-8 hours. Upon disappearance of sulfonyl chloride, 10% HCl (10 mL) was added and the reaction was stirred for 10 minutes. The organic layer was separated and the aqueous layer extracted with CH_2Cl_2 (3 x 5 mL). The combined organic layers were washed with brine (10 mL), dried (Na₂SO₄), concentrated under reduced pressure and subjected to column chromatography (3:1, hexane:EtOAc) to afford the *o*-fluorobenzene sulfonamide.

4-bromo-N-butyl-2-fluorobenzenesulfonamide (1c)

Light yellow solid, 1.10 g (97%), mp 172-174 °C.

FTIR (thin film): 3261, 2923, 2850, 1577, 1560, 1448, 1369, 1326, 1164 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.77-7.73 (m, 1H), 7.44-7.37 (m, 2H), 4.91 (t, *J* = 5.9 Hz, 1H), 2.98 (dd, *J* = 13.4, 6.9 Hz, 2H), 1.49-1.41 (m, 2H), 1.29 (dq, *J* = 14.5, 7.3 Hz, 2H), 0.85 (t, *J* = 7.4 Hz, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 158.3 (d, $J_{C-F} = 258.4$ Hz), 131.4, 128.1 (d, $J_{C-F} = 9.1$ Hz, 1H), 128.0 (d, $J_{C-F} = 3.8$ Hz), 127.3 (d, $J_{C-F} = 13.8$ Hz), 120.5 (d, $J_{C-F} = 24.4$ Hz), 42.9, 31.5, 19.0, 13.4;

HRMS calculated for $C_{10}H_{12}FBrNO_2S$ (M-H)⁺ 307.9756; found 307.9737 (TOF MS ES+).

4-bromo-2-fluoro-N-isobutylbenzenesulfonamide (1d)

White Solid 1.3 g (92%), mp 149-150°C.

FTIR (thin film): 3298, 2960, 2873, 1589, 1569, 1469, 1396, 1334, 1164 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.78-7.74 (m, 1H), 7.45-7.39 (m, 2H), 4.78 (t, *J* = 6.1 Hz, 1H), 2.79 (t, *J* = 6.6 Hz, 2H), 1.73 (dp, *J* = 13.4, 6.7 Hz, 1H), 0.89 (d, *J* = 6.7 Hz, 6H);

¹³**C NMR** (126 MHz, CDCl₃) δ 158.3 (d, $J_{C-F} = 258.2$ Hz), 131.3, 128.1 (d, $J_{C-F} = 9.2$ Hz), 127.9 (d, $J_{C-F} = 3.8$ Hz), 127.3 (d, $J_{C-F} = 13.9$ Hz), 120.6 (d, $J_{C-F} = 24.4$ Hz), 50.6, 28.5, 19.7; **HRMS** calculated for C₁₀H₁₂FBrNO₂S (M-H)⁺ 307.9756; found 307.9727 (TOF MS ES+).

4-bromo-2-fluoro-*N*-(4-methoxybenzyl)benzenesulfonamide (1e)

White Solid 1.30 g (96%), mp 107-108 °C.

FTIR (thin film): 3270, 2931, 1589, 1492, 1357, 1348, 1321, 1251, 1226, 1164 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.71 (dd, J = 8.3, 7.8 Hz, 1H), 7.39 (ddd, J = 8.4, 1.8, 0.6 Hz, 1H), 7.31 (dd, J = 9.5, 1.8 Hz, 1H), 7.10-7.05 (m, 2H), 6.78-6.73 (m, 2H), 5.02 (t, J = 6.0 Hz, 1H), 4.13 (d, J = 6.1 Hz, 2H), 3.77 (s, 3H);

¹³**C** NMR (126 MHz, CDCl₃) δ 159.4, 158.3 (d, $J_{C-F} = 258.2$), 131.3, 129.3, 128.1 (d, $J_{C-F} = 9.3$ Hz), 127.8 (d, $J_{C-F} = 3.7$ Hz), 127.6, 127.5 (d, $J_{C-F} = 13.1$ Hz), 120.5 (d, $J_{C-F} = 24.4$ Hz), 114.0, 55.3, 47.0;

HRMS calculated for $C_{14}H_{12}FBrNO_3S$ (M-H)⁺371.9705; found 371.9699 (TOF MS ES+).

4-bromo-N-cyclopropyl-2-fluorobenzenesulfonamide (1f)

White Solid 1.01 g (94%), mp 88-89 °C.

FTIR (thin film): 3286, 3093, 3020 1589, 1568, 1469, 1400, 1349, 1330, 1137 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.8 (dd, J = 8.3, 7.8 Hz, 1H), 7.46 (ddd, J = 8.4, 1.8, 0.7 Hz, 1H), 7.41 (dd, J = 9.4, 1.8 Hz, 1H), 5.28 (d, J = 14.1 Hz, 1H), 2.26 (ttd, J = 6.7, 3.5, 1.3 Hz, 1H), 0.68-0.63 (m, 2H), 0.60 (tdd, J = 7.6, 5.9, 1.6 Hz, 2H);

¹³**C NMR** (126 MHz, CDCl₃) δ 158.4 (d, ¹ J_{C-F} = 259.2 Hz), 131.8, 128.5 (d, J_{C-F} = 9.2 Hz), 128.0 (d, J_{C-F} = 3.8 Hz), 126.8 (d, J_{C-F} = 13.7 Hz), 120.6 (d, J_{C-F} = 24.4 Hz), 24.2, 6.1;

HRMS calculated for $C_9H_9FNO_2SNa$ (M-H)⁺291.9443; found 291.9436 (TOF MS ES+).

4-bromo-2-fluoro-N-(prop-2-ynyl)benzenesulfonamide (1g)

White Solid 1.02g (88%), mp 104-105 °C.

FTIR (thin film): 3248, 2128, 1598, 1571, 1460, 1400, 1361, 1332, 1161 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.80-7.77 (m, 1H), 7.45 (ddd, J = 8.3, 1.8, 0.6, 1H), 7.42 (dd, J = 9.4, 1.8, 1H), 4.99 (t, J = 5.9, 1H), 3.93 (dd, J = 6.2, 2.5, 2H), 2.06 (t, J = 2.5, 1H);

¹³**C NMR** (126 MHz, CDCl₃) δ 158.7 (d, J_{C-F} = 258.6 Hz), 131.2, 128.61 (d, J_{C-F} = 9.3 Hz), 127.9 (d, J_{C-F} = 3.7 Hz), 127.2 (d, J_{C-F} = 13.8 Hz), 120.5 (d, J_{C-F} = 24.3 Hz), 77.1, 73.1, 32.9;

HRMS calculated for $C_9H_6FNO_2S$ (M-H)⁺ 289.9287; found 289.9281 (TOF MS ES+).

N-allyl-5-chloro-2-fluorobenzenesulfonamide (1h)

White Solid 0.82 g (89 %), mp 81-82 °C.

FTIR (thin film): 3292, 3095, 3076, 1649, 1596, 1467, 1429, 1334, 1255, 1164 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 6.1, 2.7 Hz, 1H), 7.53 (ddd, J = 8.8, 4.3, 2.7 Hz, 1H), 7.17 (t, J = 9.1 Hz, 1H), 5.73 (ddt, J = 16.1, 10.3, 5.9 Hz, 1H), 5.20 (ddd, J = 17.1, 2.6, 1.5 Hz, 1H), 5.13 (dd, J = 10.2. 1.2 Hz, 1H), 4.81 (s, 1H), 3.69 (t, J = 6.0 Hz, 2H);

¹³**C NMR** (126 MHz, CDCl₃) δ 157.2 (d, $J_{C-F} = 254.0$ Hz), 134.7 (d, $J_{C-F} = 8.6$ Hz), 132.4, 130.0, 129.9 (d, $J_{C-F} = 3.6$ Hz), 129.7 (d, $J_{C-F} = 15.4$ Hz), 118.3 (d, $J_{C-F} = 23.3$ Hz), 118.2, 45.8;

HRMS calculated for $C_9H_8ClFNO_2S$ (M-H)⁺ 247.9948; found 247.9941 (TOF MS ES+).

5-chloro-2-fluoro-N-(4-methoxybenzyl)benzenesulfonamide (1i)

White Solid 1.05 g (87%), mp 41-42 °C.

FTIR (thin film): 3299, 3097, 1616, 1593, 1471, 1467, 1388, 1338, 1166 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.75 (dd, J = 2.7, 6.1 Hz, 1H), 7.45 (ddd, J = 2.7, 4.2, 8.8 Hz, 1H), 7.11-7.05 (m, 3H), 6.76-6.71 (m, 2H), 5.23 (t, J = 6.0 Hz, 1H), 4.15 (d, J = 6.1 Hz, 2H), 3.75 (s, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 159.2, 157.0 (d, $J_{C-F} = 254.0$ Hz), 134.3 (d, $J_{C-F} = 8.6$ Hz), 129.8, 129.7 (d, $J_{C-F} = 12.5$ Hz), 129.6, 129.3, 127.4, 118. 1 (d, $J_{C-F} = 23.2$ Hz), 113.9, 55.2, 46.9;

HRMS calculated for $C_{14}H_{12}$ CIFNO₃S (M-H)⁺ 328.0210; found 328.0220 (TOF MS ES+).

5-chloro-2-fluoro-N-(3-fluorobenzyl)benzenesulfonamide (1j)

White Solid 0.96 g (81%), mp 81-82 °C.

FTIR (thin film): 3298, 2941, 2358, 1602, 1494, 1467, 1340, 1310, 1166 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.81 (dd, J = 6.1, 2.7 Hz, 1H), 7.51-7.46 (m, 1H), 7.25-7.21 (m, 1H), 7.13-7.09 (m, 1H), 6.99 (dd, J = 11.5, 3.9 Hz, 1H), 6.95-6.89 (m, 2H), 5.23 (t, J = 6.1 Hz, 1H), 4.23 (d, J = 6.3 Hz, 2H);

¹³**C NMR** (126 MHz, CDCl₃) δ 162.71 (d, $J_{C-F} = 247.1$ Hz), 157.02 (d, $J_{C-F} = 254.1$ Hz), 138.1 (d, $J_{C-F} = 7.2$ Hz), 134.65 (d, $J_{C-F} = 8.6$ Hz), 130.20 (d, $J_{C-F} = 8.2$ Hz), 129.8, 129.8, 129.5 (d, $J_{C-F} = 15.4$ Hz), 123.4 (d, $J_{C-F} = 3.0$ Hz), 118.24 (d, $J_{C-F} = 23.1$ Hz) 46.7 (d, $J_{C-F} = 1.5$ Hz).

HRMS calculated for $C_{13}H_9ClF_2NO_2S$ (M-H)⁺ 316.0011; found 316.0013 (TOF MS ES+).

5-chloro-2-fluoro-N-(2-methoxybenzyl)benzenesulfonamide (1k)

White Solid 1.10 g (90%), mp 99-101 °C.

FTIR (thin film): 3298, 2941, 2358, 1602, 1494, 1467, 1340, 1310, 1166 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.64 (dd, J = 6.1, 2.7 Hz, 1H), 7.31 (ddd, J = 8.8, 4.3, 2.7 Hz, 1H), 7.12 (td, J = 8.1, 1.7 Hz, 1H), 6.92 (dd, J = 7.4, 1.6 Hz, 1H), 6.87-6.82 (m, 1H), 6.71 (td, J = 7.4, 0.9 Hz, 1H), 6.67 (d, J = 8.2 Hz, 1H), 5.59 (t, J = 6.3 Hz, 1H), 4.25 (d, J = 6.5 Hz, 2H), 3.78 (s, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 157.1, 157.0 (d, $J_{C-F} = 252.7$ Hz), 134.0 (d, J_{C-F} Hz, = 8.6), 130.0, 129.9 (d, $J_{C-F} = 15.7$ Hz), 129.7, 129.5, 129.4 (d, $J_{C-F} = 3.6$ Hz), 122.9, 120.2, 117.6 (d, J = 23.3 Hz), 109.8, 55.0, 44.6.

HRMS calculated for $C_{14}H_{12}CIFNO_3S$ (M-H)⁺ 328.0210; found 328.0217 (TOF MS ES+).

(S)-methyl 2-(4-bromo-2-fluorophenylsulfonamido)-3-methylbutanoate (1-l)

White Solid 1.24 g (92 %), mp 71-72 °C.

 $[\alpha]_{D}^{20} + 53.8 (c = 0.52, \text{CHCl}_3)$

FTIR (thin film): 3288, 2968, 1739, 1589, 1569, 1471, 1398, 1350, 1172 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.73-7.68 (m, 1H), 7.41-7.37 (m, 2H), 5.39 (d, *J* = 9.9 Hz, 1H), 3.87 (dd, *J* = 5.0, 9.9 Hz, 1H), 3.53 (s, 3H), 2.15-2.05 (m, 1H), 0.97 (d, *J* = 6.8 Hz, 3H), 0.88 (d, *J* = 6.9 Hz, 3H);

¹³**C NMR** (126 MHz, CDCl₃) $\delta \delta$ 171.4 (s, 1H), 158.6 (d, $J_{C-F} = 259.8$, Hz), 130.9, 128.4 (d, $J_{C-F} = 9.2$ Hz), 127.7(d, $J_{C-F} = 3.8$ Hz), 127.2 (d, $J_{C-F} = 14.1$ Hz), 120.5 ($J_{C-F} = 24.4$ Hz), 61.3, 52.3, 31.4, 18.9, 17.3;

HRMS calculated for $C_{12}H_{14}FBrNO_4S$ (M-H)⁺ 365.9811; found 365.9800 (TOF MS ES+).

(S)-methyl 2-(4-bromo-2-fluorophenylsulfonamido)-4-methylpentanoate (1m)

White Solid 1.31g (94%), mp 82-83 °C.

FTIR (thin film): 3282, 3093, 2956, 1743, 1589, 1569, 1471, 1398, 1350, 1170 cm⁻¹

 $[\alpha]_{D}^{20} + 35.0 \ (c = 0.60, \text{CHCl}_3)$

¹**H NMR** (500 MHz, CDCl₃) δ 7.73-7.69 (m, 1H), 7.40 (ddd, J = 9.6, 5.3, 1.1 Hz, 2H), 5.32 (d, J = 9.9 Hz, 1H), 4.06 (dt, J = 9.7, 7.4 Hz, 1H), 3.51 (s, 3H), 1.85-1.74 (m, 1H), 1.54 (t, J = 7.2 Hz, 2H), 0.91 (dd, J = 6.6, 4.0 Hz, 6H);

¹³**C** NMR (126 MHz, CDCl₃) δ 172.3, 158.7 (J_{C-F} = 259.6 Hz), 130.9, 128.4 (J_{C-F} , J = 9.2 Hz), 127.7 (J_{C-F} , J = 3.8 Hz), 127.2 (J_{C-F} , J = 14.1 Hz), 120.5 (d, J = 24.3 Hz), 54.6, 52.4, 42.1, 24.3, 22.7, 21.3;

HRMS calculated for C₁₃H₁₄FBrNO₄S (M-H)⁺ 379.9967; found 379.9959 (TOF MS ES+).

General procedure for [4+4] reaction

A flame-dried vial was charged with the sulfonamide (0.090 g, 0.29 mmol), *o*-silyloxy benzyl acetate (0.165 g, 0.584 mmol), THF (0.5 M, 0.58 mL) and TBAF (0.88 mmol, 0.88 mL). The vial was quickly sealed and stirred for 30 minutes under mW irradiation at 100 °C. Upon completion of the reaction, the mixture was concentrated under reduced pressure and subjected to column chromatography (6:1 hexane:EtOAc) to afford the product as a white solid.

6-(2-methoxybenzyl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2a)

White solid, 92 mg (71%), mp 173-174 °C.

FTIR (thin film): 3064, 2926, 2358, 2341, 1610, 1581, 1478, 1452, 1353, 1340 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.98 (dd, J = 7.8, 1.7 Hz, 1H), 7.62 (tdd, J = 9.1, 8.2, 1.4 Hz, 3H), 7.55 (d, J = 7.6 Hz, 1H), 7.39 (td, J = 7.8, 1.7 Hz, 1H), 7.29 (td, J = 7.6, 1.1 Hz, 2H), 7.13 (td, J = 7.4, 1.0 Hz, 1H), 7.04 (td, J = 7.5, 0.9 Hz, 1H), 6.99 (dd, J = 7.4, 1.7 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 5.57 (dd, J = 15.2, 1.3 Hz, 1H), 4.10 (d, J = 16.0 Hz, 1H), 3.81 (d, J = 15.2 Hz, 1H), 3.73 (d, J = 16.0 Hz, 1H), 3.68 (s, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 159.3, 157.1, 155.5, 134.4, 134.3, 131.7, 130.4, 130.3, 130.2, 129.2, 128.8, 125.2, 124.1, 123.6, 122.2, 120.8, 110.1, 55.0, 47.6, 42.8;

HRMS calculated for $C_{21}H_{19}BrNO_4S$ (M+Na)⁺ 404.0933; found 404.0927 (TOF MS ES+).

6-(3,4-dichlorobenzyl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2b)

White solid, 91mg, (73%), mp 134-136 °C.

FTIR (thin film): 3071, 2358, 2341, 1577, 1488, 1460, 1400, 1338, 1164 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (dd, J = 7.8, 1.6 Hz, 1H), 7.63 (dtd, J = 9.9, 8.2, 1.4 Hz, 2H), 7.57 (d, J = 7.6 Hz, 1H), 7.42 (dd, J = 11.8, 5.0 Hz, 2H), 7.39 (d, J = 1.5 Hz, 1H), 7.30 (td, J = 7.7, 1.3 Hz, 1H), 7.20 (dd, J = 7.4, 1.0 Hz, 1H), 7.18-7.14 (m, 1H), 7.00 (dd, J = 7.4, 1.6 Hz, 1H), 5.56 (dd, J = 15.3, 1.2 Hz, 1H), 4.35 (d, J = 15.2 Hz, 1H), 3.68 (d, J = 15.3 Hz, 1H), 3.19 (d, J = 15.2 Hz, 1H);

¹³**C NMR** (126 MHz, CDCl₃) δ 159.2, 155.3, 135.7, 134.7, 133.9, 132.9, 132.1, 131.3, 130.7, 130.6, 130.4, 130.1, 129.5, 127.6, 125.6, 125.4, 124.1, 122.5, 47.6, 47.2;

HRMS calculated for $C_{12}H_{14}FBrNO_4S$ (M-H)⁺ 365.9811; found 365.9800 (TOF MS ES+).

2-bromo-6-butyl-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2c)

White solid, 103 mg (90%), mp 171-172 °C.

FTIR (thin film): 3261, 2923, 2850, 2356, 2339, 1470, 1396, 1332, 1164 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 1.8 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.42 (dq, J = 5.1, 2.0 Hz, 2H), 7.24-7.18 (m, 2H), 5.55 (d, J = 15.3 Hz, 1H), 3.96 (t, J = 17.7 Hz, 1H), 3.00-2.92 (m, 1H), 2.28-2.22 (m, 1H), 1.64-1.48 (m, 3H), 1.39-1.31 (m, 1H), 1.29-1.19 (m, 1H), 0.89 (t, J = 7.4 Hz, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 158.8, 155.6, 133.4, 131.5, 131.3, 130.5, 130.1, 128.5, 127.6, 127.5, 125.9, 122.2, 47.3, 44.5, 29.5, 19.6, 13.7;

HRMS calculated for $C_{16}H_{14}BrNNaO_{3}S$ (M+Na) 401.9775; found 401.9773 (TOF MS ES+).

2-bromo-6-isobutyl-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2d)

White Solid, 104 mg (91%), mp 125-126 °C.

FTIR (thin film): 3061, 2923, 2850, 2356, 2339, 1470, 1396, 1332, 1164 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.77 (dd, J = 11.3, 5.1 Hz, 2H), 7.50 (d, J = 8.1 Hz, 1H), 7.44-7.40 (m, 2H), 7.22-7.18 (m, 2H), 5.59 (dd, J = 15.3, 1.2 Hz, 1H), 3.92 (d, J = 15.3 Hz, 1H), 2.66-2.59 (m, 1H), 2.09-2.04 (m, 1H), 2.04-1.97 (m, 1H), 0.98 (d, J = 6.6, 3H), 0.82 (d, J = 6.5 Hz, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 158.8, 155.6, 133.2, 131.6, 131.4, 130.5, 129.7, 128.5, 127.7, 127.5, 125.9, 122.2, 51.7, 47.6, 26.0, 20.2, 19.5;

HRMS calculated for $C_{16}H_{14}BrNNaO_{3}S$ (M+Na) 401.9775; found 401.9772 (TOF MS ES+).

2-bromo-6-(4-methoxybenzyl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2e)

Colorless oil, 101 mg (82%).

FTIR (thin film): 3087, 2997, 2931, 2442, 2393, 1569, 1400, 1388, 1338, 1161 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 1.8 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.44 (ddd, *J* = 7.2, 4.4, 1.6 Hz, 2H), 7.24-7.18 (m, 3H), 7.02 (dd, *J* = 7.4, 1.6 Hz, 1H), 6.93-6.88 (m, 2H), 5.45 (d, *J* = 15.2 Hz, 1H), 4.39 (d, *J* = 14.5 Hz, 1H), 3.83 (s, 3H), 3.70 (d, *J* = 15.3 Hz, 1H), 3.12 (d Hz, *J* = 14.5, 1H);

¹³**C NMR** (126 MHz, CDCl₃) δ 159.4, 159.0, 155.7, 133.5, 131.7, 131.3, 130.6, 129.9, 129.7, 128.6, 127.8, 127.5, 126.7, 125.8, 122.3, 114.08, 77.25, 55.3, 48.0, 46.6;

HRMS calculated for $C_{21}H_{18}BrNO_4SNa (M+Na)^+ 482.0038$; found 482.0050 (TOF MS ES+).

2-bromo-6-cyclopropyl-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2f)

White Solid, 104 mg (81%), mp 175-176 °C.

X-Ray page S-39

FTIR (thin film): 3280, 3071, 3020, 2350, 2335, 1400, 1359, 1330 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.92 (dd, J = 7.8, 1.6 Hz, 1H), 7.58-7.51 (m, 2H), 7.45 (d, J = 7.6 Hz, 1H), 7.31 (td, J = 7.7, 1.6 Hz, 1H), 7.26-7.20 (m, 2H), 7.10 (td, J = 7.4, 1.1 Hz, 1H), 5.52 (d, J = 14.8 Hz, 1H), 3.87 (d, J = 14.8 Hz, 1H), 1.28-1.22 (m, 2H), 0.63-0.56 (m, 2H), 0.41-0.33 (m, 1H);

¹³**C NMR** (126 MHz, CDCl₃) δ 159.1, 155.4, 134.6, 133.1, 131.7, 131.3, 130.2, 130.1, 125.6, 125.3, 124.1, 122.1, 50.9, 27.7, 10.2, 5.2;

HRMS calculated for $C_{17}H_{18}BrNNaO_3$ (M+Na) 418.0088; found 418.0083 (TOF MS ES+).

2-bromo-6-(prop-2-yn-1-yl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2g)

White Solid, 118 mg (94%), mp 140-141 °C.

FTIR (thin film): 3092, 3089, 2354, 2334, 2123, 1569, 1452, 1390, 1352, 1344, 1164 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.78 (dd, J = 5.1, 6.9 Hz, 2H), 7.48 (d, J = 7.0 Hz, 1H), 7.44 (ddt, J = 2.1, 4.2, 8.3 Hz, 2H), 7.36 (dd, J = 1.6, 7.4 Hz, 1H), 7.23 (td, J = 1.2, 7.4 Hz, 1H), 5.60 (d, J = 15.4 Hz, 1H), 4.20 (d, J = 15.3 Hz, 1H), 3.98 (ddd, J = 1.3, 2.5, 17.3 Hz, 1H), 3.26 (dd, J = 2.5, 17.3 Hz, 1H), 2.15 (t, J = 2. Hz, 5, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 158.9, 155.6, 133.1, 131.6, 131.3, 130.8, 129.3, 128.7, 128.1, 127.6, 126.0, 121.8, 76.2, 73.9, 48.1, 35.8; HRMS calculated for C₁₆H₁₂BrNNaO₃S (M+Na) 399.9619; found 339.9618 (TOF MS ES+). 6-allyl-3-chloro-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2h)

White Solid, 87 mg (95%), mp 138-140 °C.

FTIR (thin film): 3082, 2974, 2358, 2341, 1604, 1577, 1452, 1386, 1342, 1164 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (d, J = 2.5 Hz, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.52 (dd, J = 8.7, 2.5 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.39 (dt, J = 8.1, 3.7 Hz, 1H), 7.18 (dd, J = 5.0, 0.8 Hz, 2H), 5.74 (dddd, J = 17.1, 10.1, 8.5, 3.8 Hz, 1H), 5.52 (dd, J = 15.2, 1.5 Hz, 1H), 5.26 (d, J = 10.1 Hz, 1H), 5.18 (ddt, J = 17.1, 2.1, 1.1 Hz, 1H), 3.95 (d, J = 15.2 Hz, 1H), 3.81 (ddq, J = 15.3, 3.7, 1.8 Hz, 1H), 2.83 (dd, J = 15.2, 8.5 Hz, 1H);

¹³**C NMR** (126 MHz, CDCl₃) δ 159.0, 153.8, 135.7, 134.1, 132.2, 131.5, 130.8, 130.5, 130.1, 129.9, 125.7, 125.4, 122.2, 119.3, 47.8, 47.1.

HRMS calculated for $C_{16}H_{15}CINO_{3}S$ (M+H)⁺ 336.0461; found 336.0468 (TOF MS ES+).

3-chloro-6-(4-methoxybenzyl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide

White Solid, 92 mg (87%), mp 138-139 °C.

FTIR (thin film): 3072, 2933, 2835, 2358, 2331, 1610, 1512, 1358, 1338, 1164 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 2.5 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.55-7.48 (m, 2H), 7.41 (td, J = 7.9, 1.7 Hz, 1H), 7.24-7.17 (m, 3H), 7.03 (dd, J = 7.4, 1.6 Hz, 1H), 6.92-6.87 (m, 2H), 5.45 (d, J = 16.1 Hz, 1H), 4.42 (d, J = 14.5 Hz, 1H), 3.83 (s, 3H), 3.70 (t, J = 10.2 Hz, 1H), 3.17 (d, J = 14.5 Hz, 1H);

¹³**C NMR** (126 MHz, CDCl₃) δ 159.4, 159.0 153.8, 135.8, 134.1, 131.6, 130.8, 130.5, 130.1, 129.9, 129.8, 126.6, 125.7, 125.4, 122.2, 114.1, 55.3, 48.1, 46.6;

HRMS calculated for $C_{21}H_{18}CINO_4SNa (M+Na)^+ 438.0543$; found 438.0540 (TOF MS ES+).

3-chloro-6-(3-fluorobenzyl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide

White Solid, 118 mg (87%), mp 158-160 °C.

FTIR (thin film): 3078, 2929, 2358, 2341, 1591, 1487, 1452, 1353, 1340, 133, 1163 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 2.5 Hz, 1H), 7.61-7.58 (m, 1H), 7.55 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.51 (t, *J* = 6.6 Hz, 1H), 7.44-7.40 (m, 1H), 7.35 (dd, *J* = 13.7, 7.7 Hz, 1H), 7.20 (td, *J* = 7.4, 1.0 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.07-7.00 (m, 3H), 5.56-5.47 (m, 1H), 4.43 (d, *J* = 15.0 Hz, 1H), 3.71 (d, *J* = 15.3 Hz, 1H), 3.24 (d, *J* = 15.0 Hz, 1H);

¹³**C** NMR (126 MHz, CDCl₃) δ 164.0, 162.1, 159.0, 153.9, 137.6, 137.6, 135.6, 134.3, 131.5, 130.9, 130.7, 130.4, 130.3, 130.1, 130.0, 129.5, 125.8, 125.4, 123.9, 123.8, 122.3, 115.3, 115.2, 115.1, 115.0, 48.2, 48.1, 47.0.

HRMS calculated for $C_{20}H_{15}CIFNO_3SNa (M+Na)^+ 426.0343$; found 426.0340 (TOF MS ES+).

3-chloro-6-(2-methoxybenzyl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2k)

White Solid, 73 mg (91%), mp 170-171 °C.

FTIR (thin film): 3072, 2939, 2356, 2339, 1464, 1386, 1330, 1164 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (d, J = 2.5 Hz, 1H), 7.59 (d, J = 8.6 Hz, 2H), 7.54 (dd, J = 2.6, 8.7 Hz, 1H), 7.49 (d, J = 7.4 Hz, 1H), 7.39 (td, J = 1.7, 7.8 Hz, 1H), 7.30 (tt, J = 3.2, 6.4 Hz, 1H), 7.16-7.11 (m, 1H), 7.04 (td, J = 0.9, 7.5 Hz, 1H), 7.00 (dd, J = 1.6, 7.5 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 5.53 (dd, J = 1.3, 15.2 Hz, 1H), 4.15-4.08 (m, 1H), 3.79 (dd, J = 15.5, 32.4 Hz, 2H), 3.69 (s, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 159.1, 157.1, 154.0, 136.0, 134.0, 131.9, 130.7, 130.4, 130.2, 130.1, 129.3, 128.9, 125.4, 125.4, 123.3, 122.1, 120.9, 110.2, 55.0, 47.6, 43.0;

HRMS calculated for $C_{21}H_{18}CINO_4SNa (M+Na)^+ 438.0543$; found 438.0545 (TOF MS ES+).

Methyl 2-(2-bromo-5,5-dioxidodibenzo[b,g][1,4,5]oxathiazocin-6(7H)-yl)-3-methylbutanoate 2-l

White Solid, 108 mg (94%) mp 165-166 °C.

X-Ray page *S-40*

FTIR (thin film): 2954, 2360, 2330, 1741, 1569, 1488, 1452, 1388, 1342, 1166 cm⁻¹

 $[\alpha]_{D}^{20} + 5.75 (c = 1.49, CHCl_3)$

¹**H** NMR (500 MHz, CDCl₃) δ 7.77 (dd, J = 7.1, 5.1 Hz, 2H), 7.48-7.43 (m, 2H), 7.36 (dd, J = 8.4, 4.9 Hz, 1H), 7.16 (d, J = 4.3 Hz, 2H), 5.58 (d, J = 15.9 Hz, 1H), 3.96 (d, J = 10.9 Hz, 1H), 3.85 (d, J = 15.9 Hz, 1H), 2.46 (qd, J = 13.1, 6.6 Hz, 1H), 2.28 (s, 3H), 1.12 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 6.3 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 169.2, 158.9, 155.4, 135.4, 132.3, 130.4, 130.3, 129.8, 128.2, 126.9, 126.4, 125.4, 121.7, 63.2, 50.7, 45.0, 25.5, 20.2, 18.7.

HRMS calculated for $C_{19}H_{20}BrNO_5SNa$ (M+Na)⁺ 476.0143; found 476.0133 (TOF MS ES+).

methyl 2-(2-bromo-5,5-dioxidodibenzo[b,g][1,4,5]oxathiazocin-6(7H)-yl)-4methylpentanoate (2m)

White Solid, 108 mg (77%), mp 160-161 °C.

FTIR (thin film): 2960, 2354, 2334, 1745, 1569, 1470, 1356, 1334, 1166 cm⁻¹

 $[\alpha]_{D}^{20}$ -4.12 (*c* = 3.01, CHCl₃)

¹**H NMR** (500 MHz, CDCl₃) δ 7.79-7.75 (m, 2H), 7.48 (d, *J* = 8.1Hz, 1H), 7.43 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.39-7.34 (m, 1H), 7.14 (d, *J* = 4.3 Hz, 2H), 5.59 (d, *J* = 15.8, 1H), 4.52 (dd, *J* = 9.9, 5.5 Hz, 1H), 3.93 (d, *J* = 15.8 Hz, 1H), 2.40 (s, 3H), 1.88 (ddd, *J* = 14.4, 10.0, 4.5 Hz, 1H), 1.77 (ddd, *J* = 14.5, 9.2, 5.5 Hz, 1H), 1.72-1.63 (m, 1H), 0.99 (dd, *J* = 13.3, 6.5 Hz, 6H);

¹³**C NMR** (126 MHz, CDCl₃) δ 170.60, 158.9, 155.2, 135.9, 131.2, 130.4, 130.1, 128.3, 126.8, 126.8, 125.6, 121.5, 56.0, 51.0, 44.4, 36.4, 23.9, 23.2, 21.3;

HRMS calculated for $C_{20}H_{22}BrNO_5SNa (M+Na)^+ 490.0300$; found 490.0300 (TOF MS ES+).

5-chloro-2-fluoro-N-(4-methoxybenzyl)benzenesulfonamide (1i)

$N-allyl-5-chloro-2-fluoroben zene sulfon a mide \ (1h)$

4-bromo-2-fluoro-*N*-(4-methoxybenzyl)benzenesulfonamide (1e)

5-chloro-2-fluoro-N-(3-fluorobenzyl)benzenesulfonamide (1j)

4-bromo-N-butyl-2-fluorobenzenesulfonamide (1c)

4-bromo-2-fluoro-*N*-(prop-2-ynyl)benzenesulfonamide (1g)

4-bromo-N-cyclopropyl-2-fluorobenzenesulfonamide (1f)

4-bromo-2-fluoro-N-isobutylbenzenesulfonamide (1d)

(S)-methyl 2-(4-bromo-2-fluorophenylsulfonamido)-4-methylpentanoate (1m)

2-bromo-6-butyl-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2c)

2-bromo-6-isobutyl-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine-5,5-dioxide (2d)

2-bromo-6-cyclopropyl-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2f)

2-bromo-6-(4-methoxybenzyl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2e)

2-bromo-6-(prop-2-yn-1-yl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2g)

6-(2-methoxybenzyl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2a)

6-allyl-3-chloro-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2h

3-chloro-6-(3-fluorobenzyl)-6,7-dihydrodibenzo[b,g][1,4,5]oxathiazocine 5,5-dioxide (2j)

Methyl 2-(2-bromo-5,5-dioxidodibenzo[b,g][1,4,5]oxathiazocin-6(7H)-yl)-3-methylbutanoate 2-l

methyl 2-(2-bromo-5,5-dioxidodibenzo[b,g][1,4,5]oxathiazocin-6(7H)-yl)-4methylpentanoate (2m)

Thermal ellipsoid diagram of compound 2f at 50% probability level.

Thermal ellipsoid diagram of compound 2-l at 50% probability level.

	Chemical Shift (δ)	Multiplicity	J (Hz)	Rel. Intensity
minor-2l	5.63	d	16.0	1.0
major- 2l	5.58	d	15.9	5.82
minor-21	4.43	d	16.0	1.0
major-21	3.85	d	15.9	5.96
major-21	3.96	d	10.9	5.95
minor-2l	3.91	d	11.3	1.0
minor-2l	3.52	S	na	2.6
major- 2l	2.28	8	na	17.2
major-21	1.1, 0.98	d, d	6.3, 6.4	16.8, 17.0
minor-21	0.75, 0.02	d, d	6.5, 6.6	2.6, 2.6

Table 3: Selected ¹H NMR (500 MHz, CDCl₃) comparison data for rotomer presence Major product NMR peak values are bolded