
SUPPLEMENTAL FIGURE 1

Supplemental Figure 1. ACTH has no rapid effect on Ca_v3.2 channel activity in bovine AZF cells. A) Ca²⁺ currents were activated by voltage steps of 300 ms duration applied at 30 s intervals from a holding potential of -80 mV to a test potential of -5 mV. After recording currents in standard saline, cells were superfused with saline containing ACTH (200 pM). Peak current amplitudes are plotted against time. B) Effect of ACTH on Ca_v3.2 current-voltage relationship. Ca²⁺ currents were activated from -80 mV by voltage steps applied at 0.1 Hz to test potentials between -60 and +60 mV before and after superfusing cell with ACTH (200 pM). Peak Ca²⁺ current amplitudes before and after exposing cell to ACTH are plotted against test potential.

SUPPLEMENTAL FIGURE 2

Supplemental Figure 2. Effect of Ni^{2+} on $Ca_v3.2$ T-type Ca^{2+} Current in bovine AZF cells. AZF cells were cultured for 72 h in standard media supplemented with 8CPT-2'-OMe-cAMP (50 μ M). Whole cell Ca^{2+} currents were recorded after activation by long (300 ms) or short (10 ms) voltage steps applied at 30 s intervals from a holding potential of -80 mV. After recording current in standard saline (control), cells were superfused with saline containing Ni^{2+} (50 μ M). A) Ca^{2+} current traces activated by long (left) and short (right) voltage steps before (control) and after superfusing Ni^{2+} (50 μ M), as indicated. B) Plot of T-type- Ca^{2+} current amplitude against time with 50 μ M Ni^{2+} treatment at indicated times. C) Current-voltage relationship: peak current amplitudes from 8CPT-2'-OMe-cAMP-treated cells without (control) or with Ni^{2+} (50 μ M) are plotted against test potential.